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Introductioll 

Microc1imate of rice fields affects the growth of rice through its physiolo-

gical and ecological processes. Microc1imate itself is also altered by the growth 

of rice， cultivation， soil conditions and water management. 
The objectives of this report were to study the seasonal change of micro-

c1imate of rice field and to inv巴stigatethe relatioll between the microc1imate 

and cultivation， water managment and plant temperature of rice. 

CHAPTER 1. Seasonal change of the microclimate in a rice field 

Section 1. M et!tod 

Measurements were made in a rice field of the Yamagata University Farm 

located in the Shonai plain， Yamagata prefecture from 1965 through 1969. The 

rice (Oriza sativa L. var. Norin 41) was planted at a tlant population of 64 plants 

per 3.3 m 2• Microc1imatological factors measured were summarized in Table 1. 

These factors were measured in different growth stages. 

Table 1. Microclimatological factors measured. 

Factor Measurement position 

Water tomperature 2.5 cm abov巴 soil-surface(Water depth 5 cm) 
Air temperature 5 cm， 10 cm， 20 cm， 50 cm， 100 cm， 150 cm 

(Above water surfac巴)
Soil temperature Soil-surface 

5cm depth 
10 cm depth 
20cm d巴pth

Solar radiation 10 cm， 40 cm， 130 cm， (Above water surface) 
Reflectance 130 cm above water surface 
Wind speed 150 cm abov巴 watersurface 

An additional measurement of direct solar radiation at noon was made， using 

NDR photo-copy paper. The directly radiated area near water' surface was 

calculated. The plot was surrounded by the wind shelter when the measurements 

were taken， to prevent the rice plants from moving by wind， 
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Section 2. Results aud d isc1tssioll 

1) Radiation balance for a rice field 

Radiation balance for a rice field can be expressed as 

RN= =( 1 -a) Rs+Re (1) 

where RN is the net radiation， Rs the incident short wave radiation， Re the 
巴ffectivelong wave radiation and 'a' the ref1ectance (albedo). Re can b巴estimated

fr0111 theoretical ca1cl1lations， and Rs and ‘a' can be 111easl1red. 

The seasonal change of 'a' dl1巴 tothe development of vegetative cover has 

not been yet fl111y disc1osed. Figl1re 1 shows the changes in the daily mean 

vall1e of transmittance and the portion of direct solar radiation m巴asuredat the 

water sl1rface as the rice grew. The daily average transmittance was 100% im-

mediately after the transplanting. It decreased as the rice grew， becoming 

smaller than 50% when LAI was abol1t 2 and being abol1t 10% at the heading 

stage. It then increasec1 in the period of grain-filling stage， as the lower leaves 

died to fall off. The portion of direct solar radiation changed in a similar man-

ner to the dai1y mean transmittance. 

Dai1y average reflectance of short wave radiation increased with the growth 

of rice plants， reaching the maximum value of 20% in the period of panic1e 

pregnancy in the end of July. It declined after the heading. Diurnal change of 

the reflectance exhibits its maximum at noon， the trend being reverse of that 

of transmittance. 

2) Air temperature between plants 

The profiles of air temperatl1re for each growth stage are given in Figure 

2. The maximum 'temperature 30C greater than the screen temperature， was 

observed near the water surface in the period of transplanting. In the periocl of 

panic1e initiation (July 17) the maximum temperatl1re， 3-40C greater than the 

screen temperature， appeared both in the lay巴rof 20-30 cm above the water 

surface and in the layer near the surfaces in the plant canopy. 

Table 2. Correlation coefficients between the tempe1'ature at soil-surface 01' 10 cm depth 
and the scre巴ntemperature or the solar radiation. 

Correlation coefficints between the soil temperature 

and the sc1'een temperature. 

Soil surface 10 cm depth 
Maximu/11 

+0.706料

Minimum Maximum 

+0.968**市 I +0.957キ**
Minimum 
+0.967ホ**

Correlatiol1 coefficints bet-

ween the soil temperature 

and the solar radiation. 

Soil surface I 10c/11 depth 

Maximum Maximum 

+0.483* +0.509* 

The maximum plant materials were attained in the periocl of panicie forma-

tion (July 27). In this p巴riodthe high temperature region near the water surface 
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disappeared and the maximum temperature was seen only in the layer of 50-

60 cm above the water surface where the canopy had its maximum plant 

materials. This means that less heat was received at the water surface. The 

high temperature region was formed near the heads， about 90 cm above the 

water， in the period of grain-filling stage (Sept. 2). The maximum temperature 

was only lOC higher than that of screen temperature. Tnis is the result from 

the lower solar altitude， with less solar radiation received. 

The minimum air temperature between plants was lOC lower than the screen 

temperature in each period. Its height observed was the same as the maximum 

air temperature. 

The height of the largest amplitude of the ai1' tempe1'ature was the same 

as that of the maximum tempe1'ature. It shifted upward， which indicates tnat 

the heat exchange at the wate1' surface decreased as the canopy developed. 

The vertical change in the amplitude of the ai1' temperature is at fi1'st 

governed by the amount of solar radiation abso1'bed by the canopy and by the 

intensity of long wave radiation exchange at night. Abso1'ption of solar radiation 

in the daytime and supp1'ession of the long wave radiation exchange by the 

canopy increase with the development of the canopy. Secondly， it is influenced 

by the i1'rigation wate1' which lessens the decrease of night time ai1' temperature. 

Thirdly， the grotn of the rice may affect the amplitude of the temperature， as 

the heat capacity and the heat exchange coefficient of rice changes with the 

plant materials above the ground. 

3) Seasonal change of wate1' and soil temperature 

Wate1' temperature was highe1' than both the ai1' tempe1'ature between 

plants and the sc1'een tempe1'ature in the early g1'owth stages， by 4-70C fo1' the 

maximum temperature and by 20C for the minimum temperatu1'e. Both heat 

loss and gain were small. Howeve1'， the wate1' temperature became lower than 

the air temperatu1'e between plants in daytime according to the growth of 

plants accompained by the incrase in LAI (Ieaf a1'ea index)， except fo1' a sho1't 

period a1'ound noon. At night it was slightly higher than the ai1' temperature 

between plants as the radiative cooling was depressed by the leaf canopy. 

