Vorlesungen aus dem Fachbereich Mathematik

der Universitảt GHS Essen

Heft 19

FOUNDATIONS OF LINEAR ALGEBRAIC GROUPS

Part II

by

Hideki Sawada

1991

To Masahide, Eri and Emiko

CONTENTS OF PART I	Page
Preface	
I. Affine algebraic varieties 1. Definitions of affine algebraic varieties and morphisms 2. Subvarieties of affine algebraic varieties 3. Products of affine algebraic varieties 4. Tangent spaces to affine algebraic varieties 5. Noetherian spaces 6. Some results from commutative algebras 7. Dimension of affine algebraic varieties 8. Constructible sets	2 3 8 14 20 28 33 66 88
II. Varieties 9. Sheaves of functions 10. Varieties 11. Projective varieties 12. Complete varieties 13. Dimension and tangent spaces in general	$\begin{array}{r} 94 \\ 95 \\ 106 \\ 122 \\ 135 \\ 140 \end{array}$
Bibliography	156
Index of Terminology Index of Exercises Index of Symbols	158 160 161

\begin{tabular}{|c|c|}
\hline CONTENTS OF PART II \& Page \\
\hline Preface \& \\
\hline \begin{tabular}{l}
III. Basic concepts of algebraic groups \\
14. Definition of algebraic groups \\
15. Connectedness and irreducible components of algebraic groups \\
16. A remark on Rigidity Lemma and abelian varieties \\
17. Operations of algebraic groups on varieties \\
18. Rational representations of algebraic groups
\end{tabular} \& \[
\begin{aligned}
\& 164 \\
\& 165 \\
\& \\
\& 170 \\
\& 176 \\
\& 178 \\
\& 185
\end{aligned}
\] \\
\hline \begin{tabular}{l}
IV. Coalgebras and Lie algebras of linear algebraic groups \\
19. Coalgebras and Lie algebras of linear algebraic groups \\
20. Adjoint representations of linear algebraic groups
\end{tabular} \& \[
\begin{aligned}
\& 199 \\
\& 200 \\
\& 208
\end{aligned}
\] \\
\hline \begin{tabular}{l}
V. Homogeneous spaces \\
21. Separable morphisms \\
22. Zariski's Main Theorem \\
23. Quotient spaces of linear algebraic groups \\
24. Fixed Point Theorem and Borel subgroups
\end{tabular} \& \[
\begin{aligned}
\& 218 \\
\& 219 \\
\& 227 \\
\& 231 \\
\& 249
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Bibliography \\
Index of Terminology \\
Index of Exercises Index of Symbols
\end{tabular} \& 256

258
260
261

\hline
\end{tabular}

Preface

Algebraic group theory is one of the basic subjects of graduate level algebra. However, most of graduate programs of algebra do not teach this important theory. This is because graduate students are expected to have understood the theory before they entered the graduate programs. But it is often the case that they have not acquired the basic knowledge of the algebraic group theory. Furthermore, there are a few appropriate textbooks with which they can learn it by themselves.

The objective of these notes is to provide graduate students with completely self-contained lectures with which they can learn the basic theory of algebra. I explained most of the proofs of the theorems from commutative algebras to algebraic geometry (Chapters 1 and 2). These would help them understand the basic concepts of algebraic groups (Chapter 3) and construct homogeneous spaces of linear algebraic groups (Chapter 5). Also I attempted to relate a particular theory of this topics to other subjects of algebra with which graduate students may be familiar.

The original lectures started in 1980 when I was a Humboldt-fellow at the University of Essen and continued sporadically at Sophia University since then. The manuscript was completed in 1988, one year after the second visit to the University of Essen as a Humboldt and DFG-fellow.

I am very grateful to my colleagues who were involved in this project, especially Prof. Dr. Gerhard Michler, who gave me a chance of giving the lectures at the University of Essen and invited me again in 1987. Sections 21, 22 and 23 are the result of seminars with Dr. Klaus Timmerscheidt in 1987. Although only I am the person who is responsible to these notes, I should say that these sections are the joint work with him.

I am also grateful to Prof. Dr. Charles W. Curtis, who kindly gave me his informal lecture notes on linear algebraic groups which were very useful for preparing Chapter 1. Finally I should like to thank Sophia University for granting me the study leave twice and Frau Sabine Weber for her beautiful and careful typing.

CHAPTER III

BASIC CONCEPTS OF ALGEBRAIC GROUPS

In this chapter we define algebraic groups and explain the related basic concepts such as subgroups, morphisms of algebraic groups, connectedness, abelian varieties and linearization of affine algebraic groups.

14. Definition of Algebraic Groups

(14.1) Definition. An algebraic group (G, \mathscr{H}_{G}) over K is a variety over K which has a group structure, and the operations

$$
\begin{aligned}
\mathrm{m}: \mathrm{G} \times \mathrm{G} & \longrightarrow \mathrm{G} \\
(\mathrm{x}, \mathrm{y}) & \longrightarrow \mathrm{xy} \\
\tau: \mathrm{G} & \longrightarrow \mathrm{G} \\
\mathrm{x} & \longrightarrow \mathrm{x}^{-1}
\end{aligned}
$$

and
are morphisms of varieties.
(14.2) Example. Let n be a positive integer. $G L(n, K)$ is an affine algebraic group with coordinate ring $K[M(n, K)]_{\Delta}$ where $M(n, K)$ is the set of all $n \times n$ matrices with coefficients in K and $\Delta: M(n, K) \longrightarrow K$ det (we are considering $G L(n, K)$ as a principal open set in $M(n, K)$ defined by $\Delta)$.

Proof. Let $X_{i j} \in M(M(n, K), K)$ be a map which takes each matrix $z \in M(n, K)$ to its (i, j) th coefficient, where $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$. Then $(\mathrm{M}(\mathrm{n}, \mathrm{K}), \mathrm{A}) \in \mathscr{K}(\mathrm{K})$ where A is the K-subalgebra of $M(M(n, K), K)$ generated by $\left\{X_{i j} \mid 1 \leq i, j \leq n\right\}$ (see Example 1.2).

Now let Δ be a map of $M(n, K)$ into K such that

$$
\begin{aligned}
\Delta: \mathrm{M}(\mathrm{n}, \mathrm{~K}) & \longrightarrow \mathrm{K} \\
\mathrm{z} & \longrightarrow \operatorname{det} \mathrm{z}
\end{aligned}
$$

then $\Delta \in \mathrm{A}$.

Since $M(n, K)_{\Delta}=\{z \in M(n, K) \mid \Delta(z) \neq 0\}=G L(n, K),\left(G L(n, K), A_{\Delta}\right)$ is an affine variety over K according to Proposition 2.8. Let $G=G L(n, K), f_{i j}=\left.X_{i j}\right|_{G}$ $(1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n})$ and

$$
\begin{array}{rl}
\delta: G & K \\
z \longrightarrow \frac{1}{\operatorname{det} z}
\end{array}
$$

then $A_{\Delta}=K\left[f_{i j}, \delta \mid 1 \leq i, j \leq n\right]$. Since

$$
\begin{aligned}
& m^{*}(\delta)=\delta \otimes \delta, m^{*}\left(f_{i j}\right)=\sum_{k=1}^{n} f_{i_{k}} \otimes f_{k_{j}}, \\
& \cdot \tau^{*}(\delta)=\left.\Delta\right|_{G} \text { and } \tau^{*}\left(\mathrm{f}_{\mathrm{ij}}\right)=(-1)^{\mathrm{i}+\mathrm{j}}\left\{\operatorname{det}\left(\mathrm{~A}_{\mathrm{j}}\right)\right\} \delta \text {, where } \quad \operatorname{det}\left(\mathrm{A}_{\mathrm{j}}\right): \underset{\mathrm{x}}{\mathrm{G}} \longrightarrow \mathrm{~K} \longrightarrow \operatorname{det}\left(\mathrm{~A}_{\mathrm{j} i}(\mathrm{x})\right) \\
& \text { and } A_{j i}(x) \text { is the }(j, i) \text { th minor of } x \in G(1 \leq i, j \leq n), m: G \times G \longrightarrow(x, y) \longrightarrow x y \text { and }
\end{aligned}
$$ $\begin{aligned} \tau: \mathrm{G} & \longrightarrow \mathrm{G} \text { are morphisms. Hence }\left(\mathrm{GL}(\mathrm{n}, \mathrm{K}), \mathrm{A}_{\Delta}\right) \text { is an affine algebraic group. } \\ \mathrm{x} & \text { and }\end{aligned}$

Q.E.D.

Exercise 49. Show that $G L(n, K)$ is irreducible and $\operatorname{dim} G L(n, K)=n^{2}$.
(14.3) Remark. Let $\left(G, \mathscr{H}_{G}\right)$ be an algebraic group over K. If $\operatorname{dim} G=0$, then G is a finite group and also a topological group. If $\operatorname{dim} G>0$, then G is an infinite group but not a topological group.

Proof. It is clear that G is finite if $\operatorname{dim} G=0$. Since G has a discrete topology, the Zariski topology on $G \times G$ is also the product topology of G. Hence G is a topological group.

Assume that $\operatorname{dim} G>0$ and G is also a topological group. We show the contradiction that G is a Hausdorff space. Let $a, b \in G$ such that $a \neq b$. Since $\{a\}$ is closed in G, there exists an open neighbourhood W of b which does not contain a. Since Wb^{-1} is an open neighbourhood of 1 and the map

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (x, y) \longrightarrow y^{-1}
\end{aligned}
$$

is continuous, there exists an open set O of G which contains 1 and $\mathrm{OO}^{-1} \subset \mathrm{~Wb}^{-1}$. Let $\mathrm{p} \in \overline{\mathrm{O}}$, then $(\mathrm{pO}) \cap \mathrm{O} \neq \emptyset$ and there exist $\mathrm{x}, \mathrm{y} \in \mathrm{O}$ such that $p x=y$. Hence $p=y x^{-1} \in \mathrm{~Wb}^{-1}$ for any $p \in \bar{O}$. Thus $\overline{\mathrm{O}} \subset \mathrm{Wb}^{-1}$ and $\mathrm{Ob} \subset$ $\overline{\mathrm{Ob}} \subset \mathrm{W}$. Since $\mathrm{Ob} \cap(\overline{\mathrm{Ob}})^{\mathrm{c}}=\emptyset$ and Ob and $(\overline{\mathrm{Ob}})^{\mathrm{c}}$ are open neighbourhoods of b and a, respectively, G becomes a Hausdorff space.
Q.E.D.
(14.4) Definition. A subgroup of an algebraic group (G, \mathscr{C}_{G}) always means just a non-empty subset of G closed under the group operations.
(14.5) Definition. Let $\left(G, \mathscr{C}_{G}\right)$ and $\left(H, \mathscr{H}_{H}\right)$ be algebraic groups over K.A map $\varphi: G \rightarrow H$ is said to be a morphism of algebraic groups if
(i) φ is a morphism of varieties and
(ii) φ is a group homomorphism.

