On a Refraction Problem

Nenosuke FUNAYAMA*, Shinkichi HIRABUKI,** Josuke HAKEDA* and Kunio SATO*

*Department of Basic Technology, Faculty of Engineering

**The Technical College, Yamagata University

(Received September 20, 1976)

Abstract

A condition on the point of refraction is stated in connection with the rank of matrices. (Main Theorem) As an application a condition on the points of refraction of light is given.

1. Main Theorem

In this paper we are concerned with a refraction problem which is stated as follows:

Let V^{n+1} be an (n+1)-dimensional real vector space whose points are denoted as (x, y), where y is a vector in V^n .

Let π be the intersection of m hypersurfaces φ_i (x,y)=0 $(i=1,2,\dots, m)$, and let $A(x_1,y_1)$ and $B(x_2,y_2)$, where $x_1 < x_2$, be two fixed points in V^{n+1} , and g(x,y,y') and h(x,y,y') are functions on $V \times V^n \times V^n$ having continuous derivatives up to the third order.

An addmissible curve y(x) has a piecewise continuous first derivative y' and joins A and B.

Let $P(\xi, \eta)$ be any point in π , with $x_1 < \xi < x_2$, and let I be the integral defined by

$$I = \int_{x_1}^{\xi} g(x,y,y') dx + \int_{\xi}^{x_2} h(x,y,y') dx$$

A refraction problem is the problem to find both the point P_0 in π and the addmissible function y(x) which make I minimum.

The following assumptions are made:

(A) For any point P (ξ,η) in π , where $x_1 < \xi < x_2$, Euler equations for $g: g_{yi} - \frac{d}{dx} g'_{yi} = 0$ (i=1,2,...,m) satisfy two points boundary conditions, that is, the set of solutions of the equations which pass through A (x_1,y_1) and P (ξ,η) is uniquely determined, and the solution minimizes

$$I_1 = \int_{x_1}^{\xi} g(x, y, y') dx$$

(B) Likewise the same conditions for h(x,y,y') and $I_2 = \int_{\xi}^{x_2} h(x,y,y') dx$ as for g and I_1 in (A) are satisfied:

Euler equations $h_{yi} - \frac{d}{dx} h'_{yi} = 0$ (i=1,2,...,m) satisfy two points boundary conditions and the solution minimizes I_2 .

Define $I(P) = \int_{x_1}^{\xi} g(x,y,y') dx + \int_{\xi}^{x_2} h(x,y,y') dx$, where y is determined by the assumptions (A) and (B).

Let $Q(\xi + \delta \xi, \eta + \delta \eta)$ be any neighboring point in π , and let the corresponding y be $y + \delta y$. Then δy satisfies $\delta y(x_1) = 0$, $\delta y(x_2) = 0$ and $\delta y(\xi + \delta \xi) = \eta + \delta \eta$.

$$\Delta I = I(Q) - I(P)$$

$$= \int_{x_1}^{\xi + \delta \xi} g(x, y + \delta y, y' + \delta y') dx$$

$$+ \int_{\xi + \delta \xi}^{x_2} h(x, y + \delta y, y' + \delta y') dx$$

$$- \int_{x_1}^{\xi} g(x, y, y') dx - \int_{\xi}^{x_2} h(x, y, y') dx$$

Let δI be the first variation of I (linear principal part of ΔI):

$$\delta I = \{ (g - \Sigma y'_{i} g_{y'i})_{P} - (h - \Sigma y'_{i} h_{y'i})_{P} \} \delta \xi + \Sigma \{ (g_{y'i})_{P} - (h_{y'i})_{P} \} \delta \eta_{i} = 0$$
 (1)

For the proof of the equation (1) and the other related facts see the references 1, 2, 4 and 5.

Note that $(y'_i)_P$ takes two values since a refraction takes place at P.

P and Q are in π and so $(\delta \xi, \delta \eta_1, \dots, \delta \eta_n)$ is not arbitrary. It satisfies the following conditions

$$\varphi_{ix}\delta\xi + \sum_{j=1}^{n} \varphi_{iy_{j}} \delta\eta_{j} = 0 \qquad (i = 1, 2, \dots, m)$$
 (2)

(1) must be satisfied by any $(\delta \xi, \delta \eta_1, \dots, \delta \eta_n)$ satisfying (2), that is (2) imply (1).