Figure 3 shows the ratio of water temperature to the maximum screen 

temperature for c1ea1' days (with sola1' radiation above 500 Iy/day) of each growth 

stage. The ratio was l.4， i. e.， the wate1' temperature was higher than the ai1' 

te~per 
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canopy developed， reaching the maximul11 in August. The maximum temperature 

was higher than the screen tel11perature at the surface and it was lower at 10 

cm depth. The difference of the screen temperature from the soil was larger 

for the surface in the early stages of growth and for 10 Cl11 depth in later stages. 

Correlation coefficients between the soil surface or 10 Cl11 deep temperature 

and the screen temperature or the solar radiation are given in Table ，2. The 

maximul11 temperature of both soil sufrace and 10 cm depth was l110re highlシ
correlated to the screen temperature than to the solar radiation. This is parti町

culary so for the temperature of 10 cm depth. Thus， the linear regression was 

obtained between these two quantities， which enables us to estimate the tem-

perature of 10 cm depth from the screen temperature. 

Correlation and linear regression coefficients between the water temperature 

and the screen temperature for days of different radiation level are summarized 

in Table 3. Minimum water temperature was more c10sely correlated to the 

screen temperature than the maximum one. The correlation coefficient between 

the maxil11um water temperature and the screen temperature was larger when 

the radiation level was low. 

Table 3. Correlation and linear r巴gressioncoefficients between the water temperature and 
th巴 screentemperature for days of diff巴rentradiation level. 

Solar radiation Temperature Maximum temperature Minimum temperature 

込5001yjday Water Y=33.2十0.49(x -29.4) Y = 21.5 + 0.83 (x -18.6) 

Soil Y=25.9十0.41(x -29.4) Y=23.0十0.60(x -18.6) 

~500:::::"'300 Water Y=28.5+0.60(x -27.1) Y=21.3+0.69(x -18.0) 
Soil Y=24.2十0.36(x-27.1) Y=22.7+0却 (x-18.0) 

L300 Water Y=25.8+0.82(x -25目1) Y =20.9+0.78 (x -18.6) 
Soil Y =23.0十0.47(x -25.1) Y=22.0+0.62(x -18.6) 

Note : Y : Water temperature 01' soil temperature at 10 cm depth. 
x : The sc1'een tempe1'ature. ('C) 

4) S巴aeonalchange of therl11al properties and the soil heat flux of the rice 

field soi1 

The change of thermal diffusivity， soil heat flux and the soil temperature 

gradient with the growth of rice were studied. 

PATTEN (1948) stated that the thermal diffusivity is more important in the 

heat exchange processes in the soil than the thermal conductivity. For a undis-

turbed soil layer with the volumetric heat capacity of C and the density of d， 

the heat capacity Cr is given by 

Cr=C・8
321 
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Thus， the thermal diffusivity (α2) is 

α2=k/C，=R/C • d 

where K is the conductivity of the soil. There are many methods for calculating 

thermal diffusivity. SATO (1960) compared two methods， one using the amplitude 

and the other using the thermal properties and soil constituents. He concluded 

that the results from two methods for a、ricefield agreed. 

1n this investigation the following formula to calculat巴 thethermal diffu-

sivity (α2) from the amplitude was used : 

α2=x2M2 (π/T)/(log R。ーlogRx)2 

Where Ro is the amplitude of surface temperature， Rx the amplitud巴ofthe soil 

temperature at X cm depth， T the period of time (=one day 81，400 sec)， and M 

the constant (=0.4343). 

The soil heat flux G was calculated from the next equation : 

G= CdH(02-01) (3) - T
2
-T

1 

whereθ1 and θ2 are the average tempe1'ature over H cm d巴eplayer at the time 

T1 and T2 respectively， and C the ave1'age specific heat capacity， d the density， 

and H the depth at which the tempe1'ature is constant fo1' a day. The upwa1'd 

flux is defined as heat loss (一)and the downwa1'd flux as heat gain (+). 

The daily amplitude of soil tempe1'ature decreases as the depth increases. 

The relation between the amplitude and the depth fo1' a h0l110geneous soil layer 

can be exp1'essed as 

Rx=Ro exp(-sx) (4) 

where Rx is the amplitude at X cm depth， Ro the amplitude at the surface and 

s the lapse rate of soil temperature. Figure 4 shows seasonal change of thermal 

diffusivity， soil heat flux and s calculated fJ:om eq. (2) through eq. (4). The 

thermal diffusivity at first decreased as the rice grew， increasing after grain-

filling stage， so did the soil heat flux. 

The increase in both thermal diffusivity and soil heat flux at the late grain-

filling stage may be result巴df1'om the increase of penetrated solar radiation 

due to the loss of lower leaves and f1'Om the decrease of soil water content 

b1'ought about by draining water. s increas巴dand the depth whe1'e the daily 

fluctuation is O.l"C became smaller as the rice grew. 

CHAPTER II. The influence of cultivating conditions on the micro-

climate of the rice field 

Section 1. Cultivating conditions and tiglzt environment 

The infl uenc巴 ofleaf inclination， the amount of leaf and the plant typ巴 on

the light environment was studied. 

323 



8 山形大学紀要(農学)第7巻 第3号

1) Methods 

(a) Measurements in 1965 

The measurements were taken in a field of Experimental Farm of Tohoku 

University Agricultural Research Institute， Kashimadai， Miyagi Prefedure. Two 

plots of rice (var. Fujisaka 5-go)， one planted at a density of 64 plants p巴r3.3 

m2 and the other of 121 plants p巴r3.3 m2 were used. 

Solar radiation was measured by a tube solarimeter on the water surface， 

and the incident short wave radiation by a Noshidenshitype solarimeter set up 

at 2 m height above the water. The refleded solar radiation was measured by 

a Noshidenshi-type solarimeter facing downward. 

All outputs were recorded 011 a recorder. Three points on a chart， taken in 
a period of 10 min， before the hour， were averaged to obtain the value in ly/min 

for each hour. Daily solar radiation was ca1culated by averaging hourly values 

over 6 JST (Japan Standard Time) through 18 JST. 

To study the relation between the plant type and light environment， 5 

varieties (SasanishiRi;' Sasashigure， Fujisaka 5-go， Rikuu 132-go， and Kamenoo)， 

Planted at a density of 64 plants per 3.3 m2， were used in the experim巴nt.Num. 

ber of stems for each variety was equalized. 

(b) Measurements in 1966-1968 

The measurements were made in a rice field of Yamagata University Farm. 

Three plots of different canopy structures were prepared by applying three 

levels of nutrition : a low level， a standard and a high level plot. 

'Leaf area was measured by the photo-copy method司ndthe angle of leaf 

inclination by the method of MATSUSHIMA (1965). Both long and short diameters 

of a cross section， assumed as an ellipse， at the heights of 10 cm and 30 cm 

above the base of top were measured as an indicater of the opening of a plant. 

