大隅半島北部のシラス台地を刻む谷の形態と分類

The Morphology and Classification of Valleys Dissecting the Pyroclastic Flow Plateau in the Northern Part of the Osumi Peninsula, Japan

伊藤晶文 ITO, Akifumi

キーワード:シラス台地、1次谷、開析過程、大隅半島

Key words : Shirasu plateau (pyroclastic flow plateau), first order valleys, dissection process, Osumi Peninsula

I. はじめに

南九州に広がるシラス台地を刻む谷は、旧 開析谷(または古い谷)と呼ばれる現在恒常 流がなく成長のほぼ止まった谷と、現開析谷 (または新しい谷)と呼ばれる現在も侵食作用 の活発な谷とに大別される(桐野, 1972;横 山、1987など)。従来の研究では、旧開析谷 は現開析谷と比べて浅く谷底勾配が急で分布 密度が高いことや、後者の上方に前者が位置 し、両者が一般に明瞭な傾斜変換部を介して 不連続に接することなど、各谷の形態や分布 の特徴が明らかにされた。また、シラス台地 はシラス堆積直後のきわめて短期間に形成さ れ、旧開析谷と現開析谷も相次いで急速に形 成されたと考えられている(横山,2003など)。 最近では、旧開析谷に相当するとみられるシ ラス台地上の埋積浅谷の基底付近から桜島高 峠6テフラ (Sz-TK6:23 ka BP/26 cal ka BP; 奥野, 2002)が見出され、シラス (AT:24.5 ka BP/29 cal ka BP;奥野, 2002)の堆積後、 遅くとも3000年以内に浅谷が形成されたこ とが明らかとなった(森脇ほか, 2007)。し

かし、シラス台地の開析谷や流域の形態的特 徴について、地形図上で計測される各種の地 形量を用いて定量的に把握し、谷の形成過程 すなわちシラス台地の開析過程を検討しよう とする試みは未だに行われていない。巨大火 砕流噴火によって瞬時に形成されたシラス原 は侵食が開始される以前のいわゆる原地形の 性格を持つことから、そこで作られた谷と流 域の形態的特徴を定量的に把握しておくこと は、水系網の形成および発達を検討する上で も重要であると考える。

そこで本研究では、水系網のうち最も上流 端に位置し、開析過程を検討する上で重要な 地形と考えられる1次谷に注目し、その形態 的特徴に基づいて分類を行った。分類した各 型の谷の分布状況や、数、流路長などの地形 量と流域の形態的特徴を明らかにし、シラス 台地の開析谷の形成過程(シラス台地の開析 過程)を考察した。

Ⅱ. 調査地域概観

調査地域は、大隅半島北部の菱田川水系の

— 1 —

図1 シラスの原地形の等高線図(横山, 2003)と調査流域の位置 等高線の間隔は20 m, 鎖線は主分水界,砂目部は基盤山地。

4流域である(図1)。選定条件として、まず 流域の地質のほぼ全域がシラスであること、 旧開析谷が多く分布することとした。大隅半 島北部は、シラスが広く分布し(横山, 2003 など)、旧開析谷が顕著にみられる地域(桐野, 1972) であることから、前述した二つの条件 を満たす。さらに、定量的な議論を行うため に必要な数の1次谷を有する、ストレーラー 方式 (Strahler, 1952) で4~5次の流域であ ること、1次谷の谷頭部の形態を判読しやす い地形面であるシラス台地面が残存すること を条件とした。これらの条件を満たした流域 が、上流側から順に、狩谷川、大谷川、山角 川および荒谷川の流域で、菱田川河口からの 距離は、それぞれ約28 km、約19 km、約17 kmおよび約14 kmである。各河川は低次数の 水路を除けば、シラスの原地形(堆積面)の 傾斜に応じた必従河川であり、狩谷川、大谷 川および荒谷川は西から東へ、山角川は北か ら南へと流下する。シラスの原地形(堆積面) の等高線図(横山,2003)から求めた、シラ ス堆積当時の地表面の起伏比をみると、狩谷 川が0.014、大谷川が0.016、荒谷川が0.015と ほぼ同じ値を示すのに対し、山角川は0.008で 他の流域と比べて値が小さい。