For example, det $: \begin{array}{rl}G L(n, K) & \longrightarrow \mathrm{GL}(1, \mathrm{~K}) \\ \mathrm{x} & \mathrm{det} \mathrm{x}\end{array}$ is a morphism of algebraic groups.
(14.6) Lemma. Let $\left(G, \mathscr{\mathscr { G }}_{G}\right)$ be an algebraic group over K and $u \in G$, then the following maps are morphisms of varieties.
(i) $\quad \begin{aligned} & \mathrm{G} \longrightarrow \mathrm{G}, \\ & \mathrm{x} \longrightarrow \mathrm{xu}\end{aligned}$
(ii) $\begin{aligned} \mathrm{G} & \longrightarrow \mathrm{G}, \\ \mathrm{x} & \longrightarrow \mathrm{ux}\end{aligned}$
(iii) $\mathrm{G} \longrightarrow \mathrm{G}$ and
(iv) $\underset{\mathrm{x} \longrightarrow \mathrm{G}^{-1} \longrightarrow \mathrm{G}_{\mathrm{ux}}}{ }$.

Proof. (i) and (ii). Since the map $\rho: \mathrm{G} \longrightarrow \mathrm{G} \times \mathrm{G}$ is a morphism of varieties from $x \longrightarrow(x, u)$
the commutative diagram

$\mathrm{G} \longrightarrow \mathrm{G} \times \mathrm{G} \longrightarrow \mathrm{G}$ is a morphism.
$x \longrightarrow(x, u) \longrightarrow x u$
(iii) is clear from (i) and (ii).
(iv) Since the map $\quad \mu: G \longrightarrow G \times G$ (y,uy-1) $\begin{aligned} & \text { is a morphism of varieties from the }\end{aligned}$
following commutative diagram:

$\mathrm{G} \rightarrow \mathrm{G} \longrightarrow \mathrm{G} \longrightarrow \mathrm{G} \times \mathrm{G} \longrightarrow \mathrm{G} \quad$ is a morphism.
Q.E.D.
$x \rightarrow x^{-1} \rightarrow x^{-1} u \longrightarrow\left(x^{-1} u, x\right) \rightarrow x^{-1} u x$
(14.7) Corollary. Every irreducible algebraic group G is smooth.

Proof. Let $\left\{U_{i} \mid i=1,2, \ldots, m\right\}$ be an affine open covering of G. Since U_{i} 's are 'irreducible, G has certainly a non-singular point a from Theorem 7.18. Let $x_{0} \in G$ and $u=a^{-1} x_{0}$, then $\varphi: G \longrightarrow G$ is an isomorphism of varieties which takes a $\mathrm{x} \longrightarrow \mathrm{xu}$ to x_{0}. Hence x_{0} is also non-singular, and G is smooth.
Q.E.D.
(14.8) Lemma. Let ($G, \mathscr{\mathscr { G }}_{G}$) be an algebraic group over K and H a closed subgroup of G. Let $\iota: H \rightarrow G$ be an inclusion map. Then $\left(H, S_{H}\right)$ (see Examples 10.11) is an algebraic group and ι is a morphism of algebraic groups.

Proof. Let $\left\{\mathrm{U}_{\mathrm{i}} \mid \mathrm{i}=1,2, \ldots, \mathrm{~m}\right\}$ be an affine open covering of $\left(\mathrm{G}, \mathscr{\mathscr { O }}_{\mathrm{G}}\right)$, then $\left\{\mathrm{U}_{\mathrm{i}} \cap \mathrm{H} \mid \mathrm{i}=1,2, \ldots, \mathrm{~m}\right\}$ is an affine open covering of ($\mathrm{H}, \mathscr{\mathscr { H }}_{\mathrm{H}}$) (see Proposition 10.4). Since $\quad \iota\left(U_{i} \cap H\right) \subset U_{i} \quad$ and $\quad f o\left(\left.\iota\right|_{U_{i} \cap H}\right) \in \mathscr{H}_{H}\left(U_{i} \cap H\right)=K\left[U_{i} \cap H\right] \quad$ for any $\mathrm{f} \in \mathscr{\mathscr { G }}_{\mathrm{G}}\left(\mathrm{U}_{\mathrm{i}}\right)=\mathrm{K}\left[\mathrm{U}_{\mathrm{i}}\right]$, where $\mathrm{i}=1,2, \ldots, \mathrm{~m}, \iota$ is a morphism of varieties from Proposition 10.7. Since

$$
\mathrm{H} \times \mathrm{HCG} \times \mathrm{G} \xrightarrow{\mathrm{~m}} \mathrm{G} \text { and } \mathrm{HCG} \xrightarrow{\tau} \mathrm{G}
$$

are morphisms of varieties (see Exercise 42.1 on p.118),

$$
\underset{(x, y) \longrightarrow \mathrm{H}}{\mathrm{H} \times \mathrm{H}} \quad \text { and } \quad \underset{\mathrm{x}}{\mathrm{H}} \longrightarrow \mathrm{H}
$$

are also morphisms from Exercise 40 on p.113. Hence (H, \mathscr{C}_{H}) is an algebraic group.
Q.E.D.
(14.9) Examples of algebraic groups (see e.g. Humphreys [2, p.52]).
(i) The special linear group: $\operatorname{SL}(\mathrm{n}+1, \mathrm{~K})=\mathscr{V}_{\mathrm{GL}(\mathrm{n}+1, \mathrm{~K})}(\mathrm{K}[\mathrm{GL}(\mathrm{n}+1, \mathrm{~K})](\Delta-1))$ where $\Delta: G L(n+1, K) \longrightarrow K$

$$
\mathrm{g} \longrightarrow \mathrm{det} \mathrm{~g} .
$$

(ii) $\quad(\mathrm{K}, \mathrm{K}[\mathrm{X}])$ is an affine algebraic group by addition.

$$
\begin{aligned}
\mathrm{m}: \mathrm{K} \times \mathrm{K} & \longrightarrow \mathrm{~K} \\
(\alpha, \beta) & \text { and } \tau: \mathrm{K} \\
& \longrightarrow \mathrm{~K} \\
& \longrightarrow-\alpha .
\end{aligned}
$$

(iii) Let $\left(G, \mathscr{\mathscr { G }}_{G}\right)$ and (H, $\mathscr{\mathscr { H }}_{H}$) be algebraic groups over K , then $\left(\mathrm{G} \times \mathrm{H}, \mathscr{\mathscr { O }}_{\mathrm{G} \times \mathrm{H}}\right)$ (see Theorem 10.8 and Example 10.11) is also an algebraic group over K by the usual direct product of groups.
(14.10) Proposition. Let ($\mathrm{G}, \mathscr{\mathscr { C }}_{\mathrm{G}}$) be an algebraic group over K and H a subgroup of G. Then
(i) if H contains a non-empty open subset of G , then H is open,
(ii) if H is open, then H is closed,
(iii) if H is closed and [G:H] is finite, then H is open,
(iv) \bar{H}, the closure of H, is a subgroup of G,
(v) $N_{G}(S)=\left\{x \in G \mid x^{-1} S x=S\right\}$ is closed for any closed subset S of G, and
(vi) $\quad C_{G}(S)=\left\{x \in G \mid x^{-1} s x=s\right.$ for $\left.\forall s \in S\right\}$ is closed for any subset S of G.

Proof. (i) Let O be a non-empty open subset of G contained in H. Since Och, we have $H=y_{x \in H} x O$. From Lemma 14.6 xO is a homeomorphic image of O and hence xO is open. Thus H is also open.
(ii) Since H is open, $\underset{x \in G-H}{U x H}$ is also open from the same argument of (i). Since $H=G-\underset{x \in G-H}{(\underset{\mathrm{Xx}}{\mathrm{G}} \mathrm{H}}), H$ is closed.
(iii) also follows from the similar argument as above.
(iv) Since $H \subset \bar{H}, \quad H x=H \subset \bar{H} \cap(\bar{H} x)$ for any $x \in H$. Thus we have $\bar{H} \subset \bar{H} \cap(\bar{H} x) \subset \bar{H} x$, because $\bar{H} x$ is closed from Lemma 14.6. Hence $\bar{H} H \subset \bar{H}$. Now let $y \in \bar{H}$, then $y H \subset \bar{H}$. Since $\overline{y H}=y \bar{H}$ from Lemma 14.6, we have $y \bar{H} \subset \bar{H}$, i.e., $\bar{H} \bar{H} \subset \bar{H}$.

Since the inversion is a homeomorphism, we have $\overline{\mathrm{H}}^{-1}=\overline{\mathrm{H}^{-1}}$. Hence $\overline{\mathrm{H}}$ is a subgroup of G.
(v) \quad Since $\quad N_{G}(S)=\left\{x \in G \mid x^{-1} S x \subset S\right\} \cap\left\{x \in G \mid x S x^{-1} \subset S\right\} \quad$ and $\left\{x \in G \mid x^{-1} S x \subset S\right\}=\cap_{s \in S}\left\{x \in G \mid x^{-1} s x \in S\right\}$, we only have to show that $\left\{x \in G \mid x^{-1} s x \in S\right\}$ is closed for any fixed $s \in S$. Let $\varphi_{s}: G \rightarrow G$ be a map which takes $x \in G$ to $x^{-1} s x \in G$, then φ_{s} is a morphism from Lemma 14.6. Since $\varphi_{\mathrm{S}}{ }^{-1}(\mathrm{~S})=\left\{\mathrm{x} \in \mathrm{G} \mid \mathrm{x}^{-1} \mathrm{~s} x \in \mathrm{~S}\right\}$ and S is closed, $\left\{\mathrm{x} \in \mathrm{G} \mid \mathrm{x}^{-1} \mathrm{sx} \in \mathrm{S}\right\}$ is closed as expected.
(vi) is clear from (v), because a point is closed in a variety.
Q.E.D.

15. Connectedness and Irreducible Components of Algebraic Groups

In this section we study irreducible components of algebraic groups and show an algebraic group is irreducible if and only if it is connected, i.e., it is not a union of any pair of non-empty disjoint closed subsets S_{1} and S_{2}.
(15.1) Theorem. Let ($G, \mathscr{\mathscr { F }}_{\mathrm{G}}$) be an algebraic group over K . Then
(i) the irreducible components of G are disjoint;
(ii) let G^{0} be the irreducible component of G which contains 1 , then G^{0} is a closed normal subgroup of G of finite index and the irreducible components of G are the cosets of G^{0};
(iii) G^{0} is open and closed in G ;
(iv) G is connected if and only if G is irreducible;
(v) any closed subgroup of G of finite index contains G^{0}.