The penetrated direct Iight through a leaf was measured by a cadomium 

photocell attached to the lower surface of the leaf which was held parpendicular 

to tne solar beam. The transmittance was then ca1culated by dividing it by tne 

incident light above the leaf surface. 

The thickness of the leaf was measured in terms of leaf area-fresh weight 

ratio. Absorptance of an 80% aceton solution， made by extracting chlorophyl 

out of 5 g flag leaf on the main stem， was measured at 665 mμWavelength by 

a Hitachi spectrophotometer and used as an index of chlorophyl content of the 

leaf. 

2) Results and discussion 

(a) 1965 experiment 

The plant in the plot of 121 plants/3.3 m2 (plot A) was 7 cm higher in average 

than the one in the plot of 64 plants/3.3 m2 (plot B). The number of spikes were 
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Microclimate of Rice Fields一一-E.HANEDA 9 

1584 and 1533 per 3.3 m2 in plot A and plot B， respectively. The LAI of plot A 

(4.19) was slightly higher than that of plot B (3.90). 

Figure 5 shows the transmittance and reflectance of light around th巴head-

ing stage. DaiIy average transmittance was smalIer in the dense plot， about 13-

15% at the heading stage， decreasing there-after. In the sparse plot (plot B) it 

was about 33% at the stage of heading， also dec，reasing there-after. MURATA et 

al. (1965) suggested that the decrease in transmittance after heading was caused 

by the presence of ears that change the structure of the canopy surface. 

Daily mean reflectance tended to be smaller as the planting density increa-

sed ; 3 to 5 percents for plot A and 20% for plot B. Both reflectance and trans-

mittance of plot A with larger LAI were smaller than those of plot B with 

smalIer LAI， which means the dense canopy absorbs more energy than the sparse 

one. 

Tne length and the inc1ination of three leaves from the top are given in 

Table 4， and the degree of opening of the plant in Table 5， both for the panic1e 

pregnant period. The leaf inc1ination of plot A was smalIer than that of plot B， 

particularly so for the flag leaf. Each leaf in plot A was shorter than that in 

plot B. The degree of opening， measured in terms of long diameter and short 

diameter of the ellipse at the heights of 10 cm and 30 cm adove the base of the 

top was smalIer for plot A with fewer stems per plant than for plot B. The 

difference at two heights was also small for plants in plot A. The smalIer 

Table 4. The length and the inclination of three leaves from the top of ric巴 plants.

目

Inclination angle (0) Plant population of 64 
plants per 3.3 m2 

45.5 24.1 55.8 

Plant population of 121 23.3 14.7 40.7 
plants per 3.3 m2 

L巴ngthof leaf (cm) Plant population of 64 
plant日 per3.3 m2 

24.3 28.5 30.6 

Plant population of 121 23.6 27.6 30.3 
plants per 3.3 m2 

1'able 5. 1'he degree of openi旬。fthe plant. (The panicle pregnant period) 

At thEheib ghtof10cm 
above the base of tpo. 

At theheigb ht of30cm 
above the base of top. 

Short diameter Long diameter Short diam巴terLong diameter 
(c'm) (cm) (cm) (cm) 

1'he plot of 64 plantsj3.3 m2 4.7 8.4 5.5 11.4 

1'h巴 plotof 121 plantsj3.3 m2 3.7 6.2 4.3 6.7 
一 一一一 一
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Table 6. The reflectance for each 
variety. 

Variety Reflectance (%) 

Towada 13.45 
Fujiminori 14.30 
Sasashigure 14.10 
Sasanishiki 16.14 
Konnoikusei 16.24 
Rikuu 132-go 17.48 

Kamen∞ 17.68 

reflectance of plot A was， therefore， 

caused by the fact that the plant in plot 

A had more erect leaves and thus lower 

degree of opening. 

The transmittance and reflectance 

for each variety， measured at solar noon 

on calm and c1ear days， are given in 

Table 6 and Figure 6. The' transmit-

tance decreased as the height from the 

water surface decreased. The difference' 

in the transmittance among varieties 

can be appreciable at 10 cm height above the water surface where the trans-

mittance of Sasanishiki， Towada， Ri:kuu 132-go and Kamenoo. The reflectance 

of Towada with short stems and erect leaves was smaller than that of Rikuu 

132-go or Kamenoo with longer leaves of large curvatm'e. Thus， the erect leaves 

let more light from the sky penetrate， compared to horizontal leaves. 

The fact that the reflectance increases and the transmittance decreases as 

the leaf becomes more horizontal enables us to illdge the canopy structure for 

light from the values of transmittance. 

(b) Experiments in 1966-1968 

To obtain rice stands of different canopy structure， plots of three nutrient 

levels， i. e.， a low (L)， a standard (S) and a hith (H) level plot， were made. 

Both plant height and stem number were large in plots of higher nutrient 

leve1. Three leaves in the top were larger for the higher nutrieht level plots. 

The LA1 in the heading period was 5.3 in plot H， 3.5 in plot S and 2.3 in plot L. 

The vertical distribution of the leaf area was measured. The layer of the 

maximum leaf area was' 70-80 cm above the ground for plot H， 50-60 cm for 

plot S and 40-50 cm for plot L. This result may be attributable to the difference 

in the leaf length at each height caused by the difference of nutritions applied. 

Light penetration after the heading declined as the grain-fil1ing proceeded， 

decreasing rapidly especially in the plots of higher nutrient leve1. 

Diurnal variation of the reflectance is shown in Figure 7. The reflectance 

was the smallest at noon when the solar elevation is the highest， being 13% in 

plot L and 22% in plot H. It was larger either in the morning or in the evening. 

The transmittance of the leaf at the heading stage was lower as the nutrient 

level was higher. It was smaller for the leaves in the lower leaves. The trans-

mittance reached its maximum at noon， being less affected by both the nutrient 

level and the leaf position. 1n the morning or in the evening when the solar 

energy received is less， the transmittance become smaller associated with moi"e 
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Microclimate of Rice Fields一一-E.HANEDA 13 

differences among plots and leaf positions. 

The transmittance of the leaf is affected by the amount of pigment content， 

thickness of the leaf and the structure of the leaf tissue. The lower transmit-

tance in higher nutrient level plots may be resulted from higher chlorophyl 

content， since the chlorophyl content increased and the thickness of the leaf was 

reduced as the nutrient level increased. 