Ⅲ. 調査方法

本研究では、谷の抽出方法として、小松 (1999)の「深い谷」の抽出方法を採用した。 すなわち、2.5万分の1地形図上において、任 意の等高線の屈曲部Oと、その屈曲部を中心 とした半径2 mm(実距離50 m)の円と当該 等高線との2交点A、Bとをそれぞれ結んだ線 分のなす角∠AOBが90°以下の部分を谷とす る方法である。もうひとつの主な谷の認定方 法である、地形図上で認識できる等高線の屈 曲部までを谷とみなす方法(高山,1972など) では、前述した谷に加えて、浅い谷や山ひだ 状の「0次谷(塚本ほか,1973)」の部分まで 抽出する(井上・小口,1995)という。本研 究では、「0次谷」に相当する谷頭部の形態に 着目して谷の分類を試みることから、後者の 方法は採用せず、前者の方法で作成した水系 図についてストレーラー方式による次数区分 を行った。各流域の形態的特徴を解明するた めに、鈴木(2000)を参考に、流路長、流域 面積、水系頻度、水系密度、起伏比、形状比 をそれぞれ求めた。また、各流域で作成した 面積高度比曲線(Strahler,1952)から求め た比積分値により開析進行度を検討した。

抽出した1次谷については、米軍撮影の4万 分の1空中写真の判読および現地観察を行い、 谷の形態的特徴、特に谷頭部の形態や谷の縦 断形に着目して、後述するように七つの型に 分類した。すべての流域において、各型の谷 の数および平均流路長を算出した。さらに、 各型の谷の分布状況を検討するために、水路 頭高度の頻度分布を求めた。

IV. 結 果

1. 各流域の地形計測結果

調査流域のうち唯一の5次の流域である大 谷川流域は、最大の流域面積(12.27 km²) を持ち、起伏比(0.036)、水系頻度(36.9

図2 基本型および複合型の谷の模式縦断面図 垂直および水平距離は任意。

本/km²)、水系密度(6.62 km/km²) もそれぞ れ最大値であった(表1)。一方、最小の流域 面積(7.88 km²)を持つ4次流域である山角川 流域の起伏比は0.025、水系頻度は27.3 本/km²、水系密度は5.06 km/km²とそれぞれ 最小値を示す。狩谷川と荒谷川の各流域は、 それぞれの流域面積が8.98 km²と9.51 km² で、前者の起伏比は0.026、水系頻度は28.2 本/km²、水系密度5.52 km/km²、後者の起伏 比は0.030、水系頻度は30.0 本/km²、水系密 度は5.78 km/km²であった。以上のように、 各流域の起伏比、水系頻度、水系密度の大小 関係は、流域面積の大小関係と同じであるも のの、本流の流路長については、荒谷川の8.27 kmが最長であった。形状比は大谷川流域 (0.19) が最も大きく、他の流域(0.13または 0.14)と比べて幅広い流域であることを示す。 面積高度比曲線から求めた比積分値は、値の

流域名	最高次数	流路長 (km)	流域面積 (km ²)	水系頻度 (本/km ²)	水系密度 (km/km²)	起伏比	形状比	比積分値
大谷川	5	8.02	12.27	36.9	6.62	0.036	0.19	0.500
狩谷川	4	7.73	8.98	28.2	5.52	0.026	0.13	0.619
山角川	4	7.65	7.88	27.3	5.06	0.025	0.13	0.614
荒谷川	4	8.27	9.51	30.0	5.78	0.030	0.14	0.573

表1 調査流域の地形計測結果

図3 大谷川流域における1次谷の谷型別分布

図4 狩谷川流域における1次谷の谷型別分布 凡例は図3を参照。

凡例は図3を参照。

小さい方から、大谷川(0.500)、荒谷川(0.573)、 山角川(0.614)、狩谷川流域(0.619)の順で あった。Strahler(1952)によれば、前二者 が平衡(壮・老年)期、後二者が非平衡(幼 年)期の地形に相当する。