Proof. (i) Assume that there exist two irreducible components Z_{1} and Z_{2} of G such that $Z_{1} \cap Z_{2} \neq \emptyset$. Let $z \in Z_{1} \cap Z_{2}$, then for any $x \in G$ we have $x \in\left(x z^{-1} Z_{1}\right)$ $\cap\left(\mathrm{xz}^{-1} \mathrm{Z}_{2}\right)$. Thus every element of G is contained in two different irreducible components, because $\mathrm{xz}^{-1} \mathrm{Z}_{1}$ and $\mathrm{xz}^{-1} \mathrm{Z}_{2}$ are homeomorphic images of irreducible components (see Lemma 14.6).
Now let $X_{1}, X_{2}, \ldots, X_{n}$ be the irreducible components of G, then we have $X_{1} \subset X_{2} U$ $\ldots \cup X_{n}$, because every element of X_{1} is also contained in another irreducible component different from X_{1}. Thus we have $X_{1} \subset X_{i}$ for some $i>1$, a contradiction. Hence the irreducible components of G are disjoint.
(ii) From Lemma $14.6 \mathrm{xG}^{0}$ is an irreducible component for any $\mathrm{x} \in \mathrm{G}^{0}$. Since $\left(x G^{0}\right) \cap G^{0} \ni x$, we have $x G^{0}=G^{0}$ from (i). Hence $G^{0} G^{0}=G^{0}$. Similarly $\left(G^{0}\right)^{-1}=\left\{x^{-1} \mid x \in G^{0}\right\}$ is also an irreducible component containing 1 , because $\tau: G \longrightarrow G$ is a homeomorphism. Thus we have $G^{0}=\left(G^{0}\right)^{-1}$. Hence G^{0} is a $\mathrm{x} \longrightarrow \mathrm{x}^{-1}$
closed subgroup of G.
Let x be any element of G. Since $x^{-1} G^{0} x$ is a homeomorphic image of the conjugation by $x, x^{-1} G^{0} x$ is an irreducible component of G containing 1. Hence $x^{-1} G^{0} x=G^{0}$ for any $x \in G$, i.e., G^{0} is normal in G.

Now let $X_{1}=G^{0}, \quad X_{2}, \ldots, X_{n}$ be the irreducible components of G, then for any $x_{i} \in X_{i}$ we have $x_{i} \in X_{i} \cap\left(x_{i} G^{0}\right)$. Thus $X_{i}=x_{i} G^{0}(1 \leq i \leq n)$. Hence irreducible components are the cosets of G^{0} and G^{0} is of finite index.
(iii) is clear from (ii) and Proposition 14.10.
(iv) follows from (iii).
(v) Let H be a closed subgroup of finite index. Since each coset of H in G is also closed, G^{0} is contained in one of the cosets of H. Hence $H \supset \mathrm{G}^{0}$.
Q.E.D.

Exercise 50. Let ($\mathrm{G}, \mathscr{\mathscr { G }}_{\mathrm{G}}$) be an algebraic group over K . Show that
(1) $\mathrm{T}(\mathrm{G})_{1} \cong \mathrm{~T}\left(\mathrm{G}^{0}\right)_{1}$ as K -spaces;
(ii) $\operatorname{dim} G=\operatorname{dim}_{K} T(G)_{1}$.
(15.2) Lemma. Let $\left(G, \mathscr{O}_{G}\right)$ be an algebraic group over K and U, V be dense open subsets of G. Then

$$
\mathrm{G}=\mathrm{UV}
$$

Proof. Since $\quad \tau: \underset{\mathrm{x}}{\mathrm{G} \longrightarrow \mathrm{x}^{-1}} \underset{\mathrm{G}}{ }$ is a homeomorphism, V^{-1} is open and dense. Let $x \in G$, and assume that $U \cap\left(x V^{-1}\right)=\emptyset$. Then $U \subset G-x V^{-1}$. Since x^{-1} is open, $\mathrm{G}-\mathrm{xV}^{-1}$ is closed and $\overline{\mathrm{U}} \subset \mathrm{G}-\mathrm{xV}^{-1}$. Hence $\mathrm{xV}^{-1}=\emptyset$, a contradiction. Thus there exists $u \in U \cap\left(x V^{-1}\right)$ and we have $u=x v^{-1}$ for some $v \in V$, which shows $x=u v \in U V$. Therefore

$$
G=U V
$$

(15.3) Proposition. Let H be a subgroup of an algebraic group ($\mathrm{G}, \mathscr{\mathscr { A }}_{\mathrm{G}}$) over K (see Definition 14.4). If H is a constructible set, then H is closed.

Proof. First we assume that $\overline{\mathrm{H}}$ is irreducible (see Proposition 14.10). Since $\mathrm{H}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{\mathrm{m}}$ where $\mathrm{C}_{\mathrm{i} \text { 's }}$ are locally closed sets, we have $\overline{\mathrm{H}}=\overline{\mathrm{C}}_{1} \cup \overline{\mathrm{C}}_{2} \cup \ldots$ $U \overline{\mathrm{C}}_{\mathrm{m}}$. Since $\overline{\mathrm{H}}$ is irreducible, $\overline{\mathrm{H}}=\overline{\mathrm{C}}_{\mathrm{i}}$ for some i. From Lemma 15.2 we have $\overline{\mathrm{H}}=\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}$. Thus $\overline{\mathrm{H}} \subset \mathrm{H}$ and H is closed.

In general \bar{H} is a finite union of cosets of $(\bar{H})^{0}$. Since $H / H \cap(\bar{H})^{0} \cong H(\bar{H})^{0} /(\bar{H})^{0}$, $\mathrm{H} \cap(\overline{\mathrm{H}})^{0}$ is also of finite index in H . Thus we have
and also

$$
\begin{aligned}
& H=x_{1}\left(H \cap(\bar{H})^{0}\right) \cup \ldots U x_{n}\left(H \cap(\bar{H})^{0}\right) \\
& \bar{H}=x_{1} \overline{\left(H \cap(\bar{H})^{0}\right)} \cup \ldots \cup x_{n} \overline{\left(H \cap(\bar{H})^{0}\right)} .
\end{aligned}
$$

From Theorem 15.1.v we have $(\overline{\mathrm{H}})^{0} \mathrm{C} \overline{\mathrm{H} \cap(\overline{\mathrm{H}})^{0}}$. Thus we have $(\overline{\mathrm{H}})^{0}=\overline{\mathrm{H} \cap(\overline{\mathrm{H}})^{0}}$, because $H \cap(\overline{\mathrm{H}})^{0} \mathrm{C}(\overline{\mathrm{H}})^{0}$ and $(\overline{\mathrm{H}})^{0}$ is closed. Since $\mathrm{H} \cap(\overline{\mathrm{H}})^{0}$ is constructible and $\mathrm{H} \cap(\overline{\mathrm{H}})^{0}$ is irreducible, $\mathrm{H} \cap(\overline{\mathrm{H}})^{0}$ is closed. Hence $(\overline{\mathrm{H}})^{0}=\mathrm{H} \cap(\overline{\mathrm{H}})^{0}$. Since $\overline{\mathrm{H}} \supset \mathrm{H} \supset(\overline{\mathrm{H}})^{0}, \quad \mathrm{H}$ is a union of finite number of closed cosets of $(\overline{\mathrm{H}})^{0}$. Hence $\overline{\mathrm{H}}=\mathrm{H}$, i.e., H is closed. Q.E.D.
(15.4) Theorem. Let $\left(G, \mathscr{C}_{G}\right),\left(H, \mathscr{A}_{H}\right)$ be algebraic groups over K and $\varphi: \mathrm{G} \rightarrow \mathrm{H}$ be a morphism of algebraic groups. Then
(i) $\operatorname{Ker} \varphi$ is a closed normal subgroup;
(ii) $\varphi(\mathrm{G})$ is a closed subgroup of H ;
(iii) $\varphi\left(\mathrm{G}^{0}\right)=\varphi(\mathrm{G})^{0}$;
(iv) $\operatorname{dim} G=\operatorname{dim} \operatorname{Ker} \varphi+\operatorname{dim} \varphi(G)$.

Proof. (i) Since $\{1\}$ is closed in $H, \operatorname{Ker} \varphi=\varphi^{-1}(\{1\})$ is closed.
(ii) From Theorem 8.6 and the proof of Proposition $10.7 \varphi(G) \cap O_{1}$ is constructible in each $\left(\mathrm{O}_{1}, \mathrm{~K}\left[\mathrm{O}_{1}\right]\right)$ where $\left\{\mathrm{O}_{1} \mid 1=1,2, \ldots, \mathrm{t}\right\}$ is a finite affine open covering of H. Hence $\varphi(\mathrm{G})$ is constructible in H. Therefore, $\varphi(\mathrm{G})$ is closed from Proposition 15.3.
(iii) Since $\varphi\left(\mathrm{G}^{0}\right)$ is irreducible from Lemma 5.6 , we have $\varphi\left(\mathrm{G}^{0}\right) \subset \varphi(\mathrm{G})^{0}$. Since $\varphi\left(\mathrm{G}^{0}\right)$ is of finite index and closed in $\varphi(\mathrm{G})$, we also have $\varphi\left(\mathrm{G}^{0}\right) \supset \varphi(\mathrm{G})^{0}$ from Theorem 15.1.v. Hence $\varphi\left(\mathrm{G}^{0}\right)=\varphi(\mathrm{G})^{0}$.
(iv) Since $\varphi\left(\mathrm{G}^{0}\right)=\varphi(\mathrm{G})^{0},\left.\quad \varphi\right|_{\mathrm{G}^{0}}$ is a dominant morphism of G^{0} into $\varphi(\mathrm{G})^{0}$ (see Lemma 14.8 and Exercise 40 on p.113). Let $\varphi_{0}=\left.\varphi\right|_{G^{0}}: G^{0} \rightarrow \varphi(G)^{0}$ and $U \neq \emptyset$ be an open subset of G^{0} which satisfies the conditions of Theorem 13.14. Let $u \in U$. Since $u \operatorname{Ker} \varphi_{0}=\varphi_{0}{ }^{-1}\left(\varphi_{0}(\mathrm{u})\right)$, we have

$$
\operatorname{dim} \operatorname{Ker} \varphi_{0}=\operatorname{dim} \mathrm{G}^{0}-\operatorname{dim} \varphi(\mathrm{G})^{0}
$$

from Theorem 13.14. Hence

$$
\operatorname{dim} G=\operatorname{dim} \operatorname{Ker} \varphi_{0}+\operatorname{dim} \varphi(G)
$$

Since $\left(\operatorname{Ker} \varphi_{0}\right)^{0}=(\operatorname{Ker} \varphi)^{0}$ and $\operatorname{dim} \operatorname{Ker} \varphi=\operatorname{dim}(\operatorname{Ker} \varphi)^{0}$, we have

$$
\operatorname{dim} G=\operatorname{dim} \operatorname{Ker} \varphi+\operatorname{dim} \varphi(G)
$$

Next we shall show a proposition which is useful to construct connected algebraic groups.
(15.5) Proposition. Let $\left(G, \mathscr{C}_{G}\right)$ be an algebraic group over K and I be an index set. Let $\left\{f_{i}: X_{i} \rightarrow G\right\}_{i \in I}$ be a family of morphisms of irreducible varieties $\left(X_{i}, \mathscr{\mathscr { C }}{ }_{X_{i}}\right)$ over K into $\left(G, \mathscr{C}_{G}\right)$ such that $Y_{i}=f_{i}\left(X_{i}\right) \ni 1$ for all $i \in I$. Write $\mathscr{G}\left(\underset{i \in I}{U} Y_{i}\right)$ for the smallest closed subgroup of G containing $\underset{i \in I}{U} Y_{i}$, i.e., the intersection of all closed subgroup of G containing $\underset{i \in I}{U} Y_{i}$. Then
(i) $\quad \mathscr{g}\left(\underset{i \in I}{U} \mathrm{Y}_{\mathrm{i}}\right)$ is connected;
(ii) there exists a finite sequence $b=\{b(1), \ldots, b(1)\}$ in I such that $\mathscr{G}\left(\underset{i \in I}{U} Y_{i}\right)=$ $\mathrm{Y}_{\mathrm{b}(1)}^{\mathrm{e}_{1}} \ldots \mathrm{Y}_{\mathrm{b}(\mathrm{l})}^{\mathrm{e}_{\mathrm{l}}}$, where $\mathrm{e}_{\mathrm{j}}= \pm 1$ for all $1 \leq \mathrm{j} \leq 1$.