Section 2. Temterature environment as affected by the cultivation conditions 

Air temperature in canopies with different plant populations and nutrient 

levels were measured. 

1) Methods 

Three rice plots with plant population of 64 plants， 81 plants and 121 plants 
per 3.3 m2 were used. The rice in all plots was planted in square. The tem-

perature was measured at the heights of 10 cm， 30 cm， 40 cm， 60 cm and 80 cm 

above the water. Another three plots of high， standard and low nutrient levels 
were used to measure temperature at the height of 20 cm and 100 cm. The 

temperature was measured with a high sensitive thermometer (Iio Denki) in the 

early panic1e formation period and in the heading period. 

2) Results and discussion 

The layer of the mi，!imum and maxinmum temperature in the plots of 

differ百 ltplanting density was about 60 cm height above the water. This is the 

level just above the layer of maximum leaf， forming the s巴condactive layer 

for the temperature. 

Comparison of the air temperature in the canopy with the screen tempera-

ture shows that the difference was lagest for the maximnm temperature. The 

difference in the minimum temperature was only lOC. The difference in the 

maximum temperature among plots was greater at high wind speeds. The 

maximum temperature for the dense plots was higher at the of 100 cm， while 
it was lower at the height of 20 cm. The height of maximum temp巴raturewas 

near the top of the layer with the maximum leaf. The larger the leaf amount 

was， the higher the maximum air temperature was. The difference in the maxi-

mum temperature between the air temperature in the canopy and the screen 

temperature was on days of higher wind speeds， being about 60C in the plot of 

largest leaf area (see Figure 8). 

This temperature difference is c10se to the one measured by SATO (1960) in 

a rice field in Chikugo， Fukuoka Prefecture. The minimum temperature was 

less affected by the denseness of the canopy. 

Heat balance is expressed as 

RN=Lo+lEo十Bw (5) 

Each component of the above epuation is given as 
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RN=(l-a} Rs-(1-cn2} {σTa4 (0.39ー 0.058.ve)}

Lo=一(RN十Bw}/(l十r)，r=2 {ez-e(8w)}/(θz-{}w) 

Bw=CρH(θWl一θW2)，1E=一(RN+Bw}r/l+r

in which RN=net radiation， 1Eo=latent heat f1ux， Lo=sensib1e heat f1ux， Bw= 

storage heat， 'a'=ref1ectance (a1bedo)， Rs=tota1 short wave radiation， Ta=air 

temperature in dgree K， e=water vapor pressure of atmosphere， n=average 

c10ud amount， c=Oムσ=StefanBo1tzman's constant (=8.14X 1Q-1l1y/min/oK4)，θ= 

water or soi1 temperature， H=depth of the water， cp=vo1umtetrice heat capacity 

of the water， ez = the vapor pressure at the heigllt Z， e (θw}=saturation vapor 

pressure at temperature (}w・

The resu1ts ca1cu1ated from the above equation are given in Tab1e 7. Heat 

gain in the net radiation exceeded heat 10ss for the p10ts with 1arger 1eaf area. 

The same is true for the storage heat (Bw)， but with smaller magnitude. 

Nutrient level 

Stag巴 ofpanicle 
pregnancy 

(8. Aug.) 

Ripening stage 
(25. Aug.) 

lRN 1 Bw 1 Lo 1 lE 1 RN 1 Bw 1 Lo 1 lE 1 RN 1 Bw 1 Lo 1 lE 

1210州0.07410判。判。判。川 o同0.37311必110.1411 0判0.336

t:tlO62い01いω01-0.0121-0.569卜0.0201-0同Q.2321-0判0.0331-0判1.244

1210州o判。判。判。判。州 o判0.40111.2511 0州0.1461。制
官 1-0.7461-0附10州0側1-0ω41-0.0481-0叫

Heat gain as the sensib1e heat f1ux exceeded heat 10ss for the p10t of high 

nutrient 1eve1 with 1arger 1eaf area. The trend is more evident at the stage of 

panic1e pregnancy than the ripening stage. This may be exp1ained by the diffe-

rence in 1eaf area of the canopy that strong1y affects the heat exchange in rice 

fie1ds. The water surface was more shaded as the heading proceeded in the p10t 

due to the 10ss of 10wer 1eaves. 

The latent heat f1ux was greater than the sensib1e heat f1ux. Heat gain as 

the 1atent heat f1ux was greater than the heat 10ss for the high nutrient 1eve1 

p10t， and was smaller for the p10t of 10w nutrient 1eve1. Heat gain increased 

from the panic1e pregnancy stage to the grain-fi11ing stage， whi1e heat 10ss 

decreased. 

The negative 1atent heat f1ux means the heat 10ss as the evaporation at the 

water surface， the positive meaning the heat gain as dew formation. Heat gain 

by net radiation and heat 10ss by the 1atent heat flux were predominant in the 

daytime for a sparse canopy. At night most of the heat was lost by the net 

radiation and gained by the latent heat transfer. On the other hand， for a dense 
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canopy， more heat was lost by the net radiation both in the daytime and at 

night， and heat gain by the latent and sensible heats increased. 

CHAPTER III. Thermal propertie日 ofa paddy field with plants 

Microclimate of a rice field is primari1y determined by the macroscale 

c1imate and modified by the irrigation water and the growth of rice plants. In 

this chapter the relation between the amount of irrigation water， percolation 
and thermal state of paddy field soi1 is presented. 

NAKAHARA (1942) found that the correlation between the rice yield and the 

soi1 temperature at 10 cm depth was the maximum. FUJIWARA (1954) pointed out 

the importance of soi1 temperature from the viewpoint of nutrient physiology. 

Recently， TAKAMURA (1961) and MATSUSHIMA (1964) revealed that the growth 

and yield of rice is strongly affected by the soi1 temperature. 

Section 1. Attaratus 

This experiment requires the apparatus that has no leak of water horizon-

tally and can adjust the rate of vertical perco1ation. There-fore， a lycimeter， 3.3 m2 

of cross sectional area and 1.8 m deep was used. A block of 10 cm bentnite was 

planted on side walls for reducing water leal王 andheat loss through the wall. 

Sandy loam was then fi11ed in the lycimeter. Vertica1 percolation was adjusted 

by discharging the water from the bottom. Surface water in the lycimeter 

was drained from the out1et at the same height of the ground surface. 

Section 2. Soil heat flvx in the soil as affected by the tlanting density and 

nutrient level. 