2. 1次谷の分類と分布

調査地域の1次谷は、谷頭部の形態および 谷の縦断形と、従来指摘されている旧開析谷 および現開析谷の組み合わせにより、三つの 基本型(Ⅰ~Ⅲ型)に分けられる。Ⅰ型は、 谷頭部に明瞭な急斜面が認められない旧開析 谷で、縦断形に明瞭な傾斜変換点がみられず、 谷底面の勾配が急であるという特徴を持つ (図2)。谷底面は畑地や植林地として利用さ れていることが多く、恒常流は認められない。 すべての流域において、源頭部を中心とした 上流側に分布する(図3~6)。Ⅱ型は、縦断 形に明瞭な遷緩点を持つ谷(図2)で、後述 するⅢ型と比べると比高が小さく傾斜も緩や かではあるものの、谷頭斜面を持つ旧開析谷 である。I型の谷と同様に谷底面の傾斜が急 であり、恒常流は認められない。谷頭斜面は 植生に覆われており、植林されている場合も 多く、比較的長い間崩壊が発生していないと みられる。I型のやや下流側に位置し、全体 としては上流部に多く分布する(図3~6)。 Ⅲ型は、現開析谷であり、谷頭部に半円形ま たは馬蹄形の平面形を呈する急斜面を持つ。 谷底面の傾斜は相対的に緩やか(図2)で、 恒常流も認められることから、主に水田とし て利用されている。谷頭急斜面は近年の崩壊 跡が多数確認され、斜面崩壊が頻繁に発生し ていると判断される。一般に、Ⅰ型およびⅡ 型と比べて下流側に分布が偏る(図3~6)も

のの、山角川流域では源頭部にⅢ型の谷が確 認された(図5)。

前述した三つの基本型に加えて、上流側に 旧開析谷、下流側に現開析谷が位置する、複 合型(IV、V型)の谷が認められる。IV型は I型とII型の谷の、V型はII型とII型の谷の 組み合わせである(図2)。旧開析谷と現開析 谷の分布状況から、IV型およびV型の谷は、 現開析谷が旧開析谷を開析中の谷であると判 断される。IV型とV型の谷は、一般にI型お よびII型の谷の下流側に分布し、前者が後者 よりも上流側に分布するという特徴を持つ (図3~6)。

さらに、その他の型として、上流部を他の 谷に奪われた旧開析谷であるVI型の谷と、谷 頭斜面が不明瞭で、I型とII型のどちらにも 区分できない旧開析谷であるVII型の谷が挙げ られる。VI型の谷は分水界近くに分布し、隣 接する流域の谷に上流部を奪われているもの が荒谷川流域で多く認められた(図6)。VII型 の谷については、特に明瞭な分布の特徴は認 められなかった。

3. 各型の谷の数と平均流路長

表2に各流域および全体の谷型別の谷数と その割合を示す。1次谷の総数605のうち、V 型の谷の数は213で最も高い割合(35.2%) を占めることから、調査地域ではV型の谷が 代表的な谷であるといえる。現開析谷である Ⅲ型の谷の数は69で全体の11.5%であった。 したがって、調査地域における9割弱の1次谷 は、谷頭部の侵食作用が現在不活発であると 判断される。また、IV型とV型の谷を合わせ た数は295で、それらの占める割合は48.8% である。この事実は、現開析谷は既存の旧開

公刑	*	、谷川	斧	挤谷川	Ц	角川	尭	岩谷川	全体		
谷望	谷数	割合(%)									
I 型	37	16.3	27	21.3	12	11.1	26	18.2	102	16.9	
Ⅱ型	18	7.9	17	13.4	5	4.6	23	16.1	63	10.4	
Ⅲ型	26	11.5	8	6.3	26	24.1	9	6.3	69	11.4	
IV型	16	7.0	23	18.1	35	32.4	8	5.6	82	13.6	
V型	88	38.7	43	33.9	30	27.8	52	36.4	213	35.2	
VI型	26	11.5	5	3.9	0	0	19	13.3	50	8.3	
WI型	16	7.0	4	3.1	0	0	6	4.2	26	4.3	
計	227	100.0	127	100.0	108	100.0	143	100.0	605	100.0	