Proof. It is enough to prove the proposition with the enlarged index set which includes all the morphisms

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{i}} \longrightarrow \mathrm{G}_{\mathrm{i}(\mathrm{x})^{-1} .} .
\end{aligned}
$$

We denote by Y_{a} the subset $Y_{a(1)} Y_{a(2)} \ldots Y_{a(n)}$ of G for a finite sequence $a=\{a(1), \ldots, a(n)\}$ of elements from I. Let f_{a} be a map of $X_{a(1)} \times \ldots \times X_{a(n)}$ into G such that

$$
\begin{aligned}
\mathrm{f}_{\mathrm{a}}: \mathrm{X}_{\mathrm{a}(1)} \times \ldots \times \mathrm{X}_{\mathrm{a}(\mathrm{n})} & \longrightarrow \mathrm{G} \\
\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) & \longrightarrow \mathrm{f}_{\mathrm{a}(1)}\left(\mathrm{x}_{1}\right) \cdot \mathrm{f}_{\mathrm{a}(2)}\left(\mathrm{x}_{2}\right) \ldots \mathrm{f}_{\mathrm{a}(\mathrm{n})}\left(\mathrm{x}_{\mathrm{n}}\right),
\end{aligned}
$$

then f_{a} is a morphism of varieties and the image of f_{a} is the subset $Y_{a(1)} \cdot Y_{a(2)} \ldots$ $\mathrm{Y}_{\mathrm{a}(\mathrm{n})}$ of G and irreducible from Lemma 5.6 and Exercise 44 on p.118.

Since $\operatorname{dim} \bar{Y}_{a} \leq \operatorname{dim} G$, we can choose $a_{0}=\left\{a_{0}(1), \ldots, a_{0}\left(n_{0}\right)\right\}$ such that $\operatorname{dim} \bar{Y}_{a_{0}}$ is maximal. It is clear that $\overline{\mathrm{Y}}_{\mathrm{a}_{0}}$ is maximal among the subsets $\overline{\mathrm{Y}}_{\mathrm{b}}=\overline{\mathrm{Y}_{\mathrm{b}(1)} \ldots \mathrm{Y}_{\mathrm{b}(1)}}$, where $b=\{b(1), \ldots, b(1)\}$ is a finite sequence in I (see Exercise 48 on p.140).

Now let $c=\{c(1), \ldots, c(s)\}$ and $d=\{d(1), \ldots, d(t)\}$ be any two sequences in I, then we write (c, d) for the sequence $\{c(1), \ldots, c(s), d(1), \ldots, d(t)\}$. Since $Y_{c y} c Y_{(c, d)}$ for , any $\mathrm{y} \in \mathrm{Y}_{\mathrm{d}}$, we have $\overline{\mathrm{Y}_{\mathrm{c}} \mathrm{y} \subset \mathrm{Y}_{(\mathrm{c}, \mathrm{d})}}$. Thus $\overline{\mathrm{Y}}_{\mathrm{c}} \mathrm{Y}_{\mathrm{d}} \subset \overline{\mathrm{Y}_{(\mathrm{c}, \mathrm{d})}}$. Similarly we have

$$
\bar{Y}_{c} \bar{Y}_{d} \subset \bar{Y}_{(c, d)}
$$

because $x Y_{d} \subset \bar{Y}_{(c, d)}$ for any $x \in \bar{Y}_{c}$.
(i) From the above argument we have $\bar{Y}_{a_{0}} \bar{Y}_{d} \subset \bar{Y}_{\left(a_{0}, d\right)}$ for any sequence d. Since $1 \in Y_{d}, \bar{Y}_{a_{0}} \subset \bar{Y}_{\left(a_{0}, d\right)}$. Hence $\bar{Y}_{a_{0}}=\bar{Y}_{\left(a_{0}, d\right)} \supset \bar{Y}_{a_{0}} \bar{Y}_{d} \supset \bar{Y}_{d}$ for any sequence d. Thus we have

$$
\bar{Y}_{a_{0}} \supset \bigcup_{i \in I} Y_{i} \text { and } \bar{Y}_{a_{0}} \bar{Y}_{a_{0}} c \bar{Y}_{a_{0}}
$$

From the assumption of the enlarged index set which contains all morphisms

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{i}} \longrightarrow \mathrm{G}_{\mathrm{i}(\mathrm{x})^{-1}},
\end{aligned}
$$

there exists a sequence d_{0} in I such that $Y_{d_{0}}=Y_{a_{0}}^{-1}$. Hence $\bar{Y}_{a_{0}}^{-1}=\bar{Y}_{a_{0}}^{-1}=$ $\bar{Y}_{d_{0}} \subset \bar{Y}_{a_{0}}$. Thus $\bar{Y}_{a_{0}}$ is a closed irreducible subgroup of G containing $\underset{i \in I}{U} Y_{i}$. It is clear that

$$
\bar{Y}_{a_{0}}=\mathscr{G}\left(\underset{i \in I}{U} Y_{i}\right) .
$$

(ii) Let $\left\{O_{j} \mid j=1, \ldots, m\right\}$ be a finite affine open covering of $\left(G, \mathscr{O}_{G}\right)$, then $f_{a_{0}}\left(X_{a_{0}(1)} \times \ldots \times X_{a_{0}\left(n_{0}\right)}\right) \cap O_{j}=Y_{a_{0}} \cap O_{j}$ is constructible in each $\quad\left(\mathrm{O}_{\mathrm{j}}, \mathrm{K}\left[\mathrm{O}_{\mathrm{j}}\right]\right)$ from Theorem 8.6 and the proof of Proposition 10.7. Hence $Y_{a_{0}}$ is constructible in G. Let $Y_{a_{0}}=C_{1} \cup \ldots \cup C_{r}$ be the union of locally closed sets $C_{1}, C_{2}, \ldots, C_{r}$. Since $\bar{Y}_{a_{0}}=\bar{C}_{1} U$ $\ldots \cup \bar{C}_{r}$ and $\bar{Y}_{a_{0}}$ is irreducible, we have $\bar{Y}_{a_{0}}=\bar{C}_{q}$ for some $1 \leq q \leq r$. Since C_{q} is an open and dense subset of an algebraic group $\bar{Y}_{a_{0}}, \bar{Y}_{a_{0}}=C_{q} \cdot C_{q}$ from Lemma 15.2. Thus we have

$$
\bar{Y}_{a_{0}}=C_{q} \cdot C_{q} \subset Y_{a_{0}} Y_{a_{0}}=Y_{\left(a_{0}, a_{0}\right)} \subset \bar{Y}_{a_{0}} .
$$

Hence if we take $b=\left(a_{0}, a_{0}\right)$, we have $\left.\mathscr{y} \underset{i \in I}{U} Y_{i}\right)=Y_{b}$. Q.E.D.
(15.6) Corollary. Let $\left(G, \mathscr{O}_{G}\right)$ be an algebraic group over K and $\left\{H_{i}\right\}_{i \in I}$ be closed connected subgroups. Then the subgroup of G generated by $\left\{H_{i}\right\}_{i \in I}$ is closed
and connected.

Proof. Take $\left\{\mathrm{H}_{\mathrm{i}} \mathrm{CG}\right\}_{\mathrm{i} \in \mathrm{I}}$ (see Lemma 14.8). Q.E.D.
(15.7) Example. Let $G=S L(n, K)$, then G is a closed subgroup of $G L(n, K)$ (see Example 14.9). Let
be an element of G , where $1 \leq \mathrm{i} \neq \mathrm{j} \leq \mathrm{n}$ and $\alpha \in \mathrm{K}$. Then for each $1 \leq \mathrm{i} \neq \mathrm{j} \leq \mathrm{n}$ we have
(i) $\quad \mathrm{x}_{\mathrm{ij}}(\alpha) \mathrm{x}_{\mathrm{ij}}(\beta)=\mathrm{x}_{\mathrm{ij}}(\alpha+\beta)$ for any $\alpha, \beta \in \mathrm{K}$;
(ii) let $\mathrm{U}_{\mathrm{ij}}=\left\langle\mathrm{x}_{\mathrm{ij}}(\alpha) \mid \alpha \in \mathrm{K}\right\rangle$ be the subgroup of G generated by $\left\{\mathrm{x}_{\mathrm{ij}}(\alpha) \mid\right.$ $\alpha \in \mathrm{K}\}$, then U_{ij} is a closed subgroup of G ;
(iii) let $\mathrm{x}_{\mathrm{ij}}: \mathrm{K} \longrightarrow \mathrm{U}_{\mathrm{ij}}$ ($\mathrm{x}_{\mathrm{ij}(\alpha)}$ be a group homomorphism of the additive group K into U_{ij} which takes each $\alpha \in \mathrm{K}$ to $\mathrm{x}_{\mathrm{ij}}(\alpha) \in \mathrm{U}_{\mathrm{ij}}$, then x_{ij} is a morphism of affine varieties of ($\mathrm{K}, \mathrm{K}[\mathrm{X}]$) into ($\mathrm{U}_{\mathrm{ij}}, \mathrm{K}\left[\mathrm{U}_{\mathrm{ij}}\right]$).
Since each $U_{i j}$ is a morphic image of the irreducible affine variety $(K, K[X])$, $U_{i j}$'s are irreducible. Hence $\mathrm{G}=\left\langle\mathrm{U}_{\mathrm{ij}}\right| 1 \leq \mathrm{i} \neq \mathrm{j} \leq \mathrm{n}>$ is irreducible from Corollary 15.6.

16. A Remark on Rigidity Lemma and Abelian Varieties

In this section we show that a connected algebraic group whose underlying variety is complete is abelian.
(16.1) Rigidity Lemma. Let X be an irreducible complete variety over K , and Y and Z be any varieties over K. Assume that Y is irreducible. Let $f: X \times Y \rightarrow Z$ be a morphism of varieties such that $\left|f\left(X \times\left\{y_{0}\right\}\right)\right|=1$ for some $y_{0} \in Y$. Then there exists a morphism of varieties g of Y into Z such that $f=g \circ \pi_{2}$ where $\pi_{2}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{Y}$ is the projection.

