The CO_{2} Dissociation Curve at Steady State in Vivo

Masaji Mochizuki****
*Emeritus Professor of Yamagata University, Yamagata, Japan
**Geriatric Respiratory Research Center, Nishimaruyama Hospital, Chuo-Ku, Sapporo, Japan
(Accepted August 26, 2003)

Abstract

The CO_{2} content in blood ($\left[\mathrm{CO}_{2}\right]$) depends not only on PCO_{2}, but also on the O_{2} saturation ($\left[\mathrm{So}_{2}\right]$). Since So_{2} changes in parallel with $\left[\mathrm{CO}_{2}\right]$ in capillary blood $\left(\left[\mathrm{CO}_{2}\right]^{*}\right)$ at steady state, the slope of $\left[\mathrm{CO}_{2}\right]^{*}$ against PCO_{2} becomes steeper than that of $\left[\mathrm{CO}_{2}\right]$ measured in oxygenated or deoxygenated blood. In the preceding paper it was made clear that the change in $\left[\mathrm{CO}_{2}\right]$ due to that in SO_{2} (i.e., the Haldane effect, $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$) became proportional to the respiratory quotient (RQ). Since the ratio of the arterialvenous (a-v) difference in $\mathrm{SO}_{2}\left(\mathrm{av}\left[\mathrm{SO}_{2}\right]\right)$ to that in $\left[\mathrm{CO}_{2}\right]^{*}\left(\mathrm{av}\left[\mathrm{CO}_{2}\right]^{*}\right)$ was in inverse proportion to the RQ, the ratio of the a-v difference in $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}\left(\mathrm{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}\right)$ to $a v\left[\mathrm{CO}_{2}\right]^{*}$ became constant irrespective of the RQ. Designating the Pco_{2} dependent component of $\left[\mathrm{CO}_{2}\right]$ except for $\left[\mathrm{CO}_{2}\right]_{\text {не }}$ by $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$, the ratio av $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}} / \mathrm{av}\left[\mathrm{CO}_{2}\right]^{*}$ also became constant. Thus, using $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$ measured in oxygenated blood in vitro , $\left[\mathrm{CO}_{2}\right]^{*}$ could be expressed by an exponential function of PCO_{2}.

Key words : Carbonic anhydrase, O_{2} saturation, Haldane effect, Respiratory quotient, Va / Q ratio

INTRODUCTION

The change in CO_{2} content $\left[\mathrm{CO}_{2}\right]$ in blood occurs mainly on the active site of carbonic anhydrase, which is present not only in the red blood cell, but also in the capillary endothelium ${ }^{11}$. When $\left[\mathrm{CO}_{2}\right]$ and $\left[\mathrm{H}^{+}\right]$change at
the active site due to the changes in PCO_{2} and O_{2} saturation ($\left[\mathrm{So}_{2}\right]$), respectively, changes in carbamate and bicarbonate concentration take place ${ }^{2)}$. Designating the change in $\left[\mathrm{CO}_{2}\right]$ resulting from the change in So_{2} (i.e., the Haldane effect) by $\left[\mathrm{CO}_{2}\right]_{\text {He }}$ and that resulting from the change in PCO_{2} by $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$, the change in $\left[\mathrm{CO}_{2}\right]$ in capillary blood $\left(\left[\mathrm{CO}_{2}\right]^{*}\right)$ is given by