表2 調査流域の1次谷の谷型別谷数

百分率の算出の際に四捨五入したため割合の合計は必ずしも100%とならない。表4~7も同様である。

析谷に沿って形成される場合が多いことを示 唆する。 I 型とⅣ型の谷を合わせた数は184 (30.5%)、Ⅱ型とV型の谷を合わせた数は 276 (45.6%) であり、現存している地形か ら判断すると、現開析谷による開析が始まる までは、Ⅰ型よりもⅡ型の谷が多かったとみ られる。各流域の特徴をみると、山角川流域 では、Ⅳ型の谷の占める割合が32.4%と他の 流域と比べて大きい値を示す。さらに、他の 流域と比べてⅠ型およびⅡ型の谷の占める割 合(15.7%)が小さく、Ⅲ型の谷の占める割 合(24.1%)が大きい。一方、Ⅲ型の谷の占 める割合(6.3%)が小さい狩谷川と荒谷川流 域では、Ⅰ型およびⅡ型の谷の占める割合が 約34%と、全体の平均値(27.3%)を上回る。 大谷川流域では、各型の谷の割合が全体の平 均値とそれほど大きく変わらなかった。

各流域と全体の谷型別の平均流路長を表3 に示す。基本型の谷では、I型の流路長が 237.5 mと最も長く、Ⅲ型の170.1 m、Ⅱ型 の136.5 mと続く。複合型であるⅣ型とⅤ型 の谷は、前者が302.3 mで後者(214.3 m) と比べて長い。この事実は、I型とⅡ型の谷

表3 調査流域の1次谷の谷型別平均流路長

谷型	大谷川	狩谷川	荒谷川	山角川	全体
I 型	211.3	285.9	258.3	164.1	237.5
Ⅱ型	144.7	134.6	140.0	97.9	136.5
Ⅲ型	165.0	146.6	130.6	196.0	170.1
IV型	275.9	332.9	461.1	258.0	302.3
V型	207.6	203.5	184.8	180.4	214.3
VI型	223.0	213.2	269.2	_	239.6
WI型	194.3	192.0	201.2	_	195.5

単位はm。一は該当する谷がないことを示す。

の長短関係を反映していることに加えて、比 較的長い流路長を持つ I 型および II 型の谷が 開析されているために、現在開析途上の谷で ある IV 型または V 型の谷として残存できたこ とを示唆する。流域別にみると、荒谷川流域 の IV 型の流路長(461.1 m)が他の流域と比 べて長く、山角川流域の I 型(164.1 m)と II 型(97.9 m)が短いという特徴がみられた。

4. 谷型別水路頭高度の頻度分布

各流域における各型の谷の分布状況を定量 的に把握するために、谷型別の水路頭高度頻 度分布を求めた(表4~7)。基本型の谷では、

睡古]	[型	I	I型	I	Ⅱ型	Γ	V型	7	√型	V	T型	VII型		全	体
惊向 (m)	谷数	割合 (%)	谷数	割合 (%)	谷数	割合 (%)										
320	1	2.7	0	0	0	0	0	0	0	0	0	0	0	0	1	0.4
310	6	16.2	0	0	0	0	0	0	0	0	0	0	0	0	6	2.6
300	6	16.2	1	5.6	0	0	0	0	0	0	2	7.7	0	0	9	4.0
290	12	32.4	6	33.3	0	0	3	18.8	4	4.5	0	0	0	0	25	11.0
280	5	13.5	2	11.1	0	0	3	18.8	5	5.7	0	0	0	0	15	6.6
270	4	10.8	4	22.2	0	0	2	12.5	9	10.2	2	7.7	0	0	21	9.3
260	2	5.4	3	16.7	0	0	3	18.8	10	11.4	1	3.8	0	0	19	8.4
250	0	0	0	0	1	3.8	3	18.8	4	4.5	2	7.7	1	6.3	11	4.8
240	1	2.7	0	0	1	3.8	1	6.3	6	6.8	3	11.5	2	12.5	14	6.2
230	0	0	2	11.1	4	15.4	0	0	7	8.0	3	11.5	1	6.3	17	7.5
220	0	0	0	0	6	23.1	0	0	9	10.2	2	7.7	3	18.8	20	8.8
210	0	0	0	0	4	15.4	1	6.3	13	14.8	6	23.1	3	18.8	27	11.9
200	0	0	0	0	8	30.8	0	0	7	8.0	3	11.5	5	31.3	23	10.1
190	0	0	0	0	0	0	0	0	6	6.8	2	7.7	1	6.3	9	4.0
180	0	0	0	0	1	3.8	0	0	7	8.0	0	0	0	0	8	3.5
170	0	0	0	0	1	3.8	0	0	1	1.1	0	0	0	0	2	0.9
計	37	100.0	18	100.0	26	100.0	16	100.0	88	100.0	26	100.0	16	100.0	227	100.0