Proof (see Mumford [1, p.43]). Let x_{0} be any fixed point of X and g be a map of Y into Z such that

$$
\begin{aligned}
\mathrm{g}: \mathrm{Y} & \longrightarrow \mathrm{Z} \\
\mathrm{y} & \longrightarrow \mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}\right) .
\end{aligned}
$$

It is clear that g is a morphism of varieties, because

$$
\begin{aligned}
& \mathrm{g}: \mathrm{Y} \longrightarrow \\
& \mathrm{y} \longrightarrow\left(\mathrm{x}_{0}, \mathrm{y}\right) \xrightarrow{\mathrm{f}} \mathrm{Z}\left(\mathrm{x}_{0}, \mathrm{y}\right) .
\end{aligned}
$$

We shall show that $f=g \circ \pi_{2}$.

Let $\left\{z_{0}\right\}=f\left(X \times\left\{y_{0}\right\}\right)$ and U be an affine open set of Z which contains z_{0}. Let $F=Z-U$, then $f^{-1}(F)$ is closed in $X \times Y$. Since X is complete, π_{2} is a closed map (see Definition 12.1) and $\pi_{2}\left(f^{-1}(F)\right)$ is closed in Y. Since $f\left(X \times\left\{y_{0}\right\}\right)=\left\{z_{0}\right\}$ and $z_{0} \notin \mathrm{~F}$, we have $\mathrm{y}_{0} \notin \pi_{2}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)$. Hence $\mathrm{V}=\mathrm{Y}-\pi_{2}\left(\mathrm{f}^{-1}(\mathrm{~F})\right) \ni \mathrm{y}_{0}$ is a nonempty open subset of Y.

Now let $y \in V$. Since $y \notin \pi_{2}\left(f^{-1}(F)\right), \quad(x, y) \notin f^{-1}(F)$ for any $x \in X$. Hence $f(X \times\{y\}) \subset U$ for any $y \in V$. Since $X \times\{y\}$ is a closed subvariety of $X \times Y$ and is also the product variety of complete varieties X and $\{\mathrm{y}\}$ (see Exercise 42.2 on p . 118), $X \times\{y\}$ is complete (see Proposition 12.2). Since $X \times\{y\}$ is irreducible, we
have $|f(X \times\{y\})|=1$ from Corollary 12.3. Hence for any $x \in X$ and $y \in V$ we have $f(x, y)=f\left(x_{0}, y\right)=g \circ \pi_{2}(x, y)$.
'Since $\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{X} \times \mathrm{Y} \mid \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{g} \circ \pi_{2}(\mathrm{x}, \mathrm{y})\right\}$ is closed from Remark 10.10 and $\mathrm{X} \times \mathrm{Y}$ is irreducible, $\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{X} \times \mathrm{Y} \mid \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{g} \circ \pi_{2}(\mathrm{x}, \mathrm{y})\right\} \supset \overline{\mathrm{X} \times \mathrm{V}}=\mathrm{X} \times \mathrm{Y}$. Therefore, $\mathrm{f}=\mathrm{g} \circ \pi_{2}$ on $X \times Y$.
Q.E.D.
(16.2) Corollary. (i) Let X be an irreducible complete algebraic group over K and Y be an algebraic group over K. If f is a morphism of varieties of X into Y such that

$$
f(1)=1
$$

then f is a group homomorphism.
(ii) Any irreducible complete algebraic group is commutative.

Proof. (i) Let φ be a map of $X \times X$ into Y which takes $(x, y) \in X \times X$ to $\mathrm{f}(\mathrm{xy})(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))^{-1} \in \mathrm{Y}$. It is clear that φ is a morphism of varieties, because

$$
\begin{aligned}
& \mathrm{X} \times \mathrm{X} \longrightarrow \mathrm{X} \longrightarrow \mathrm{Y} \\
& (\mathrm{x}, \mathrm{y}) \longrightarrow \mathrm{x} \longrightarrow \mathrm{f}(\mathrm{xy})
\end{aligned}
$$

and

$$
\underset{(x, y) \rightarrow(f(x)}{X \times X} \underset{(y)}{ } \underset{(y) \rightarrow(f(x) f(y))^{-1}}{Y}
$$

are morphisms. Since $\varphi(\mathrm{X} \times\{1\})=\{1\}$ and $\varphi(\{1\} \times \mathrm{X})=\{1\}$, there exist morphisms of varieties $g_{i}: X \rightarrow Y(i=1,2)$ as follows.

(commutative diagram)

Hence $\varphi(\mathrm{x}, \mathrm{y})=\varphi\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ for any $(\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \in \mathrm{X} \times \mathrm{X}$. Therefore, $\varphi(\mathrm{x}, \mathrm{y})=1$ on $X \times X$, which implies $f(x y)=f(x) f(y)$ for any $x, y \in X$.
(ii) From (i) $\tau: \underset{\mathrm{x} \longrightarrow \mathrm{X} \longrightarrow \mathrm{X}}{\mathrm{X}}$ (is a group homomorphism. Hence $(\mathrm{xy})^{-1}=\mathrm{x}^{-1} \mathrm{y}^{-1}$, i.e., $x y=y x$ for any $x, y \in X$.
Q.E.D.
(16.3) Definition. We call an irreducible complete algebraic group over K an abelian variety.

17. Operations of Algebraic Groups on Varieties

In this section we study morphic operations of algebraic groups on varieties and show the existence of closed orbits.
(17.1) Definition. Let $\left(G, \mathscr{\mathscr { C }}_{G}\right)$ be an algebraic group over K and (X, $\mathscr{\mathscr { C }}_{\mathrm{X}}$) be a prevariety over K. We say that G operates on X morphically if there is a morphism of prevarieties $\varphi: \mathrm{G} \times \mathrm{X} \rightarrow \mathrm{X}$ such that

$$
\begin{gathered}
\mathrm{g}_{1} \cdot\left(\mathrm{~g}_{2} \cdot \mathrm{x}\right)=\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \cdot \mathrm{x} \text { for any } \mathrm{g}_{1}, \mathrm{~g}_{2} \in \mathrm{G} \text { and } \mathrm{x} \in \mathrm{X} ; \\
1 \cdot \mathrm{x}=\mathrm{x} \text { for all } \mathrm{x} \in \mathrm{X},
\end{gathered}
$$

where we write $\varphi(\mathrm{g}, \mathrm{x})=\mathrm{g} \cdot \mathrm{x}$ for brevity. We call X a G -prevariety over K.A (prevariety) morphism $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ of two G-prevarietes is said to be a G-morphism if $f(g \cdot x)=g \cdot f(x)$ for any $g \in G$ and $x \in X$.
(17.2) Remark. Let X be a G-prevariety over K.
(i) Let $g \in G$ and T_{g} be a map of X into itself such that

$$
\begin{aligned}
\mathrm{T}_{\mathrm{g}}: & X \\
\mathrm{X} & \longrightarrow \mathrm{X} \cdot \mathrm{x}
\end{aligned}
$$

then T_{g} is a morphism of prevarieties.
(ii) Let $\mathrm{x} \in \mathrm{X}$ and φ_{x} be a map of G into X such that

$$
\begin{aligned}
& \varphi_{\mathrm{x}}: \mathrm{G} \longrightarrow \mathrm{X} \\
& \mathrm{~g} \longrightarrow \mathrm{~g} \cdot \mathrm{x}
\end{aligned}
$$

then φ_{x} is a morphism of prevarieties.

Exercise 51. Prove the above Remarks.
(17.3) Proposition. Let X be a G-prevariety over K and Y and Z be subsets of X . Assume that Z is closed. Then
(i) the set of transporters $\operatorname{Tran}_{G}(Y, Z)=\{g \in G \mid g \cdot Y \subset Z\}$ is closed in G;
(ii) for each $x \in X$, the isotropy group $G_{x}=\{g \in G \mid g \cdot x=x\}$ of x is closed, in particular the centralizer $C_{G}(X)=\cap_{x \in X} G_{x}$ of X in G is closed;
(iii) if G is connected, G stabilizes each irreducible component of X . Hence G acts trivially on any finite set.
'Proof (see Humphreys [2, Proposition 8.2]). (i) Since $\varphi_{\mathrm{x}}: \mathrm{G} \longrightarrow \mathrm{X}$ is a morphism $\mathrm{g} \longrightarrow \mathrm{g} \cdot \mathrm{x}$ of prevarieties from Remark 17.2, $\varphi_{\mathrm{x}}{ }^{-1}(\mathrm{Z})$ is closed for any $\mathrm{x} \in \mathrm{X}$. Hence

$$
\operatorname{Tran}_{G}(Y, Z)=\bigcap_{y \in Y} \varphi_{y}^{-1}(Z)
$$

is closed.
(ii) Since $G_{x}=\operatorname{Tran}_{G}(\{x\},\{x\}), G_{x}$ is closed. Hence $C_{G}(X)=\cap_{x \in X} G_{x}$ is also closed.
(iii) Let $\cdots \mathrm{X}_{0}$ be an irreducible component of X . Since X_{0} is closed, $H=\operatorname{Tran}_{G}\left(X_{0}, X_{0}\right)$ is a closed subset of G from (i). Let $g \in G, T_{g}$ is a homeomorphism from Remark 17.2, gX_{0} is also an irreducible component of X . Hence $\mathrm{gX}_{0}=\mathrm{X}_{0}$ for any $\mathrm{g} \in \mathrm{H}$. Therefore, H is a closed subgroup of G . Since G operates on the set of irreducible components of X , which is finite, H is of finite index in G. Hence $H=G$ from Theorem 15.1.
Q.E.D.
(17.4) Proposition. Let X be a G-variety over K, then the fixed point set $\{x \in X \mid g \cdot x=x\}$ of $g \in G$ is closed, in particular,

$$
X^{G}=\{x \in X \mid g \cdot x=x \text { for all } g \in G\}
$$

is closed.

Proof. Let $g \in G$ and f be a map of X into $X \times X$ such that

$$
\begin{aligned}
f: X & \longrightarrow X \times X \\
x & \longrightarrow(x, g \cdot x)
\end{aligned}
$$

then f is a morphism of varieties.

Since $\Delta(\mathrm{X})$ is closed in $\mathrm{X} \times \mathrm{X}$ (see Definition 10.9), $\mathrm{f}^{-1}(\Delta(\mathrm{X}))=\{\mathrm{x} \in \mathrm{X} \mid \mathrm{g} \cdot \mathrm{x}=\mathrm{x}\}$ is closed. Hence

$$
X^{G}=\cap_{g \in G}\{x \in X \mid g \cdot x=x\}
$$

is also closed
Q.E.D.
(17.5) Proposition. Let G be a connected algebraic group over K and X be a G variety. Let Y be a G-orbit of X. Then
(i) Y is irreducible;
(ii) Y is locally closed, i.e., Y is open in $\overline{\mathrm{Y}}$;
(iii) $\operatorname{dim}(\overline{\mathrm{Y}}-\mathrm{Y})<\operatorname{dim} \overline{\mathrm{Y}}$;
(iv) $\overline{\mathrm{Y}}-\mathrm{Y}$ is G -stable, i.e., $\mathrm{g} \cdot(\overline{\mathrm{Y}}-\mathrm{Y}) \subset \overline{\mathrm{Y}}-\mathrm{Y}$ for any $\mathrm{g} \in \mathrm{G}$.

