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1. Introduction

Recently, boundary layer flows of an electrically conducting, viscous and
incompressible fluid in the presence of the externally applied magnetic field have
been investigated by many authors in view of important practical problems in
aero-space science. In studying boundary layer flows we usually use the boundary
layer approximation, in which the viscous effects can be considered to be
confined in a narrow region near the body. In the presence of the external
magnetic field, however, we must take account of the magnetic viscous effects
due to the electrically conducting property of the fluid. These effects form a thin
layer near the body in which the magnetic viscous effects have to be taken
account of. This layer is called the magnetic boundary layer and has generally
a large thickness compared with the one of the viscous boundary layer. The
theoretical treatment is intricate by this double structure of the boundary layer.

When the external magnetic field is applied parallel to the flow direction, the
double structure of the boundary layer can be considered to degenerate into the
single boundary layer and the theoretical treatment becomes to be rather simple
In this case, Tamada & Sone”, and Greenspan & Carrier? discussed thé
boundary layer flow on a flat plate, independently. When the external magnetic
field is applied transverse to the flow direction this degeneration does not appear
and the theoretical treatment is still kept intricate. Among the boundary layer
type flows only Rayleigh’s problem has been discussed exactly by Hashimoto® »
Kakutani®’®, and Chang & Yen®. Regarding the treatment of boundary layer
flows the determinable method does not exist.

To avoid the intricateness in the theoretical treatment there is the assumption
proposed by Rossow™ . This assumption is that the induced magnetic field can be
neglected compared with the external magnetic field and the electric field is zero.
By this assumption the magnetic beoundary layer can be considered to extend
infinitely in the flow field. Under this assumption Rossow discussed the boundary
layer flow of a flat plate, and Ong & Nicholls®’, and Gupta® did on Rayleigh’s
problem.

In this paper we will discuss the flow formation in Couette motion in the

presence of the transverse magnetic field under the assumption proposed by
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Rossow as the preliminary study of unsteady boundary layer flows. The velocity
profiles and skin friction are calculated. Finally the knowledge for the treatment

of unsteady boundary layer flows is obtained.

2. Equations and Their Solutions

The configuration for Couette motion is as follows. The fluid is ‘béfween two
infinite parallel flat plates at a distance % from each other. One of them, for
instance, the upper one is fixed and the lower one is moving parallel to the
upper one. The fluid between parallel plate move with the linear velocity
distribution. Here we will investigate flow formation in this motion in the
presence of the external transverse magnetic field. At time z < 0 ‘both .plates
are in the state of rest, and at. time z = 0 the lower one starts to move
parallel to the upper one with the velocity =, impulsively.

Investigating this motion, we take the z-axis coinciding with the lower plate
and the y-axis perpendicular to it. Since the plates are infinite all physical
variables does not depend on x and =z . By the configuration of this motion

we can assume for the flow velocity ¥ and the magnetic flux density B as
V= "(4 v 0),
B = (B,, B, 0) .

The equation of continuity (See section 2. in reference 10.) gives

ov .
By = 0, or v = const. in space.
Since v vanishes at the lower plate, we obtain » = 0 . By the assumption

that the induced magnetic field can be neglected compared with the external
magnetic field and the electric field E is zero, equations (3), (6) and (7) in

reference 10 give

B, = const. = B, ,
j:c = ]y =0,
Ja = ouB, ,

where B, is the external magnetic flux density applied perpendicular to the

plates, and j, , j, and j, the z. , ¥ and z component of the current density.

Here o is the electric conductivity which is assumed to be constant +in the

incompressible case. Considering these results the modified Navier-Stokes’ equation
(the equation (2) in referefce 10) becomes

2 2

e _ 371;_%0—% 2.0
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_ _ L or : : (2.2)
0 p dy ,

where o and v are the density and the kinematic viscosity of the fluid,
respectively. and p the pressure of the fluid. The boundary conditions for this

motion are

0 <y < A u = 0 at t< 0,

y = 0; U = u, (2.3
y = h; u = 0 at ¢t > 0.

(2.2) immediately give's‘
P = const. (2.4)

(2.1) subjected to (2.3) can be solved by the Laplace transform with respect
to ¢,

FR(s) — Sw e~ F (D) dr . (2.5

0

(2.1) and (2.3) give

d*u* 6By
* _ 0k . .
su Yy T (2.6)
y = 03 w*t = ),
y=h; = 0. : (2.7

The solution of\(2.6) subjected to (2.7) is given by

y J7E N
; y =y P 2.8
u¥ = A e : + Be R ‘
where
2
om o= -"-g°f— . (2.9

An arbitrary constants A and B are

x/.zteir_i
u* e h 14

A=
m+s \/m—i—s >
el v T el y
‘ ‘\/m—i-s (2.10)
u® e h 4
B=—— :

mts \/Z’fii
e—h'\/ y - eh Y,
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Applying the inverse Laplace transform to (2.8), we expand the denominator

of (2.10) in infinite series as

—(2n+1)h\/ +s
v .