表4 大谷川流域における1次谷の谷型別水路頭高度の頻度分布

表5 狩谷川流域における1次谷の谷型別水路頭高度の頻度分布

栖立]	[型]	Ⅱ型		Ⅲ型		V型	7	√型	I	T型	VII型		全体	
(m)	谷数	割合 (%)	谷数	割合 (%)	谷数	割合 (%)										
330	6	22.2	0	0	0	0	2	8.7	0	0	0	0	0	0	8	6.3
320	9	33.3	5	29.4	0	0	4	17.4	0	0	0	0	1	25.0	19	15.0
310	6	22.2	6	35.3	0	0	2	8.7	1	2.3	0	0	0	0	15	11.8
300	1	3.7	3	17.6	0	0	4	17.4	5	11.6	1	20.0	0	0	14	11.0
290	2	7.4	1	5.9	0	0	2	8.7	6	14.0	1	20.0	0	0	12	9.4
280	0	0	2	11.8	0	0	3	13.0	6	14.0	0	0	0	0	11	8.7
270	1	3.7	0	0	1	12.5	3	13.0	8	18.6	1	20.0	0	0	14	11.0
260	2	7.4	0	0	1	12.5	1	4.3	6	14.0	1	20.0	2	50.0	13	10.2
250	0	0	0	0	1	12.5	1	4.3	3	7.0	1	20.0	0	0	6	4.7
240	0	0	0	0	1	12.5	0	0	4	9.3	0	0	1	25.0	6	4.7
230	0	0	0	0	0	0	1	4.3	1	2.3	0	0	0	0	2	1.6
220	0	0	0	0	0	0	0	0	1	2.3	0	0	0	0	1	0.8
210	0	0	0	0	2	25.0	0	0	2	4.7	0	0	0	0	4	3.1
200	0	0	0	0	1	12.5	0	0	0	0	0	0	0	0	1	0.8
190	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	0	0	0	0	1	12.5	0	0	0	0	0	0	0	0	1	0.8
計	27	100.0	17	100.0	8	100.0	23	100.0	43	100.0	5	100.0	4	100.0	127	100.0

趰古	I 型		Ⅱ型		Ⅲ型		Γ	V型	7	/型	V	T型	VII型		全体	
惊向 (m)	谷数	割合 (%)	谷数	割合 (%)	谷数	割合 (%)	谷数	割合 (%)	谷数	割合 (%)	谷数	割合 (%)	谷数	割合 (%)	谷数	割合 (%)
210	5	41.7	0	0	3	11.5	4	11.4	0	0	0	0	0	0	12	11.1
200	0	0	3	60.0	1	3.8	3	8.6	4	13.3	0	0	0	0	11	10.2
190	4	33.3	1	20.0	1	3.8	5	14.3	9	30.0	0	0	0	0	20	18.5
180	3	25.0	0	0	7	26.9	14	40.0	11	36.7	0	0	0	0	35	32.4
170	0	0	1	20.0	4	15.4	4	11.4	4	13.3	0	0	0	0	13	12.0
160	0	0	0	0	3	11.5	4	11.4	2	6.7	0	0	0	0	9	8.3
150	0	0	0	0	3	11.5	0	0	0	0	0	0	0	0	3	2.8
140	0	0	0	0	3	11.5	0	0	0	0	0	0	0	0	3	2.8
130	0	0	0	0	1	3.8	1	2.9	0	0	0	0	0	0	2	1.9
計	12	100.0	5	100.0	26	100.0	35	100.0	30	100.0	0	0	0	0	108	100.0