Proof (see Springer [1, Lemma 4.3.1]). (i) and (ii) Let $x \in X$ and $Y=G \cdot x$. Since $\varphi_{\mathrm{x}}: \mathrm{G} \longrightarrow \mathrm{X} \quad$ is a morphism of varieties, $\bar{\varphi}_{\mathrm{x}}: \mathrm{G} \longrightarrow \overline{\mathrm{Y}} \quad$ is also a morphism of $\mathrm{g} \longrightarrow \mathrm{g} \cdot \mathrm{x} \quad \mathrm{g} \longrightarrow \mathrm{g} \cdot \mathrm{x}$
varieties from Exercise 40 on p.113. It is clear that $\overline{\mathrm{Y}}$ is irreducible from Proposition 5.4 and Lemma 5.6. From Theorem $13.14 \overline{\mathrm{Y}}$ has a non-empty open set U_{0} such that $U_{0} \subset \bar{\varphi}_{\mathrm{x}}(\mathrm{G})=\mathrm{Y}$. Therefore,

$$
Y=\underset{g \in G}{U} g U_{0}
$$

is open in \bar{Y}, because G also operates on \bar{Y} morphically.
(iii) Since $\overline{\mathrm{Y}}-\mathrm{Y}$ is a proper closed subset of $\overline{\mathrm{Y}}$, we have $\operatorname{dim}(\overline{\mathrm{Y}}-\mathrm{Y})<\operatorname{dim} \overline{\mathrm{Y}}$ from Exercise 48 on p. 140.
(iv) Since $g \cdot Y=Y$ and $g \cdot \bar{Y}=\overline{g \cdot Y}=\bar{Y}$ for any $g \in G$, we have $g \cdot(\bar{Y}-Y) \subset \bar{Y}-Y$. Q.E.D.
(17.6) Definition. Let G be a connected algebraic group over K and X be a G variety. Let Y be a G -orbit of X . We define $\operatorname{dim} \mathrm{Y}$ to be the dimension of Y as open subvariety of \bar{Y}. Therefore $\operatorname{dim} Y=\operatorname{dim}_{X} \bar{Y}$.
(17.7) Corollary. Let G and X be as in Proposition 17.5. Then the orbits of minimal dimension are closed.

Proof. Let Y be an orbit of minimal dimension. Since $\operatorname{dim}(\bar{Y}-Y)<\operatorname{dim} \bar{Y}=$ $\operatorname{dim} \mathrm{Y}$ and $\overline{\mathrm{Y}}-\mathrm{Y}$ is the union of other G-orbits from.(iv); $\overline{\mathrm{Y}}-\mathrm{Y}=\emptyset$. Hence Y is closed.
Q.E.D.

Independently of Proposition 17.5 we get the following proposition.
'(17.8) Proposition. Let G be an algebraic group over K and X be a G-variety, then any G-orbit Y of X is locally closed.

Proof. Let $Y=G \cdot y$ for some $y \in Y$. Since $\varphi_{y}: G \longrightarrow X$ is a morphism of $\mathrm{g} \longrightarrow \mathrm{g} \cdot \mathrm{y}$
varieties, $\quad \bar{\varphi}_{\mathrm{y}}: \mathrm{G} \longrightarrow \overline{\mathrm{Y}}$ is also a morphism of varieties from Exercise 40 on p.113. $\mathrm{g} \longrightarrow \mathrm{g} \cdot \mathrm{y}$
From Theorem 8.6 and the proof of Proposition $10.7 \bar{\varphi}_{\mathrm{y}}(\mathrm{G}) \cap \mathrm{O}_{1}$ is constructible in each $\left(\mathrm{O}_{1}, \mathrm{~K}\left[\mathrm{O}_{1}\right]\right)$ where $\left\{\mathrm{O}_{1} \mid \mathrm{l}=1,2, \ldots, \mathrm{t}\right\}$ is a finite affine open covering of $\overline{\mathrm{Y}}$. Hence Y is constructible in \bar{Y} and a union of finite irreducible sets. From Exercise 29 on p. 88 Y contains an open dense subset of \bar{Y}. Since $Y=G \cdot y, Y$ is open in \bar{Y}.
Q.E.D.
(17.9) Definition. Let $\left(G, \mathscr{e}_{G}\right)$ be an algebraic group over K and X be a G variety. We call X a homogeneous space of G if X has only one G -orbit.
(17.10) Remark. A homogeneous irreducible G-variety is smooth.

Proof. Let X be a given homogeneous irreducible G -variety. From Theorem 7.18 any affine open set O of X contains a simple point a in it. Since $\begin{aligned} & T_{g}: X \\ & x \longrightarrow \mathrm{X} x\end{aligned}$ is an isomorphism of varieties, ga is also a simple point for any $g \in G$ (see Exercise 39 on p.112). Hence X is smooth.
(17.11) Lemma. Let $\left(\mathrm{X}, \mathscr{\mathscr { X }}_{\mathrm{X}}\right)$ and ($\mathrm{Y}, \mathscr{\varphi}_{\mathrm{Y}}$) be irreducible varieties over K and $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ be a dominant morphism, i.e., φ is a morphism of varieties and $\overline{\varphi(X)}=\mathrm{Y}$. Then there exist affine open sets U in X and O in Y and a positive integer r such that $\varphi(\mathrm{U}) \subset \mathrm{O}$ and $\left.\varphi\right|_{\mathrm{U}}$ can be factorized $\alpha=\pi_{2} \circ \psi$ with $\psi: \mathrm{U} \rightarrow \mathrm{K}^{\mathrm{r}} \times \mathrm{O}$ surjective finite morphism and $\pi_{2}: \mathrm{K}^{\mathrm{r}} \times \mathrm{O} \rightarrow \mathrm{O}$ the projection.

$$
\left.\varphi\right|_{\mathrm{U}}: \mathrm{U} \xrightarrow{\psi} \mathrm{~K}^{\mathrm{r}} \times \mathrm{O} \xrightarrow{\pi_{2}} \mathrm{O}
$$

Proof (see Steinberg [2, p.58]). Let O be an affine open set in Y, then there exists an affine open set U in X such that $\varphi(\mathbb{U}) \subset 0$.

$$
\left.\varphi\right|_{\mathrm{U}}: \mathrm{U} \longrightarrow \mathrm{O}
$$

is also a dominant morphism of varieties. Hence we can assume that X and Y are affine varieties (see Corollary 10.5).

Since φ is dominant, $\varphi^{*}: \mathrm{K}[\mathrm{Y}] \rightarrow \mathrm{K}[\mathrm{X}]$ is injective (see Lemma 8.3). We shall write $\mathrm{K}[\mathrm{Y}]=\mathrm{B}$ and $\mathrm{K}[\mathrm{X}]=\mathrm{A}$. Thus B can be considered as K -subalgebra of A . Let $Q(B)$ be the quotient field of B, then $Q(B)[A]$, the $Q(B)$-algebra generated by A, is also finitely generated over $Q(B)$. By Noether Normalization Theorem there exist algebraically independent elements $x_{1}, x_{2}, \ldots, x_{r}$ (over $Q(B)$) in $Q(B)[A]$ such that $Q(B)[A]$ is integral over $Q(B)\left[x_{1}, \ldots, x_{r}\right]$. Since B is a K-subalgebra of A, we can take x_{1}, \ldots, x_{r} in A. In the equations expressing the integrality over $Q(B)\left[x_{1}, \ldots, x_{r}\right]$ for a finite generating set of $Q(B)[A]$, the coefficients are polynomials in x_{1}, \ldots, x_{r} with coefficients in $Q(B)$. Let $b \in B$ be a common denominator for all these coefficients. Then A_{b}, the ring of fractions of A by $\left\{b^{n} \mid n \in \mathbb{N}\right\}$ (see Lemma 2.7), is integral over $B_{b}\left[x_{1}, \ldots, x_{r}\right]$, because $B_{b}\left[x_{1}, \ldots, x_{r}\right]$ contains all such coefficients and the finite generating set of $Q(B)[A]$ is integral over $B_{b}\left[x_{1}, \ldots, x_{r}\right]$ (see Proposition 6.5).

From the following commutative diagram

$\mathrm{B}_{\mathrm{b}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right]$ is isomorphic to $\mathrm{B}_{\mathrm{b}} \otimes_{\mathrm{K}} \mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right]$ as K -algebras. Hence we have the following sequence of algebraic homomorphisms.

$$
\begin{aligned}
\mathrm{B}_{\mathrm{b}} & \longrightarrow \varphi^{*}(\mathrm{~B})_{\varphi^{*}(\mathrm{~b})} \otimes_{\mathrm{K}} \mathrm{~K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right] \subset \mathrm{A}_{\varphi^{*}(\mathrm{~b})} \\
\mathrm{a} / \mathrm{b}^{\mathrm{n}} & \longrightarrow \varphi^{*}(\mathrm{a}) / \varphi^{*}(\mathrm{~b})^{\mathrm{n}} \otimes 1
\end{aligned}
$$

Thus we have got the desired sequence of morphisms

$$
\left.\varphi\right|_{\mathrm{X}_{\varphi^{*}(\mathrm{~b})}}: \mathrm{X}_{\varphi^{*}(\mathrm{~b})} \xrightarrow{\psi} \mathrm{K}^{\mathrm{r}_{\times}} \mathrm{Y}_{\mathrm{b}} \xrightarrow{\pi_{2}} \mathrm{Y}_{\mathrm{b}}
$$

(see Lemma 2.4).

Finally we shall show the surjectivity of ψ. Since ψ is a closed map, i.e., φ maps a closed set to a closed set (see Proposition 8.4), $\psi\left(\mathrm{X}_{\varphi^{*}(\mathrm{~b})}\right)$ is closed in $\mathrm{K}^{\mathrm{r}} \times \mathrm{Y}_{\mathrm{b}}$. Since

$$
\mathrm{K}\left[\psi\left(\mathrm{X}_{\varphi^{*}(\mathrm{~b})}\right)\right]=\left\{\mathrm{f}_{\psi\left(\mathrm{X}_{\varphi^{*}(\mathrm{~b})}\right)} \mid \mathrm{f} \in \mathrm{~K}\left[\mathrm{~K}^{\mathrm{r}} \times \mathrm{Y}_{\mathrm{b}}\right]\right\}
$$

and
$\mathrm{K}\left[\psi\left(\mathrm{X}_{\varphi^{*}(\mathrm{~b})}\right)\right] \cong \psi^{*}\left(\mathrm{~K}\left[\mathrm{~K}^{\mathrm{r}} \times \mathrm{Y}_{\mathrm{b}}\right]\right)$

$$
\left.{ }^{\mathrm{f}}\right|_{\psi\left(\mathrm{X}_{\varphi^{*}(\mathrm{~b})}\right)} \longrightarrow \mathrm{fo} \psi
$$

as K -algebras, we have $\operatorname{dim} \psi\left(\mathrm{X}_{\varphi^{*}(\mathrm{~b})}\right)=\operatorname{dim}\left(\mathrm{K}^{\mathrm{r}} \times \mathrm{Y}_{\mathrm{b}}\right)$. Hence $\psi\left(\mathrm{X}_{\varphi^{*}(\mathrm{~b})}\right)=\mathrm{K}^{\mathrm{r}} \times \mathrm{Y}_{\mathrm{b}}$ from Proposition 7.2.
Q.E.D.
(17.12) Lemma. Let ($\mathrm{G}, \mathscr{\mathscr { O }}_{\mathrm{G}}$) be an algebraic group over K and ($\mathrm{X}, \mathscr{\mathscr { O }}_{\mathrm{X}}$) and $\left(\mathrm{Y}, \mathscr{\mathscr { L }}_{\mathrm{Y}}\right)$ be homogeneous spaces of G (see Definition 17.9). Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a $\mathrm{G}-$ morphism, then f is an open map.