Address for Correspondence : Masaji Mochizuki, Minami-11, Nishi-20, 4-23 Chuo-Ku, Sapporo, 064-0811, Japan
the sum of changes in $\left[\mathrm{CO}_{2}\right]_{\mathrm{He}}$ and $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$.
Basically, $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ is the difference in $\left[\mathrm{CO}_{2}\right]$ between oxygenated and deoxygenated blood ${ }^{33,4}$ and the arterial-venous (a-v) difference in $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}\left(\mathrm{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}\right)$ is given by multiplying $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ by the a-v difference in $\mathrm{SO}_{2}\left(a v\left[\mathrm{So}_{2}\right]\right.$). $\mathrm{av}\left[\mathrm{So}_{2}\right]$ is given by dividing the a-v difference in O_{2} content ($\mathrm{av}\left[\mathrm{O}_{2}\right]$) by the O_{2} capacity $\left(\mathrm{CapO}_{2}\right)$. The a-v difference in $\left[\mathrm{CO}_{2}\right]^{*}$ (av $\left.\left[\mathrm{CO}_{2}\right]^{*}\right)$ is derived by multiplying av $\left[\mathrm{O}_{2}\right]$ by the respiratory quotient (RQ). Hence, the ratio $\mathrm{av}\left[\mathrm{So}_{2}\right] / \mathrm{av}\left[\mathrm{CO}_{2}\right]^{*}$ is given by $1 /\left(\mathrm{RQ} \cdot \mathrm{CapO}_{2}\right)$. In the preceding paper it was clarified that $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ at the steady state became proportional to the RQ (see Eq. 29) and the ratio $\mathrm{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}} / a v\left[\mathrm{CO}_{2}\right]^{*}$, which was given by multiplying $\left[\mathrm{CO}_{2}\right]_{\text {He }}$ by av $\left[\mathrm{So}_{2}\right] / a v\left[\mathrm{CO}_{2}\right]^{*}$, became constant ${ }^{5}$. Therefore, the ratio of the $a-v$ difference in $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}\left(\mathrm{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}\right)$ to $\mathrm{av}\left[\mathrm{CO}_{2}\right]^{*}$ also becomes constant irrespective of $\mathrm{RQ}, \mathrm{PCO}_{2}$ and SO_{2}.
$\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$ had been measured in oxygenated blood and expressed by an exponential function of $\mathrm{PCO}_{2}{ }^{4}$. Thus, $\left[\mathrm{CO}_{2}\right]^{*}$ could be approximated from the ratio av $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}} / a v\left[\mathrm{CO}_{2}\right]^{*}$ by a definite exponential function of PCO_{2}. The change in carbamate concentration in the red cell is included in $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$, and therefore, the ratio av $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}} / \mathrm{av}\left[\mathrm{CO}_{2}\right]^{*}$ becomes higher than that of the $\mathrm{a}-\mathrm{v}$ difference in Haldane effect component of $\left[\mathrm{HCO}_{3}^{-}\right]$in plasma ($\left[\mathrm{HCO}_{3}{ }^{-}\right]_{\mathrm{HE}}$) to that in $\left[\mathrm{HCO}_{3}{ }^{-}\right]$measured $\left(\left[\mathrm{HCO}_{3}^{-}\right]^{*}\right)$ (see Eq. 19 in the preceding paper $)^{5)}$. Thus, it is imperative to apply $\left[\mathrm{CO}_{2}\right]^{*}$ to analyze the gas exchange rate at the steady state.

THEORETICAL DERIVATION OF THE FUNCTION FOR [CO $\left.{ }^{2}\right]^{*}$

As written in the preceding paper $\left[\mathrm{HCO}_{3}{ }^{-}\right]_{\mathrm{HE}}$ was proportional to the RQ at steady state as
given by $2.09 \cdot \mathrm{RQ}^{5}$. $\left[\mathrm{HCO}_{3}{ }^{-}\right]$in plasma was expressed by the molar concentration. Taking the mean of plasma volume in blood (1 - Hct) to be 0.544 over the PCO_{2} range of 30 to 70 mmHg , the molar unit in plasma is converted to $\mathrm{vol} \%$ in blood by multiplying 0.544×2.226. In addition, the ratio $\left[\mathrm{HCO}_{3}{ }^{-}\right]_{\mathrm{HE}} /\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ was 0.386 over the physiological PCO_{2} range ${ }^{4}$. Hence, $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ was rewritten as follows:

$$
\begin{equation*}
\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}=6.555 \cdot \mathrm{RQ},(\mathrm{vol} \%) . \tag{1}
\end{equation*}
$$

$\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ measured in tonometered blood was about $5.9 \mathrm{vol} \%$ and agreed well with $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ of Eq. (1) when $R Q=0.9^{4,5)}$. As described in the Introduction, the ratio $\mathrm{av}\left[\mathrm{SO}_{2}\right] / a v\left[\mathrm{CO}_{2}\right]^{*}$ was given by

$$
\begin{equation*}
(-) a v\left[\mathrm{So}_{2}\right] / a v\left[\mathrm{CO}_{2}\right]^{*}=1 /\left(\mathrm{RQ} \times \mathrm{CapO}_{2}\right) . \tag{2}
\end{equation*}
$$

Taking CapO_{2} to be $20 \mathrm{vol} \%$, the ratio $\operatorname{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}} / a v\left[\mathrm{CO}_{2}\right]^{*}$ is written from Eqs. (1) and (2) as

$$
\begin{equation*}
a v\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}} / \mathrm{av}\left[\mathrm{CO}_{2}\right]^{*}=0.328 \tag{3}
\end{equation*}
$$