)

v 1 I
th+s —h x/m-l—s n=0
e v e y

(2.8) becomes

- —(2nh+y)\/_m;|ls_ —{(2n+ 2)h—-y}Jm+s
w* = u* D) [e v o —e vy } . (21D
=0
Calculating the inverse Laplace transform
1 c+feo ’
U = —— e u* ds (2.12)
27 Y e
we put
Stm T
y T

The term except wu* of the right hand side in (2.11) can be . obtained making

use of a formula 6 in Appendix V of reference 11

L"‘ﬂi [e—(Znh—ky)x/@ » —{ C2nt+ 2oh—y }J@H

L e ey [ e,

2w C+Mem GO0 =
(2.13)
~ 2ﬁ+2)h—y}”
e o Q) g =X
Sl A CEE T P et FE

Making use of the convolution theorem we obtain from (2.11) and (2.13)

1 . _ (2nh+y)t
_ —my o ol AL A
U = o/my S Uo(z=7)e T _‘_;)e Eo[(2nh+y) e dvr

_{(2n+2)h‘y}2] 219
dr

—{(2n+2)k—y}e dve

When the motion is impulsive we can put
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* o

Uy = s ’

where u, is the uniform velocity of the lower plate. (2.14) gives

w o —(2nhty),/™
u=—u22‘ﬂnziol{e " yJVErfC <§J$%—%_—M)
m_
L e (242s i)}
vi

3 i [e—{(2n+2)h—y}x/7§erfc {QZ_n_t_Z_)“ﬁ_—_y _‘/%}

et 2 Vvt
(2.15)
o ey
Skin friction is calculated from (2.15) as
- et g tonf ™ [este( v ) (2.16)

. 3 {e—znh\/%erfc (;/7}%;__‘/%—)+e2nh\/%erfc(§%+,‘/%>}]‘

The velocity profile and skin friction given by (2.15) and (2.16), respectively,
tend to agree with ordinary hydrodynamical results by the limiting process
m — Q.

3. Numerical Results and Conclusions

Numerical computations are performed for different values of non-dimensional

parameters %, and M , and of non-dimensional variable % , which are defined

by
R LR
0 ‘/Vt » oV > 3 ’

where M is called Hartmann's number. The velocity profiles and skin friction

are shown in Fig. and Table, respectively.
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The effect of the magnetic field gives the following conclusions: 1) the
velocity of the fluid is retarded, and 2) skin friction increases as the strength
of the magnetic field increases. Time dependence of Couette motion can be
concluded: at the commencement of motion from rest the effect of the
magnetic field scarcely contributes to it and as time elapses the contribution to
it increases. From this conclusion we find it possible to approximate to these
velocity profiles at the commencement of motion by making use of Rayleigh’s
velocity profile for a motion of a flat plate. In treating unsteady boundary layer
flows of magnetohydrodynamics in the external transverse magnetic field at the
commencement of motion from rest under the assumption proposed by Rossow,
an expansion of the velocity profile in power series of time z is possible in the
basis of Rayleigh’s profile as in ordinary hydrodynamics.

It is well known that in Rossow’s investigation of Rayleigh’s problem the
magnetic lines of force fixed relative, 1) to the plate, and 2) to the fluid
correspond to the plate when it is an electrically perfect insﬁlator, and an
electrically perfect' conductor, respectively. The discussion in this paper concerns the
former case. Although there is a mistake in the conception that the magnetic
lines of force are fixed relative to the fluid because Rossow does not distinguish
the coordinate system of the fundamental equation, the latter case can be
considered to be the case when the constant electric field in ‘space is involved.
However, this case is physically unrealizable because the neccessity of applying
the external electric field impulsively occurs due to an impulsive motion of the
plate.

(Received July 13, 1961)
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Fig. The profiles of velocity.
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Table. Skin friction % = 7, / ——
V e
o
8.0 4.0 2.0 1.0
M

0.0 1.000 1.000 1.000 1.000
0.4 1.009 1.050 1.198 1.815
0.8 1.050 1.198 1.757 3.833
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