Proof (see Steinberg [2, p.58]). It is enough to show that the map $\varphi_{\mathrm{x}}: \mathrm{G} \longrightarrow \mathrm{X}$ is $\mathrm{g} \longrightarrow \mathrm{g} \cdot \mathrm{x}$ open for any fixed $x \in X$, because we have the following commutative diagram.

Now let G^{0} be the connected component of G containing 1 , then $G=\bigcup_{i=1}^{t} G^{0} g_{i}$ (disjoint union of open subsets) and $X=G \cdot x=\bigcup_{i=1}^{t} G^{0} g_{i} \cdot x=G^{0} g_{i_{1}} \cdot x \cup . . . \cup G^{0} g_{i_{s}} \cdot x$ (disjoint union of G^{0}-orbits in $\mathrm{X}, \mathrm{s} \leq \mathrm{t}$). Since $\mathrm{G}^{0} \mathrm{~g}_{\mathrm{i}_{1}} \cdot \mathrm{x}, \ldots, \mathrm{G}^{0} \mathrm{~g}_{\mathrm{i}_{\mathrm{s}}} \cdot \mathrm{x}$ are homeomorphic, they are all closed from Corollary 17.7. Hence they are open and closed. Thus it is enough to prove that $\varphi_{x} \mid \mathrm{G}^{0}: \mathrm{G}^{0} \rightarrow \mathrm{G}^{0} \mathrm{x}$ is an open map.

From now on we assume that G and X are irreducible. Let S be an open set in G and H be the isotropy group of x, i.e., $H=\{g \in G \mid g \cdot x=x\}$, then $\varphi_{\mathrm{x}}^{-1}(\mathrm{~S} \cdot \mathrm{x})=\mathrm{SH}, \quad \varphi_{\mathrm{x}}(\mathrm{SH})=\varphi_{\mathrm{x}}(\mathrm{S})$ and $\mathrm{SH}=\underset{\mathrm{h} \in \mathrm{H}}{\mathrm{U}} \mathrm{Sh}$ is open in G . Let U and O etc. be as in Lemma 17.11 such that $\left.\varphi_{\mathrm{x}}\right|_{\mathrm{U}}: \mathrm{U} \xrightarrow{\psi} \mathrm{K}^{\mathrm{r}} \times \mathrm{O} \xrightarrow{\pi_{2}} \mathrm{O}$.

Since $G=\underset{g \in G}{U} g U$, it is enough to show that $\varphi_{x}(S H \cap g U)$ is open for any g in order to see φ_{x} is an open map. Since

$$
\left.\varphi_{\mathrm{x}} \circ \mathrm{~T}_{\mathrm{g}-1}\right|_{\mathrm{gU}}: \mathrm{gU} \rightarrow \mathrm{U} \xrightarrow{\psi} \mathrm{~K}^{\mathrm{r}} \times \mathrm{O} \xrightarrow{\pi_{2}} \mathrm{O}
$$

and

$$
\begin{aligned}
\left(\mathrm{g}^{-1} \mathrm{SH}\right) \cap \mathrm{U} & =\left(\pi_{2} \circ \psi\right)^{-1}\left\{\left(\left(\mathrm{~g}^{-1} \mathrm{SH}\right) \cap \mathrm{U}\right) \mathrm{x}\right\} \\
& =\psi^{-1}\left[\psi(\mathrm{U}) \cap \pi_{2}^{-1}\left\{\left(\left(\mathrm{~g}^{-1} \mathrm{SH}\right) \cap \mathrm{U}\right) \mathrm{x}\right\}\right]
\end{aligned}
$$

$\varphi_{\mathrm{x}} \circ \mathrm{T}_{\mathrm{g}^{-1}}(\mathrm{SH} \cap \mathrm{gU})=\varphi_{\mathrm{x}}\left(\left(\mathrm{g}^{-1} \mathrm{SH}\right) \cap \mathrm{U}\right)=\left(\left(\mathrm{g}^{-1} \mathrm{SH}\right) \cap \mathrm{U}\right) \mathrm{x}$ is open in X from Corollary to Proposition 8.4. Hence $g\left(\left(g^{-1} S H\right) \cap U\right) x=(S H \cap g U) x=\varphi_{x}(S H \cap g U)$ is open for each $g \in G$.

18. Rational Representations of Algebraic Groups

Now we define rational representations of algebraic groups and explain some related notions such as induced representations. We also prove that affine algebraic groups are faithfully (i.e. injectively) represented into some general linear groups.

Let G be a group. The group ring $R G$ over a commutative ring R (with unity element 1) is the free R-module with basis $\{g \mid g \in G\}$ and with multiplication defined by

$$
\left[\sum_{x \in G} \alpha_{x} x\right]\left[\sum_{y \in G} \beta_{y} y\right]=\sum_{x, y \in G} \alpha_{x} \beta_{y} x y
$$

Notice that almost all α_{x} 's and β_{y} 's are zero. It is clear that RG is an associative ring with unity element $1 \in G$. When R is a field, $R G$ is of course an algebra over R.

Let M be an n-dimensional vector space over K. Assume that $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ is a K-basis of M, then with respect to this basis M has an affine variety structure which makes the follwing K -isomorphism ψ an isomorphism of varieties.

$$
\underset{\mathrm{x}_{1} \mathrm{~m}_{1}+\ldots+\mathrm{x}_{\mathrm{n}} \mathrm{~m}_{\mathrm{n}} \rightarrow\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)}{ } \mathrm{K}^{\mathrm{n}}
$$

It can be easily shown that the variety structure of M does not depend on a given K-basis $\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\}$ of M .
(18.1) Definition. Let ($G, \mathscr{\mathscr { H }}_{G}$) be an algebraic group over K. A rational representation of G over K of degree n is a morphism of algebraic groups

$$
\rho: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{n}, \mathrm{~K}) \text { for some } \mathrm{n} .
$$

A finite dimensional KG-module M is said to be rational if for some K -basis $\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\}$ of M the map

$$
\begin{aligned}
\rho: \mathrm{G} & \longrightarrow \mathrm{GL}(\mathrm{n}, \mathrm{~K}) \\
\mathrm{g} & \longrightarrow\left(\rho_{\mathrm{ij}}(\mathrm{~g})\right)
\end{aligned}
$$

is a rational representation where

$$
\mathrm{g}\left(\mathrm{~m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)\left[\begin{array}{c}
\rho_{11}(\mathrm{~g}), \rho_{12}(\mathrm{~g}), \ldots, \\
\rho_{21}(\mathrm{~g}), \rho_{22}(\mathrm{~g}), \ldots, \\
\vdots \\
\vdots \\
\vdots \\
\rho_{2 \mathrm{n}}(\mathrm{~g}) \\
\left.\mathrm{g}^{2}\right) \\
\rho_{\mathrm{n} 1}(\mathrm{~g}), \ldots \ldots \ldots ., \\
\ddots
\end{array}\right]
$$

Clearly, the rationality of M does not depend on its given basis $\left\{m_{1}, \ldots, m_{n}\right\}$.
(18.2) Proposition. Let G, M and ρ be as in Definition 18.1.
(i) A group homomorphism $\rho: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{n}, \mathrm{K})$ is a rational representation over

$$
\mathrm{g} \longrightarrow\left(\rho_{\mathrm{ij}}(\mathrm{~g})\right)
$$

K if and only if all the functions $\left\{\rho_{\mathrm{ij}}\right\}$ belong to $\mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G})$.
(ii) Let N be a KG-submodule of M, then N and M / N are rational KGmodules.
(iii) Let M_{1} and M_{2} be rational $K G$-modules, then the direct sum $M_{1} \dot{+} M_{2}$ and the tensor product $M_{1} \otimes_{K} M_{2}$ is also a rational KG -module. We define $\mathrm{g}(\mathrm{m} \otimes \mathrm{n})=\mathrm{gm} \otimes \mathrm{gn}$, where $\mathrm{g} \in \mathrm{G}, \mathrm{m} \in \mathrm{M}_{1}$ and $\mathrm{n} \in \mathrm{M}_{2}$.
(iv) Let M be a rational KG-module, then $M^{*}=\operatorname{Hom}_{K}(M, K)$ is a rational KGmodule by the following G-operation

$$
\begin{aligned}
& \mathrm{G} \times \mathrm{M}^{*} \longrightarrow \mathrm{M}^{*} \\
& (\mathrm{~g}, \mathrm{f}) \longrightarrow\left[\mathrm{g} \cdot \mathrm{f}: \mathrm{m} \rightarrow \mathrm{f}\left(\mathrm{~g}^{-1} \mathrm{~m}\right)\right] \quad(\mathrm{m} \in \mathrm{M})
\end{aligned}
$$

Further $\operatorname{End}_{\mathrm{K}}(\mathrm{M})$ is also a rational KG-module by the following G-operation

$$
\begin{aligned}
& G \times \operatorname{End}_{K}(M) \rightarrow \operatorname{End}_{K}(M) \\
& (\mathrm{g}, \mathrm{f}) \longrightarrow\left[\mathrm{g} \cdot \mathrm{f}: \mathrm{m} \rightarrow \mathrm{gf}\left(\mathrm{~g}^{-1} \mathrm{~m}\right)\right](\mathrm{m} \in \mathrm{M}) .
\end{aligned}
$$

(v) Let M be a rational KG -module, then the map

$$
\varphi: \begin{gathered}
\mathrm{G} \times \mathrm{M} \\
(\mathrm{~g}, \mathrm{~m})
\end{gathered} \mathrm{M}
$$

is a morphism of varieties.

Proof. (i) Let $M(n, K)$ be the set of all. $n \times n$ matrices with coefficients in K and $\Delta: M(n, K) \rightarrow K \quad$, then $K[G L(n, K)]=K[M(n, K)]_{\Delta}$ (see Example 14.2). From the definition of morphisms of varieties all ρ_{ij} 's belong to $\mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G})$ if ρ is a rational representation.