Let us define the following fundamental matrix of φ :

$$\Phi = \begin{pmatrix} \varphi_{1x} & \varphi_{1y_1} & \dots & \varphi_{1y_n} \\ \varphi_{2x} & \varphi_{2y_1} & \dots & \varphi_{2y_n} \\ \varphi_{mx} & \varphi_{my_1} & \dots & \varphi_{my_n} \end{pmatrix}$$

Let
$$\kappa = \left((g - \sum y'_i g_{y'_i})_P - (h - \sum y'_i h_{y'_i})_P, (g_{y'_1})_P - (h_{y'_1})_P, \dots, (g_{y'_n})_P - (h_{y'_n})_P \right)$$

Lemma. (2) imply (1) if and only if

$$\operatorname{rank}\left(\frac{\Phi}{\kappa}\right) = \operatorname{rank} \Phi$$

Then we have the following theorem.

Theorem Under the suitable differentiability conditions made in the precedings and under the assumptions (A) and (B), the point of refraction, the point P in π which minimizes I, satisfies the condition

$$\operatorname{rank}\left(\frac{\Phi}{\kappa}\right) = \operatorname{rank}\Phi$$

2. An Application

Let
$$n=2$$
 , $m=1$ and $g=\frac{\sqrt{1+y'^2+z'^2}}{v_1}$, $h=\frac{\sqrt{1+y'^2+z'^2}}{v_2}$

The problem of refraction of light is in the case. g and h satisfy the necessary conditions. Put $\alpha = y'(\xi)$, $\beta = z'(\xi)$ with respect to g, and $\gamma = y'(\xi)$, $\delta = z'(\xi)$ with respect to h.

Put
$$L = \frac{1}{v_1 \sqrt{1 + \alpha^2 + \beta^2}}$$
, $M = \frac{1}{v_2 \sqrt{1 + \gamma^2 + \delta^2}}$,

then the rank condition in the Theorem is:

$$\operatorname{rank} \left(\begin{array}{ccc} \operatorname{L-M} & \alpha \operatorname{L-} \gamma \operatorname{M} & \beta \operatorname{L-} \delta \operatorname{M} \\ (\varphi_x)_P & (\varphi_y)_P & (\varphi_z)_P \end{array} \right) = 1 ,$$

or equivalently (L-M, α L- γ M, β L- δ M) is proportional to (φ_x , φ_y , φ_z) at P:

$$\begin{cases}
L- M = k \varphi_x \\
\alpha L - \gamma M = k \varphi_y \\
\beta L - \delta M = k \varphi_z
\end{cases}$$
(3)

If k=0, then L=M, $\alpha L=\gamma M$, $\beta L=\delta M$, and so $\alpha=\gamma$ and $\beta=\delta$, and then $v_1=v_2$.

Thus we have, if $v_1 \neq v_2$

$$\begin{vmatrix} 1 & 1 & \varphi_x \\ \alpha & \gamma & \varphi_y \\ \beta & \delta & \varphi_z \end{vmatrix} = 0 \tag{4}$$

(4) means that the vectors $\mathbf{p} = (1, \alpha, \beta)$, $\mathbf{q} = (1, \gamma, \delta)$ and $\mathbf{n} = (\varphi_z, \varphi_y, \varphi_z)$ are coplanar.

The other condition implied by (3) is

$$\frac{\sin (\mathbf{p}, \mathbf{n})}{\mathbf{v}_1} = \frac{\sin (\mathbf{q}, \mathbf{n})}{\mathbf{v}_2}$$

山形大学紀要(工学)第14卷 第2号 昭和52年2月

References

- 1. G. Leitmann (ed.): Topics in Optimization, Academic Press (1967)
- 2. M. R. Hestenes: Calculus of Variations and Optimal Control Theory, John Wiloy & Sons Inc. (1966)
- 3. D. L. Russel (ed.): Calculus of variations and Control Theory, Academic Press (1976)
- 4. グノエンスキー他:制御システム論の数学的基礎2,東京図書株式会社(1969)
- 5. 鬼頭史城:変分法と最適化問題,ダイヤモンド社(1969)

FUNAYAMA · HIRABUKI · HAKEDA · SATO : On a Refraction Problem.

1 つ の 屈 折 問 題

船山 子之助・ 平吹 慎吉・羽毛田 穣祐・佐藤 邦夫

工学部 共通講座 *工業短期大学部

n+1次元の実ベクトル空間で f(x,y,y') は m 個の超曲面の交わり π を境として不連続とし、その両側では必要な条件を満足するものとする。双方の側の 2 定点 A ,B があるとき π 上の 1 点 P を求めて,A ,P ,B を通る y(x) を求めて

$$\int_a^b f(x, y, y') dx$$

を極小とする。Pの満足すべき条件として行列の階数についての条件を求める。(主定理) 応用として光の屈折問題について考察する。