1) Methods 

Rice was planted at a plant population of 121 plants per 3.3 m2 (plot D) and 

64 plants per 3.3 m2 (plot S). Three nutrient levels ; high， standard， and low w巴re

imposed. 

The soi1 temperature was measured and recorded at the surface， 5 cm and 

10 cm depths with a Yokogawa Potentiometric Thermometer. 

2) Results and discussion 

The stem number in plot D at the maximum ti11ers stage was 2580 and 1660 

in plot S per 3.3 m2
• The LAI was 4.7 in plot D and 3.3 in plot S. 

The soi1 heat flux and thermal diffusivity were ca1culated from equations 

(2) and (3) for days with solar radiation above 5001y/day. Both heat loss and 

gain decreased as the rice grew， reaching the minimum at the panic1e pregnancy 

stage at which the LAI was the greatest. Both heat loss and gain were greater 

for plot S with lower LAI. The heat 10ss and gain in the rice field with vegeta-

tion decreased rapidly after LAI became greater than 2.0. The thermal diffu司

sivity was greater for the plot D as compared with plot S. 
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Less growth and LAI were attained in the p10ts of 10wer nutrient 1eve1 

Soil heat f1ux decreased with the growth of rice， and was smaller for the higher 
nutrient p1ots. The therma1 diffusivity was the smallest for p10t H with 1argest 

LAI. This result is different from the one obtained in p1ant density treatment. 

Therefore， it is concluded that LAI is not on1y one factor that affects ther-

ma1 status of the rice fie1d soil. 

Therma1 diffusivity on cloudy days was 1arger for the p10ts of higher 

nutrient 1eve1 with 1arger LAI， to the contrast with the resu1t on clear days. 
The reason may be as follows. On cloudy days 10w evaporative demand induces 

1ess water uptake by roots， and thus 1ess water movement in the soil. This is 

particu1ar1y so for the p10t of small LAI. Therefore， the higher therma1 diffu-

sivity， brought about by the slower water movement in the soil， is obtained 

for the p10t of smaller LAI. This reasoning is supported by the fact that the 

difference in therma1 diffusivity due to the difference in the LAI was 1arger 

for the midd1e of tillers stage as compared with the panic1e pregnancy period 

when the water uptake by rice p1ants is the maximum. 

According1y， it.. may be concluded that the soil heat f1ux is not on1y in-

fluenced by the transmittance but a1so by the water uptake by rice p1ants. 

Section 3. H eat tr仰 sferin a rIce field as affected by the detth of water flooded. 

1) Method 

Rice was p1anted at a density of 64 p1antsj3.3 m2 in three p10ts : one flooded 

in 1.5 cm， the other in 4 cm depth， and the third without f1ooded. Soil temperature 

was measured in each p1ot， and soil heat f1ux and therma1 diffusivity were 

computed from equations (2) and (3). 

2) Resu1ts and discussion 

The amplitl，lde of soil temperature was 1arger for the non-flooded p1ot， since 

the maximum temperature was higher and the minimum 10wer for this p1ot. 

The temperature difference between two p10ts in the ear1y growth stages was 

small as the heat gain at the soil surface was 1arge due to the high trans-

mittance. The decrease in the transmittance with the increase of LAI caused to 

reduce the soil temperature rise particu1arly when the water that has the 1arge 

heat capacity is flooded in the p1ots. Heat transfer either as gain or as 10ss 

decreased as the rice grew ; 1arger for the f100ded p10t in the ear匂 growth

stages and for the non-f1ooded p10t 1ater. 

Therma1 diffusivity was 1ess for the flooded p10t because of the high water 

content in the f1ooded' soil. 

The ma 
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accompanied by the reduced transmittance. Therefore， the soil and water tem-
perature were raised and thus the temperature amplitude was held large by the 

shallow water management in the earJy growth stages when the transmittance 

was large. 

Section 4. The relation between percolation rate and heat transfer 

Heat transfer in tne soil of rice fields witi10ut vegetation is studied by 

SUZUKI (1951) and YABUKI (1951). There are few investigations on the heat trans-

fer in the soil of rice field witn vegetation， since one should use the plot that 

has the measures for adjusting percolation and for preventing horizontal water 

loss. The method to satisfy the above conditions is by use of Iysimeter. 

1) Experimental method 

A 3.3 m2 Iysimeter， its percolation rate being regulated by drainage pipes 
at 2 m depth in the ground， was used in this experiment. Three levels of 

percolation rate， 3.7 mmjhr， 2.5 mmjhr， and 0.7 mmjhr were imposed and the 
mesurements were taken in the middle of tillers and panicJe pregnancy periods. 

Soil temperature was measured at the soil surface， 5 cm， 10 cm and 20 cm 

depths with a Iio High Sensitive Thermometer. 

Rice， variety Norin 41-go， was planted at a Planting density of 64 plantsj 

3.3 m2
• 

2) Results 

Thermal diffusivity computed from eq. (2) increased with the increase of 

percolation rate up to 20 mmjday， decJining theteafter. 
Section 6. H eat transfer in soils of different textures. 

1) Experimental method 

Heavy loam and coarse sand were mixed according to the following relative 

proportions. 

Heavy loam 

40% 

60 

100 

O 

Coarse sand 

60% 

40 

O 

100 

The mixture was contained in pots of 1j2000-a and the surfaces were covered 

with the same field soils of 3 mm thickness to eliminate the influence of soil 

surface color on the temperature. The water surfaces were also covered with 

OED (evaporation retardant) fiJms to lesson the difference in the water tem-

perature due to the difference in evaporation. 

Each pot was covered with stylo-foam and buried up to 80% of its height 

in the soil in order to eliminate the temperature effect of surroundings. 

2) Rest1ts and discussion 
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Both the heighest maximum soil temperature and the lowest minimum 

temperature were obtained in the coarse sand plot. The amplitude of daily tem-

perature cyc1e was the greatest at each depth in the coarse sand plot. Soil heat 

flux in the soil as both heat gain and as heat loss increased with the increasing 

proportion of coarse sand ; the same was true for the thermal diffusivity. The 

rate of soil temperature decrease， on the other hand， increased as the amount 
of . heavy loam incresed (Fig. 9). 

Thus the movement of heat in the rice field soil reaches deeper as the 

relative proportion of coarse sand increases. 