表6 山角川流域における1次谷の谷型別水路頭高度の頻度分布

表7 荒谷川流域における1次谷の谷型別水路頭高度の頻度分布

趰古		I型	Ι	I型	Ι	Ⅱ型	Ι	V型	7	√型	V	T型	VII型		全	体
惊向 (m)	谷数	割合 (%)	谷数	割合 (%)	谷数	割合 (%)										
240	1	3.8	0	0	0	0	0	0	0	0	0	0	0	0	1	0.7
230	3	11.5	0	0	0	0	0	0	0	0	1	5.3	0	0	4	2.8
220	11	42.3	7	30.4	0	0	2	25.0	0	0	2	10.5	0	0	22	15.4
210	4	15.4	5	21.7	0	0	1	12.5	0	0	1	5.3	0	0	11	7.7
200	4	15.4	3	13.0	0	0	4	50.0	3	5.8	3	15.8	0	0	17	11.9
190	2	7.7	4	17.4	0	0	0	0	6	11.5	5	26.3	0	0	17	11.9
180	1	3.8	3	13.0	0	0	1	12.5	2	3.8	3	15.8	0	0	10	7.0
170	0	0	0	0	1	11.1	0	0	3	5.8	1	5.3	1	16.7	6	4.2
160	0	0	1	4.3	2	22.2	0	0	10	19.2	0	0	2	33.3	15	10.5
150	0	0	0	0	1	11.1	0	0	12	23.1	2	10.5	1	16.7	16	11.2
140	0	0	0	0	2	22.2	0	0	6	11.5	1	5.3	1	16.7	10	7.0
130	0	0	0	0	2	22.2	0	0	5	9.6	0	0	0	0	7	4.9
120	0	0	0	0	0	0	0	0	4	7.7	0	0	1	16.7	5	3.5
110	0	0	0	0	1	11.1	0	0	1	1.9	0	0	0	0	2	1.4
計	26	100.0	23	100.0	9	100.0	8	100.0	52	100.0	19	100.0	6	100.0	143	100.0

山角川流域を除いて、水路頭高度の高い方か ら順に、Ⅰ型、Ⅱ型、Ⅲ型の谷となる傾向が 認められた。すなわち、源頭部から下流に向 かって、Ⅰ型、Ⅱ型、Ⅲ型の順に谷が分布す ることが読み取れる。また、複合型の谷では、 大谷川流域を除いて、Ⅳ型の谷がⅤ型の谷よ りも水路頭高度の高い谷が多く、前者が後者 よりも上流側に位置していることを示す。こ れらの結果は、図3~6で読み取れる各谷型の 分布状況と調和的である。基本型と複合型の 谷を併せてみると、上流側にⅠ型、Ⅱ型、Ⅳ 型の谷が、下流側にⅢ型とⅤ型の谷が多く分 布するという傾向が認められた。流域別の特 徴をみると、大谷川と荒谷川流域では I 型よ りも低位にⅣ型の谷が、Ⅱ型よりも低位にⅤ 型の谷が出現するのに対して、狩谷川と山角 川流域ではⅠ型とⅣ型、Ⅱ型とⅤ型の出現高 度がほぼ同じであった。