Since $a v\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}=\operatorname{av}\left[\mathrm{CO}_{2}\right]^{*}-\operatorname{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$, the ratio $\operatorname{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{P}} / a v\left[\mathrm{CO}_{2}\right]^{*}$ is expressed as follows:

$$
\begin{equation*}
\operatorname{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{P}} / \mathrm{av}^{2}\left[\mathrm{CO}_{2}\right]^{*}=0.672 . \tag{4}
\end{equation*}
$$

The CO_{2} content obtained in oxygenated blood ${ }^{4}$ was given by

$$
\begin{equation*}
\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}=8.748 \cdot \mathrm{PCO}_{2}{ }^{0.435},(\mathrm{vol} \%) . \tag{5}
\end{equation*}
$$

Assuming $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$ of Eq. (5) to be equal to $\left[\mathrm{CO}_{2}\right]^{*}$ at $40 \mathrm{mmHg} \mathrm{PCO}_{2}$, the difference in [$\left.\mathrm{CO}_{2}\right]^{*}$ between any PCO_{2} and 40 mmHg can be

Fig. 1 .
$\left[\mathrm{CO}_{2}\right]^{*}$ (solid line; Eq.6) and $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$ (broken line; Eq.5) plotted against PCO_{2}. The and show the venous and arterial PCO_{2} levels. The vertical segment at PaCO_{2} shows the a-v difference in $\left[\mathrm{CO}_{2}\right]^{*},\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$ and $\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$.
calculated from Eqs. (4) and (5). $\left[\mathrm{CO}_{2}\right]^{*}$ is then numerically plotted against PCO_{2}. The solid line in Fig. 1 shows $\left[\mathrm{CO}_{2}\right]^{*}$ and the broken line $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$ of Eq. (5). Furthermore, from the relationship between PCO_{2} and $\left[\mathrm{CO}_{2}\right]^{*},\left[\mathrm{CO}_{2}\right]^{*}$ was approximated by the following equation:

$$
\begin{equation*}
\left[\mathrm{CO}_{2}\right]^{*}=4.208 \cdot \mathrm{PCO}_{2}{ }^{0.632},(\mathrm{vol} \%) \tag{6}
\end{equation*}
$$

$\left[\mathrm{CO}_{2}\right]^{*}$ of Eq. (6) agreed with $\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$ of Eq. (5) at $41.04 \mathrm{mmHg} \quad \mathrm{PCO}_{2}$, and the ratio $\operatorname{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{P}} / a v\left[\mathrm{CO}_{2}\right]^{*}$ was 0.709 at 30 mmHg PCO_{2} and decreased to 0.651 at $70 \mathrm{mmHg} \mathrm{PCO}_{2}$. In the PCO_{2} range of 30 to 70 mmHg , the mean ratio was 0.678 ± 0.018.

DISCUSSION

$\left[\mathrm{CO}_{2}\right]^{*}$ of Eq. (6) is very important to estimate av $\left[\mathrm{CO}_{2}\right]^{*}$ from the a-v difference in PCO_{2}. The points a and v in Fig. 1 indicate the arterial and venous PCO_{2} levels. The vertical segment at PaCO_{2} indicates av $\left[\mathrm{CO}_{2}\right]^{*}$. The magnitude of $\mathrm{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ was about a half that
of $a v\left[\mathrm{CO}_{2}\right]_{\mathrm{P}}$, irrespective of the PCO_{2} range. If $\operatorname{av}\left[\mathrm{CO}_{2}\right]$ were estimated from the a-v difference in PCO_{2} by using Eq. (5), it will be greatly underestimated.

The relationship between $a v\left[\mathrm{CO}_{2}\right]^{*}$ and $\operatorname{av}\left[\mathrm{O}_{2}\right]$ was further calculated, using the relationship of alveolar ventilation to pulmonary blood flow $\left(\dot{\mathrm{V}}_{\mathrm{A}} / \dot{\mathrm{Q}}\right)$ as follows ${ }^{6}$:

$$
\begin{equation*}
\dot{\mathrm{V}}_{\mathrm{A}} / \dot{\mathrm{Q}}=8.63 \cdot \mathrm{RQ} \cdot \operatorname{av}\left[\mathrm{O}_{2}\right] / \mathrm{PaCO}_{2} \tag{7}
\end{equation*}
$$