CHAPTER IV. Relation between the rice field rnicroclirnate and the 

plant ternperature of rice 

There have been many studies on the influences of watter， soil and air 

temperatures on the growth andyields of rice. It has been reported that the 

soil and water temperature， particularly the temperature near the base of the 
stem where the grdwing poind locates， are the most important factor affecting 
the growth during the vegetative growth stages. However， few attempts have 
been made to measure the plant temperature itself. Since the plant temperature 

near the water and soil surfaces depends on net radiation exchange， sensible heat 

and latent heat exchanges and the conductive heat flow in the soil and water 

layers， it is c10sely related to the microc1imate in the rice field. 

Section 1. Exρerimental methods 

Experiment 1 : Stem temperature of rice in natural conditions 

Rice， var. Sasanishi， was grown in Iysimeters under natural conditions. Two 

water treatments， a plot flooded with water of 1.5 cm depth (W) and a plot without 

flood (D) were prepared. Stem and air temperatures were measured at 1 cm above 

water surface for the plot W and above the soil surface for the plot D， when 

the 13th leaf and 15th leaf fully expanded. Additional stem temperature measure-

ments were taken at 1 cm above the surface in shade and in sunlit for plot D. 

Experiment 2 : Relation between the stem， soil， and water temperatures 

Sasanishiki was grown in pots (1/5，000 a) during the period from transplant-

ing time to 13th leaf stage. The pots were respectively placed in water tanks 

of which temperature were 30oC， 250C， 200C and 150C in a glass house. The stem 

temperature was measured at 0.5 cm， 5 cm， 10 cm and 20 cm above the water 

surface. Pots were then placed in the water tank held constant at 250C. The 

stem temperature at the height of 1 cm above the surface was measured for a 

flooded and non-flooded pots. 

Experiment 3 : The corresponding change of plant temperature to the change 

1D air temperature 
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Leaf and stem temperatures on Sasanishiki， grown to the heading stage in 

pots (1/5，000 a) with sand， was measured by changing the air temperature from 

15
0

C to '30oC at 10 minute intervals for three plots : a plot flooded， a plot not 

flooded， and a plot treated by wind of 2 m/sec. 

Experiment 4 : Influence of transpiration suppression on the leaf and stem 

temterature 

Sasanishiki at the 13th leaf stage was used. A part of the leaf and a stem 

up to 5 cm above the water was coated with 10% solution of OED Green. The 

temperature of the part coated by OED was measured in a phytotron. The stem 

of a field grown Sasanishiki was also treated likewise. The stem temperature 

was measured at 5 cm height above the water surface. 

Experiment 5 : Influence of wind on the stem temperature 

Stem temp巴ratureon the plant of panicle pregnancy stage was measured 

at 1 cm height above the surface at a windspeed of 2 m/sec and a light level of 

50 klux. Two combinations of air temperature and humidity; 290C and 72%， and 

170C and 64%， were imposed. Temperature was measured by Cu-Co thermo-
couples of 0.1 mm diameter， with one junction inserted 1 cm deep in the stem， 
or taped on the middle of the lower surface of the leaf by a gam-tape of 2-3 

cm long. This method gives c10se result to the one measured with infrared 

thermometers (NISHIYAMA， 1972). Assman psychrometer was used to measure 

air temperature and humidity. 

Section 2. Results and disCttssion 

Experiment 1 : Stem temperature of rice in natural conditions 

Figure 10 shows the results obtained on c1ear days. Stem temperature ;n 

the plot D was higher than in plot H. The temperature difference between two 

plots was the greatest， about 1.70C， when the air temperature reached maximum. 

Stem temperature was lower than the air temperature during midday period 

and slight1y higher at night. 

The comparison of the stem temperature at sunlit and under shade for the 

plot without flood water was given in Figure 10. The temperature of the sunlit 

stem was higher than the air temperature by about 20C. In shade it was about 

l
OC lower than the air temperature. The difference was smaller both in the 

morning and in tne evening. It was conc1uded that the stem temperature in the 

day time is higher than the air temperature for the plot without flood water 

and for the plant in sunlit. 

Experiment2 : The relation between the stem temperature and soil or water 

temperature 

Stem temperature was lower than the air temperature when the water tem-

perature was 
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temperature when the water temperature was higher than the air temperature. 

This trend was more evident near the water surface. The growing point of rice 

plant is located near the soil surface about 20 days before heading and thus 

being under direct influence of the water temperature. It then gradually moves 

upward to the above water surface， being influenced by the air temp巴rature

between plants. The results of this experiment may indicate that the growing 

point up to almost 10 cm above the water surface is under the influence of water 

temperature. 

Figure 11 shows the relations between the stem temperature at 5 cm above 

the water and the air temp巴ratureat 150C (L) and 250C (H) water temperatures. 

The stem temperature in the plot H was always greater than in the plot L， the 

difference decreased when the air temperature was high. 

Hourly change of the stem temperature for both plots with water and 

without at 250C water temperature is depicted in Figure 12. the stem temperature 

at 1 cm height above the surface was higher for the plot without water as com-

pared with the flooded plot. This result seems to suggest that the difference in 

the stem temperature between two plots (flooded and non-flooded) in experiment 

1 was not resulted from the difference in soil temperature but was resulted 

fr0m the difference in the heat exchange near the base of plant stem by flooding 

water. 

Experiment 3 : The corresponding change of the plant temperature to the 

change in air temperature 

Leaf and stem temperature was measured when the air temperature in the 

phytotron was varied rapidly from 300C to 150C. 

Table 8. The temperature differences before and after treatments. 

A plot not f100ded A plot flooded 

Temp.of Stem temp. Soil- Temp.of Stem temp. Water Air temp. 
a(bao t 5cm a(bao t 5cm the per- ve the surface thEp:uelrz - V巴 the temp. 

pendicular soi1 sur- temp. pendicular 
、内latersur-leaf face) leaf face) 

Control plot 13.5 12.5 13.1 12.8 12.3 13.1 14.8 

A plot treated 
by wind of 15.1 13.0 13.1 13.7 12.1 13.0 14.7 
2 mjsec. 

Note : Temp. : Temperature ('C) 

The temperature differences before and after treatments were given in Table 

8. The air temperature was quickly equated to the set temperature at 15・C.
However， the change in the leaf and stem temperature was 'smaller than the 

change in the air temperature， the change of leaf temperature being less than 
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that of stem temp巴rature.This was more so for plot W as compar巴dwith plot 

D. It followed that the leaf temperature was more sensitive to the change of 

air temperature， particularly in plot D. The leaf responded more sensitively to 

the change of air temperature when wind existed. This may be due to the smaller 

heat capacity of the leaf accompained by the decreased water content of the leaf. 