V. 考 察

調査地域の1次谷は三つの基本型に区分で きた(図2)。それぞれの形態的特徴と分布状 況から、各型の谷の形成過程を考察する。 I 型の谷は、谷頭部に明瞭な急斜面を持たない こと、下流に向かうにつれて谷が深くなるこ とから、地表流により形成され、主に下刻に より発達したと考えられる。ただし、谷の形 成初期、すなわち谷の伸長期には明瞭な谷頭 斜面が存在していたものの、その比高が小さ いために、谷の伸長が止まった後の地表流や テフラの被覆による修飾を受けている可能性 もある。 II 型の谷は、谷頭斜面を持つことか ら、主に谷頭の伸長により形成・発達したと みられる。シラス地域では、台地面と谷底面 の比高が大きいシラス崖において、台地面の 地表流の流下で生じる落水型侵食 (Haruvama, 1974) によるガリーの伸長が確 認されている。また、旧開析谷が形成された のは、シラス堆積直後の植生がみられない時 期で、豪雨による地表流が生じやすい環境で あったと推定されている(横山, 1987など)。 これらのことから、I型の谷が発達して谷壁 斜面の比高がある程度大きくなった段階で、 落水型侵食により形成された支谷がⅡ型の谷 であると考えられる。谷の分布状況(図3~6、 表4~7) をみると、一般に I 型が II 型の上流 側に分布し、さらにIV型がV型の上流側に分 布することから、Ⅰ型、Ⅱ型の順に形成され たと判断され、前述した考えと調和的である。 Ⅲ型の谷は、近年の崩壊跡がみられる谷頭急 斜面を持つこと、各流域で主に下流部に位置 していることから、侵食基準面である海面に したがって、下流から上流へと崩壊によって 谷頭を伸長し、発達してきたと考えられる。 また、Ⅰ型とⅡ型の谷を開析途上であるとみ られるIV型とV型の谷が多く認められること から、Ⅰ型とⅡ型の谷が形成された後にⅢ型 の谷が形成されたと判断される。

今回調査した四つの流域の開析進行度は、 面積高度比曲線から求めた比積分値(表1) によると、大谷川と荒谷川流域が平衡期(壮・ 老年期)、山角川と狩谷川流域が非平衡期(幼 年期)であった。シラスの分布域である調査 地域では、開析開始時期はほぼ同一であると みなせることから、段階の進んだ前二者が後 二者よりも開析が進んだといえる。各流域の 水系密度は、大谷川流域で6.62 km/km²、荒 谷川で 5.78 km/km² と、山 角川(5.06 km/km²)や狩谷川流域(5.52 km/km²)と比 べて高く(表1)、前述の開析進行度の違いと

矛盾しない。両者の違いは何に求められるの であろうか。源頭部にⅢ型の谷が分布する山 角川流域は、他の流域と比べてⅢ型の谷が占 める割合(24.1%)が大きく、Ⅰ型とⅡ型の 谷の占める割合(15.7%)が小さい(表2)こ とから、現在侵食作用が最も活発であると判 断される。このことは、比積分値から判断さ れる開析進行度の遅速が、現在の侵食作用の 活発度とは無関係であることを示す。さらに、 I型、II型、IV型およびV型の谷が占める割 合は1次谷全体の76.1%である(表2)こと、 すなわち全体の4分の3の谷は、旧開析谷また は、旧開析谷を現開析谷が開析途上の谷であ ることから、現在の地形から判断される開析 進行度は旧開析谷の形成時にほぼ決定された と考えられる。ところで、旧開析谷はシラス 中に形成されている(横山, 1987)ことから、 不透水層となる基盤岩や溶結凝灰岩の存在の 有無は旧開析谷の形成には無関係であるとみ なせる。シラスの原地形(堆積面)の等高線 図 (図1;横山, 2003) から求めたシラス堆 積面の起伏比は、山角川流域が0.008と最も値 が小さく、狩谷川(0.014)、荒谷川(0.015) および大谷川流域 (0.016) の順であった。ま た、侵食基準面(当時の海面)からの距離と の関係は、現河口からの距離と基本的に同じ であると予想され、上流から順に、狩谷川 (約28 km)、大谷川(約19 km)、山角川(約 17 km)、荒谷川流域(約14 km)である。 これらのことから、山角川流域はシラス堆積 面の起伏が小さかったことに、狩谷川流域は 侵食基準面から離れていたことに、それぞれ 他の2流域と比べて開析が進まなかった要因 を求めることができると考えられる。