Calculated data are shown in Fig.2, where PaCO_{2} was taken to be 41 mmHg and $\left[\mathrm{O}_{2}\right]$ (vol\%) in arterial blood was derived from the alveolar air equation ${ }^{6}$, assuming [O_{2}] was fully saturated with alveolar PO_{2}. The solid lines indicate the change in $\left[\mathrm{CO}_{2}\right]^{*}$ along the three RQ values. Since PaCO_{2} was taken to be constant, av $\left[\mathrm{CO}_{2}\right]^{*}$ was unrelated to the RQ, but increased with an increase in $\dot{\mathrm{V}}_{\mathrm{A}} / \dot{\mathrm{Q}}$ ratio. When the $\dot{\mathrm{V}}_{\mathrm{A}} / \dot{\mathrm{Q}}$ ratio was 0.85 , av $\left[\mathrm{CO}_{2}\right]^{*}$ was about $4 \mathrm{vol} \%$. The broken lines show $\mathrm{av}\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ calculated from Eq. (3), these were about 33% $\operatorname{av}\left[\mathrm{CO}_{2}\right]^{*}$ regardless of the RQ and $\dot{\mathrm{V}}_{\mathrm{A}} / \dot{\mathrm{Q}}$ ratio.

Fig. 2.
The relationship between the a-v differences in $\left[\mathrm{O}_{2}\right]$ and $\left[\mathrm{CO}_{2}\right]^{*} .\left[\mathrm{O}_{2}\right]$ and $\left[\mathrm{CO}_{2}\right]^{*}$ at the arterial level were calculated from the alveolar air equation, and those at venous level were obtained from the equation for the $\dot{V}_{\mathrm{A}} / \dot{\mathrm{Q}}$ ratio 6. shows
$\left[\mathrm{CO}_{2}\right]_{\text {HE }}$ calculated from Eq. (3).

Figure 2 shows that, when PaCO_{2} is constant, $\left[\mathrm{CO}_{2}\right]^{*}$ and venous PCO_{2} are defined only by the $\dot{\mathrm{V}}_{\mathrm{A}} / \dot{\mathrm{Q}}$ ratio. This well controlled relationship will be ascribed to the interaction of the catalytic reaction rates of carbonic anhydrase in the red blood cell and the capillary endothelium.

The scale on the right ordinate shows PCO_{2} given by Eq. (6). Since $\quad\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}}$ includes the change in carbamate concentration in the $\mathrm{RBC}^{4)}$, the ratio $\quad\left[\mathrm{CO}_{2}\right]_{\mathrm{HE}} / \quad\left[\mathrm{CO}_{2}\right]^{*}$ of Eq. (3) (0.328) was about 30% greater than the ratio $\left[\mathrm{HCO}_{3}{ }^{-}\right]_{\mathrm{HE}} /\left[\mathrm{HCO}_{3}{ }^{-}\right]^{*}(0.252)^{5}$. If the a-v difference in PCO_{2} were estimated from [$\left.\mathrm{CO}_{2}\right]^{*}$ by using Eq. (5), the change in PCO_{2} will be greatly overestimated.

REFERENCES

1. Klocke RA: Carbon dioxide transport. In: Fahri LE, Tenny SM, eds. Handbook of Physiology. Sec. 3: The Respiratory System. IV: Gas
exchange. Bethesda; Am Physiol Soc, 1987: 173-197
2. Roughton FJW: Some recent work on the chemistry of carbon dioxide transport by the blood. Harvey Lectures 1943; 39: 96-142
3. Harms H, Bartels H: CO_{2} Dissoziationskurven des menschlichen Blutes bei Temperaturen von $5-37^{\circ} \mathrm{C}$ und unterschiedlicher O_{2} Sättigung. Pflügers Arch 1961; 272: 384-392
4. Tazawa H, Mochizuki M, Tamura M, Kagawa T : Quantitative analysis of the CO_{2} dissociation curve of oxygenated blood and the Haldane effect in human blood. Jpn J Physiol 1983; 33: 601-618
5. Mochizuki M: Analysis of bicarbonate concentration in human blood plasma at steady state . Yamagata Med J 2004; 9-24:
6. Comroe JH Jr, Forster RE, Dubois AB, Briscoe WA, Carlsen E: Relationship of alveolar ventilation to pulmonary blood flow. In; Comroe JH Jr et al.eds. The Lung. Chicago; The Year Book Publishers, 1956: 184-187