Experiment 4 : The influence of transpiration suppression on the leaf and 

stem temperatures 

The results of OED Green treatment are given in Table 9. The leaf tem-

perature increased as the light flux increased， especially so at low air tem-

Table 9. The influence of transpiration suppression on the leaf and stem temperatures. 

Illuminance ithe h叶 5cm|1cm lsurface
.n11 Hum-
t(e℃m) p. idity (Klux) zontall (I!.. ~h~"o 山。 te(℃m) p. (%) 

29.7 29.5 56 
28.7 29.5 57 
25.5 28.7 59 

Control plot 27.3 23.7 25.0 27.0 62 

17.6 18.0 18.4 20.5 19.7 64 
13.7 13.7 13.7 15.0 14.0 58 

High temp. 

A plot of OED 
Green treatment 

50 21.2 21.3 20.9 。13.9 13.0 13.7 

Note : Temp : Temperature ('C) 

perature. In the dark， however， no effect of OED treatment was seen in both 

air temperature tr巴atment.The stem temperature decreased witn decreasing 

light and air tempcrature. The decrease in the stem temperature was reduced 

by the OED treatment that decreased transpiration. The d巴creasein the stem 

temperature was reduced when the stem was coated with lanolin in the flooded 

plot (Figure 13). The decrease in the stem temp巴raturewas also reported by 

SATO et al). (1968). This phenomenon， in view of experimental results obtained 

here， may be explained from the latent heat loss both as transpiration of stem 

and as evaporation of water that ascended the stem by capillary. 

Both the maximum and minimum temperature of the OED treated plant 

were 1-20C higher than the plant without treatment in natural conditions. 
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Experiment 5 : The influencξof wind on the stem temperature 

The results from the experiments of wind treatment are given in Table 

10. The decrease in the stem temperature was enhanced for both the high tem-

peraturejlow humidlty plot and the low temperaturejlow humidity plot. 

Table 10. (i) The inflt悶 lceof wind on the stem temperature. 

S(t℃em )a(tAbeomt v pl . water Air Humidity 
temp. temp. (%) cm 巴
('C) ('C) th巴 water

surface) 

Control plot High temp. A plot not 
low f100ded 27.2 29.3 28.0 72 

humidity A plot 
fl∞ded 26.0 28.7 28.7 

Low temp. A plot not 
low flooded 16.7 17.5 17.2 64 

humidity A plot 
f100ded 16.1 17.0 16.6 

A plot treated by High temp. A plot not 
wind of 2 mjsec. low f100ded 28.2 28.1 28.8 

humidity A plot 
f100ded 25.0 26.1 28.8 

Low temp. A plot not 
low f100ded 17.0 17.0 17.0 

humidity A plot 
flooded 15.1 16.8 17.1 

Table 10. (ii) 

High humidity (92%) 
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Low humidity (50%) 

Control plot 

Stem temp. I Air temp. 
30.0 29.9 

Note : Temp. : Temperature ('C) 
Stem temp. : At 1 cm above the water surface. 

The wind enhanced both evaporation and transpiration from the stem and 

thus lowered the temperature in the flooded plot. For the non-flooded plot the 

sensible heat exchange was enhanced， the stem temperature approching to the 

air temperature. 

The decrease in the stem temperature was more profound for low humidity 

conditions as compared with high humidity conditions. 

The growth stage in terms of LAI when the light level of 50 klux， used in 
this experiment， is attained in the field was determined as follows. The light 
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level in rice canopies decrease as the canopy developes， according to the equation : 

I=Ioexp(一0.42F) (6) 

whe，re 1 is the light flux density on the ground below the canopy， 10 the light 

f1ux density above the canopy and F the LAI. 

LAI is caJculated to be 2.61 when 10 is equal to 50 klux on clear days， and 

1.65 on cloudy days. This LAI corresponds ~o the middle of tillering stage. It 

has been pointed out that temperature fluctuation near the growing point of 

plants strongly affects the growth of rice. Since the temperature fluctuation at 

the surface decreases with the growth of rice plant， it is important to increase 

the plant temperatl1re fluctuation by drainage when the growing point is located 

near the ground sl1rface. MATSUSHIMA et al. (1964) have proposed the irrigation 

method for the regions of cold water in that the water is drained in the daytime 

and irrigated at night. This method is considered to b巴 reasonablefrom the 

view point of plant temperatl1re control. 

CHAPTER V. The relation between the yield of rice and the tem-

perature and evaporation in Shonai. 

MATSUSHlMA (1964) has disclosed that there are optimum daytime tempera-

ture and optiml1m night temperature in each growth stage， pointing Ol1t that 

it is not reasonable to use daily mean temperatl1re only for predicting the yield. 

He has also fOl1nd that the temperatl1re fluctuation is closely related to the 

grain-fiIIing of rice. 

It is known that the evaporatio is not only an index of overaII climatic 

conditions bl1t also is closely related to the transpiration and assimilation by 

nce crops. 

1n view of above results， the relations between the maximum and minimum 

temperature， temperature fluctuation， evaporation and the yield were studied. 

Section 1. iVI etlzods 

Three areas ; Shonai (Fujishima)， the Murayama Basin (Yamagata) and Iwa-

numa in Miyagi Prefecture located in the coastal region of the Pacific Ocean， 
were investigated in this study. Shonai is located on the coast of the lapan Sea in 

Yamagata Prefecture. 

Data are those from tn巴 riceyield prediction experiments and the meteoro・

logical observations by the Agricultl1ral Experiment Station of each prefecture. 

Section 2. Results and discussion 

The r巴lationbetween the yield and temperature is given in Table 11. The 

yield is corr巴latedto the daily temp巴raturefluctuation averaged over a month 

and the monthly maximum air temprerature of July for the Shonai Area. 

There is no correlation found in Yamagata. 

341 



第3号山形大学紀要(農学)第7巻26 

Air temperature (monthly mean) 

|L叫 e

June July Aug. Sept.1 June July A時 Sept.1J une J向 A昭 Sept

Short-term 10.2350.0790.0310.32210.2350.0790.031 0.3221 0.012 0.314 0.0830.322 

Medium-term 1 0.268 0目2770.1640.24310.2680.2770.1640.24310.0180.3590.191 0.303 

Long-term 10.3890.1960.1430.27610.3890.1960.1430.27610.226 0.281 0.102 0.363 

* ** Shゅrt-term 10.2130.2490.2340.13910.4910.6810.3080.32610.091 0.216 0.074 0.073 
1 _ * _ J ** __1 

Medium-term 1 0.215 0.43O 0.361 0.3461 0.203 0.595 0.249 0.2961 0.088 0.374 0.246 0.291 

Long term |034602780.431033210.3740.6550385044510104044502630091 

The relation between the yield and temperature. Table 11. 