VI. ま と め

本研究で明らかになったことを以下に示す。

- 調査地域の1次谷は、基本型(I~Ⅲ型)、 複合型(IV、V型)、その他(VI、VI型)の 七つに分類される。
- 2)基本型の谷は、谷頭部の形態および谷の 縦断形と、従来指摘されている旧開析谷お よび現開析谷の組み合わせにより、谷頭部 に明瞭な急斜面を持たない旧開析谷である Ⅰ型、谷頭斜面を持つ旧開析谷であるⅡ型、 谷頭部に半円形または馬蹄形の平面形を呈 する急斜面を持つ現開析谷であるⅢ型に分 けられる。
- 3) 複合型の谷は、上流側に旧開析谷、下流 側に現開析谷が位置する谷であり、IV型は I型とII型の、V型はII型とII型の組み合 わせである。その他の谷として、上流部を 他の谷に奪われた旧開析谷であるVI型の谷 と、谷頭斜面が不明瞭でI型とII型のどち らにも区分できない旧開析谷であるVII型の 谷が挙げられる。
- 4)1次谷の総数605のうち、現開析谷である Ⅲ型の谷の数は69で全体の11.5%である ことから、調査地域における9割弱の1次谷 は、谷頭部の侵食作用が現在不活発である と判断される。また、Ⅳ型とV型の谷を合 わせた数は295で、それらの占める割合は 48.8%である事実は、現開析谷は既存の旧 開析谷に沿って形成される場合が多いこと を示唆する。
- 5)谷型別水路頭高度の頻度分布から、上流 側にⅠ型、Ⅱ型、Ⅳ型の谷が、下流側にⅢ 型とⅤ型の谷がそれぞれ多いという特徴が 認められた。
- 6) 形態的特徴と分布状況から、①最初に I

型の谷が地表流により形成され、主に下刻 により発達した、②次に、深さを増した I 型の谷の谷壁斜面に生じた落水型侵食に よって II 型の谷が伸長・発達した、③最後 に、侵食基準面である海面にしたがって、 下流から上流へと崩壊によって II 型の谷が 伸長・発達した、と考えられた。

7)現在の地形から判断される流域の開析進 行度は、旧開析谷の形成時にほぼ決定され、 かつシラス堆積面の起伏と侵食基準面から の距離により規定されたと考えられた。

付記

本研究の骨子は、2009年度東北地理学会秋 季学術大会および2010年度東北地理学会春 季学術大会にて発表した。

文献

- 井上耕一郎・小口 高(1995):松本盆地周辺の 山地流域の水系網特性 — 分岐比・水路長比に 対する斜面崩壊の影響 —.地理学評論, 68A, 447-464.
- 奥野 充 (2002):南九州に分布する最近約3万 年間のテフラの年代学的研究.第四紀研究,41, 225-236.
- 桐野利彦(1972):シラスの浸食地形点描. 鹿児 島地理学会紀要, **20**, 39-45.

- 小松陽介(1999):谷密度からみた蛇紋岩山地の 特性--2種類の谷の定義による評価--.地理学 評論, **72A**, 30-42.
- 鈴木隆介(2000):建設技術者のための地形図読 図入門 第3巻 段丘・丘陵・山地.古今書院.
- 高山茂美(1972):地形図の縮尺が水流の次数区 分に及ぼす影響について.地理学評論, 45, 112-119.
- 塚本良則・平松伸二・篠原斉四郎(1973):侵食 谷の発達様式に関する研究(Ⅲ)−0字谷と山 崩れの関係−. 新砂防, 89, 14-20.
- 森脇 広・永迫俊郎・横山勝三(2007):テフラ 編年に基づくシラス台地上の埋積浅谷の形成 過程.日本地理学会発表要旨集,**72**,88.
- 横山勝三(1987):九州における大規模火砕流の 噴火とその堆積物.地形, 8, 249-267.
- 横山勝三(2003):シラス学 九州南部の巨大 火砕流堆積物. 古今書院.
- Haruyama, M. (1974): Features of slopemovements due to heavy rainfalls in the SHIRASU region of southern Kyusyu. Memoirs of the Faculty of Agriculture, Kagoshima University, 10, 151-163.
- Strahler, A. N. (1952) : Hypsometric (areaaltitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63, 1117-1142.