Mean Maximum 

Yamagata 

Fujishima 

Tables 12 & 13 show the correlation between the temperature averaged 

over 5 days and the rice yield. The co1'1'elation betw巴enthe temperature maxi-

mum 01' the fluctuation and the yield is the highest for the fifth 5 day period 

of July in the..Shonai Area. In Iwanuma the high correlation was obtained for 
the sixth 5 day p巴riodof July‘ 

Consequently， the highe1' maximum temperature from the fifth 5 dayperiod 

of July to the second 5 day pe1'iod of August may result in the increase of the 

Table 12. The correlation between the temperature averaged over 5 days and ric巴 yield
on Fujishima. (込0.3)

Lange 

Short-Medium-Long-
term term teqn 

Air temperature (monthly mean) 

Maximum Minimum 

Short-Medium-Long-1 Shorト Medium-Long-1 

term term terml term term terml 

0.394 

0.379 

0.667** 0.673キ* 0.827** 

0.437* 0.385 0.391 * 

0.317 

0.413ネ

0.392* 

0.345 

0.336 

0.327 0.452* 

0.439* 0.309 

0.565本* 0.475* 

0.441 * 0.304 

0.303 

市

A
n
p
u
qtu

s伎
と

1
u
c
O

唱

i

q

L

q

O

泊

9

k

d

ρ
O

唱
ム

η
L

句
、

u

0.454ド

0.401 * 

0.395* 

0.425** 0.463* 

0.380 0.414* 

0.495** 0.613** 0.693** 

0.381 * 0.340 0.444* 

0.382 0.548** 

0.368 0.421** 

0.389* 0.416* 

0.319 0.452* 

0.378 

Aug. 

July 

Sept. 

0.462* 

0.312 

0.312 
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Table 13. The correlation between the temperature averaged over 5 days and rice yield 
on Iwanuma. (込0.3)

Air .temperature (monthly mean) 

Maximum Minimum Lange 

Short-Medium-Long-I Short-Medium-Long-I Short-Medium-Long 
term term terml term term terml term term term 

0.320 0.577** 0.386* 1 0.510** 

0.345 0.353 1 0.439* 0.480** 0.333 I 0.529** 

0.487** 0.704**ホ0.638***1 0.369 0.456* 0.389* 

0.526** 0.345 

0.731 *キキ 0.585*ホ*0.654キ**10.405* 0.374 

A
佳

戸

川

υ

P

O

咽

i
η
'
u

July 

Aug. 

rice yield. This period corresponds to the growth stage of reduction division 

stage (15-20 days before heading) at which the number of panicle is determined. 

According to MATSUSHIMA (1965)， the rice is highly influenced by both the air 

and water temperatures， attaining the higher yield under the temperature of 

310C. This is because the high water temperature brings about the increase in 

the number ot spikelet per panicle， in the weight per 1，000 grains and in the 

percentage of ripened grains. 

High positive correlation between the yield and evaporation was obtained 

in the fifth and sixth 5 day period of July for the coastal areas in both Yama-

gata and Miyagi Prefecture (Table 14). This means that the rice growth at the 

High positive correlation between the yield and eva伊 ration.

Fujishima (Yamagata prefecture) 

Medium 
term 

Iwanuma (Miyagi prefecture) 

Medium-
term Long-term I Short-term 

Table 14. 

Long-term Short-term 

0.440* 

0.622ホ*

0.514* 

0.448* 

0.466* 

0.605** 

0.424* 

0.507* 

0.659** 

0.505* 

0.427* 

0.452キ

0.452ホ

0.380* 

0.522*ホ

0.522** 

0.417* 0.401 * 

0.434* 0.500* 

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

 

July 

0.380* 

0.412* 

0.383* 

0.382* Aug. 

Sept. 

0.392* 

0.517* 

Note : The temperature averaged over 5 days. 
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stage of reduction division under dry conditions results in a higher yield for 

fields in marine c1imatics. 

Late )uly is the early panicle formation period of rice. The transpiration 

of rice is also vigorous under the meteorological conditions of high evaporation. 

It is followed by the increase of CO2 uptake by plants that may result in the 

increase of photosynthate to be utilized in the growth of panicles. It is， ther-

efore， concluded that the high yield can be attained by increasing plant tem・

perature in the plot being drained， since the high daytime temperature in the 

period of r巴ductiondivision stage is favorable for the rice growth in the fields 

of marine c1imate. 
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摘 要

水田微気象に関する研究

羽根田栄 四郎

(山形大学農学部作物学・育種学研究室)

29 

本論文は水稲の生育経過にともなう水田徴気象の推移を群落構造の相異と光および温度

の面から明らかにすると共に，水田徴気象に対する滋肋1<の意義ならびに水稲の体温に及

ぼす影響を究明したものである.

1) 群落内の光透過率は葉面積の増加にともなって減少し一方，光反射率は葉面積の

増加にともなって増加する.

また，両者は葉面積のみな らず，葉身の傾きならびに，株の開張度，品種によって影響

され，葉身が直立的なものは光透過率が高く，反射率は小さくなる.

2)群落内の気温分布は LAI2位から二回の熱的能動層が形成されるが，さらに生育

が進むにつれて水面近くの第一能動層は消失する. LAlの多い水田での第二能動層の最

高気温は露場におけるものよりも約 6'0高温となり，最低気温は約 1'0位低温となる. さ

らに，風速が強くなるにつれて群落内外の気温差は小さくなる.

3)水温の推移を露場気温と LAlとの関係から解析した結果，水温は LAl 3.0位か

ら露場気温とほぼ同温となる.地温は生育初期には浅水湛水によって，生育後期には無湛

水が高温をも正こらす.

4) 水田地中の熱洋的解析において，栽植水固においては水稲の蒸散量の多少が地中の

動水勾配に影響し，地中の熱拡散率を左右する.

5) 水稲の葉鞘基部の体温は水温によって影響されるが，一般に気温よりも低く，無湛

水によって昇温が認められたその原因は葉鞘基部を上昇する水の蒸発による潜熱放熱の

結果であることが知られた.

6) 東北地方の海岸水田における水稲収量は，幼穂分化期の最高気温との相関4係が高

くなる.従 って，この時期の糞鞘基部体温の上昇を計ることは増収をもたらす一因となり

うる.
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