Now assume that $\left\{\rho_{\mathrm{ij}}\right\} \subset \mathscr{\mathscr { G }}^{(G)}(\mathrm{G})$. From Proposition 10.7 it is enough to prove that $\delta 0 \rho \in \mathscr{O}_{G}(G)$ where

$$
\begin{aligned}
\delta: \mathrm{GL}(\mathrm{n}, \mathrm{~K}) & \longrightarrow \frac{\mathrm{K}}{\mathrm{z}} \longrightarrow \frac{1}{\operatorname{det} \mathrm{z}} .
\end{aligned}
$$

 $\Delta \circ \rho \circ \tau \in \mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G})$. Hence $\Delta \circ \rho \circ \tau=\delta \circ \rho \in \mathscr{O}_{\mathrm{G}}(\mathrm{G})$, because $\quad \Delta \circ \rho \circ \tau(\mathrm{g})=\Delta\left(\rho\left(\mathrm{g}^{-1}\right)\right)=$ $(\operatorname{det}(\rho(\mathrm{g})))^{-1}=\delta(\rho(\mathrm{g}))$ for any $\mathrm{g} \in \mathrm{G}$.
(ii) Let $\left\{\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\}$ be a K -basis of M such that $\mathrm{N} \doteq \mathrm{Km}_{1} \oplus \ldots \oplus \mathrm{Km}_{\text {s }}$ ($\mathrm{s}<\mathrm{n}$). Since

$$
\rho(\mathrm{g})=\left[\begin{array}{c|c}
\rho_{1}(\mathrm{~g}) & * \\
\hline 0 & \rho_{2}(\mathrm{~g})
\end{array}\right]
$$

where ρ_{1} and ρ_{2} are the matrix representations afforded by N and M / N respectively, ρ_{1} and ρ_{2} are rational from (i).
(iii) Clearly, $M_{1} \dot{+} M_{2}$ is rational from (i). Let $M_{1}=K_{1} \oplus \ldots \oplus \mathrm{Km}_{r}$ and $M_{2}=K_{n_{1}} \oplus \ldots \oplus \mathrm{Kn}_{\mathrm{s}}$ where $\quad \operatorname{dim}_{\mathrm{K}} \mathrm{M}_{1}=\mathrm{r}$ and $\operatorname{dim}_{\mathrm{K}} \mathrm{M}_{2}=\mathrm{s}$. Then $\left\{\mathrm{m}_{\mathrm{i}} \otimes \mathrm{n}_{\mathrm{j}} \mid\right.$ $1 \leq \mathrm{i} \leq \mathrm{r}, \quad 1 \leq \mathrm{j} \leq \mathrm{s}\}$ form a K-basis of $\mathrm{M}_{1} \otimes_{\mathrm{K}} \mathrm{M}_{2}$. Let ρ and ν be the matrix representations afforded by M_{1} and M_{2} respectively. Since

$$
\mathrm{g}\left(\mathrm{~m}_{\mathrm{i}} \otimes \mathrm{n}_{\mathrm{j}}\right)=\mathrm{gm}_{\mathrm{i}} \otimes \mathrm{gn}_{\mathrm{j}}
$$

$$
=\left[\sum_{l=1}^{\mathrm{r}} \rho_{l \mathrm{i}}(\mathrm{~g}) \mathrm{m}_{\mathrm{l}}\right] \otimes\left[\sum_{\mathrm{k}=1}^{\mathrm{s}} \nu_{\mathrm{kj}}(\mathrm{~g}) \mathrm{n}_{\mathrm{k}}\right]=\sum_{\mathrm{l}=1}^{\mathrm{r}} \sum_{\mathrm{k}=1}^{\mathrm{s}} \rho_{\mathrm{li}}(\mathrm{~g}) \nu_{\mathrm{kj}}(\mathrm{~g})\left(\mathrm{m}_{\mathrm{l}} \otimes \mathrm{n}_{\mathrm{k}}\right)
$$

and $\rho_{1 i} \cdot \nu_{\mathrm{kj}} \in \mathscr{G}_{G}(\mathrm{G}), \mathrm{M}_{1} \otimes_{\mathrm{K}} \mathrm{M}_{2}$ is a rational KG-module.
(iv) Exercise.
(v) Let $\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\}$ be a K-basis of M . Let $\mathrm{m}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}^{\mathrm{m}}} \mathrm{m}_{\mathrm{i}}$ be an element of M where $\alpha_{1}^{m}, \ldots, \alpha_{n}^{m} \in K$ and $\mathrm{gm}_{\mathrm{i}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \rho_{\mathrm{ki}}(\mathrm{g}) \mathrm{m}_{\mathrm{k}}(\mathrm{i}=1,2, \ldots, \mathrm{n})$, then

$$
g m=\sum_{i=1}^{n} \alpha_{i^{m}}\left[\sum_{k=1}^{n} \rho_{k i}(g) m_{k}\right]=\sum_{k=1}^{n}\left[\sum_{i=1}^{n} \alpha_{i^{m}} \rho_{k i}(g)\right] m_{k}
$$

Since $\quad \mathrm{X}_{\mathrm{k}} \circ \varphi \in \mathscr{G}_{\mathrm{G} \times \mathrm{M}}(\mathrm{G} \times \mathrm{M})$ for any $\mathrm{k}=1,2, \ldots, \mathrm{n}$, where $\mathrm{X}_{\mathrm{k}}(\mathrm{m})=\alpha_{\mathrm{k}^{m}} \quad$ and $\mathrm{X}_{\mathrm{k}} \circ \varphi(\mathrm{g}, \mathrm{m})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}}{ }^{\mathrm{m}} \rho_{\mathrm{ki}}(\mathrm{g}), \quad \varphi: \underset{(\mathrm{g}, \mathrm{m})}{\mathrm{G} \times \mathrm{M}} \longrightarrow \mathrm{M} \quad$ is a morphism of varieties from Proposition 10.7. Q.E.D.

Exercise 52. Prove Proposition 18.2.iv.
(18.3) Definition. Let G be an algebraic group over K and M be a KG-module. We call M a locally finite rational KG-module, for brevity, a locally finite KGmodule if $K G m$ is a finite dimensional rational $K G$-module for any $m \in M$.

We shall show that $\mathscr{\mathscr { G }}_{G}(\mathrm{G})$ becomes a locally finite KG -module by right translation (see Corollary 18.6) if G is affine. We first define left and right translations.
'Let G be a group and let

$$
M(G, K)=\{f \mid f: G \rightarrow K \text {, a map of } G \text { into } K\}
$$

(see §1).

Let $x, y \in G$ and let

$$
\begin{aligned}
& R_{x}: M(G, K) \longrightarrow M(G, K) \\
& L_{y}: M(G, K) \longrightarrow M(G, K)
\end{aligned}
$$

and
be maps of $M(G, K)$ into itself defined by

$$
R_{x}(f)(z)=f(z x)
$$

and $L_{y}(f)(z)=f(y z)$, where $f \in M(G, K)$ and $z \in G$.

Then we call R_{x} right translation by x and L_{y} left translation by y . It is easy to check the following properties of right and left translations:

$$
\begin{gathered}
\text { For any } x, y \in G \text { and any } f_{1}, f_{2} \in M(G, K) \\
R_{x} L_{y}=L_{y} R_{x}, R_{x y}=R_{x} R_{y} \text { and } L_{x y}=L_{y} L_{x} . \\
R_{x}\left(f_{1} f_{2}\right)=R_{x}\left(f_{1}\right) R_{x}\left(f_{2}\right)
\end{gathered}
$$

and $L_{y}\left(f_{1} f_{2}\right)=L_{y}\left(f_{1}\right) L_{y}\left(f_{2}\right)$.
(18.4) Lemma. Let ($\mathrm{G}, \mathscr{\mathscr { F }}_{\mathrm{G}}$) be an algebraic group over K . Then
(i) $\quad \mathrm{R}_{\mathrm{x}}\left(\mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G})\right) \subset \mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G})$ and $\mathrm{L}_{\mathrm{y}}\left(\mathscr{C}_{\mathrm{G}}(\mathrm{G})\right) \subset \mathscr{G}_{\mathrm{G}}(\mathrm{G})$ for any $\mathrm{x}, \mathrm{y} \in \mathrm{G}$;
(ii) $\mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G})$ is a left KG-module with the following operation

$$
\begin{aligned}
\mathrm{KG} \times \mathscr{Y}_{\mathrm{G}}(\mathrm{G}) & \longrightarrow \mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G}) \\
\left(\sum_{\mathrm{g} \in \mathrm{G}} \alpha_{\mathrm{g}} \mathrm{~g}, \mathrm{f}\right) & \longrightarrow \sum_{\mathrm{g} \in \mathrm{G}} \alpha_{\mathrm{g}} \mathrm{~g} * \mathrm{f}
\end{aligned}
$$

where g *f: $=\mathrm{R}_{\mathrm{g}}(\mathrm{f})$;
(iii) $\mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G})$ is also a right KG -module with the following operation

$$
\begin{aligned}
& \mathscr{S}_{\mathrm{G}}(\mathrm{G}) \times \mathrm{KG} \longrightarrow \mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G}) \\
& \left(\mathrm{f}, \underset{\mathrm{~g} \in \mathrm{G}}{\sum} \alpha_{\mathrm{g}} \mathrm{~g}\right) \longrightarrow \sum_{\mathrm{g} \in \mathrm{G}} \alpha_{\mathrm{g}} \mathrm{f} \Delta \mathrm{~g},
\end{aligned}
$$

where $\mathrm{f} \Delta \mathrm{g}:=\mathrm{L}_{\mathrm{g}}(\mathrm{f})$;
(iv) finally, for any x and $\mathrm{y} \in \mathrm{G}$, the maps

$$
\begin{aligned}
\mathrm{R}_{\mathrm{x}}: \mathscr{L}_{\mathrm{G}}(\mathrm{G}) & \longrightarrow \mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G}) \\
\mathrm{f} & \longrightarrow \mathrm{x} \ddagger
\end{aligned}
$$

and

$$
\begin{aligned}
L_{y}: \mathscr{O}_{G}(G) & \longrightarrow \mathscr{O}_{G}(G) \\
f & \longrightarrow f \Delta y
\end{aligned}
$$

are K-algebra automorphisms.

Proof. (i) Let $\left\{\mathrm{U}_{\mathrm{i}} \mid \mathrm{i}=1,2, \ldots, \mathrm{~m}\right\}$ be an affine open covering of G . Let $\mathrm{m}: \underset{(x, y) \longrightarrow \mathrm{G} \times \mathrm{G}}{\longrightarrow \mathrm{G}}$, then we have fom $\in \mathscr{\mathscr { G }}_{G \times G}(\mathrm{G} \times \mathrm{G})$ for any $\mathrm{f} \in \mathscr{S}_{G}(\mathrm{G})$. Assume $(x, y) \longrightarrow x y$ that $(z, x) \in U_{i} \times U_{j}$ and

$$
\left.f \circ m\right|_{U_{i} \times U_{j}}=\sum_{k=1}^{l} f_{k} \otimes f_{k}^{\prime} \in K\left[U_{i}\right] \otimes K\left[U_{j}\right],
$$

then $R_{x}(f)(z)=f(z x)=f \circ m(z, x)=\left(\sum_{k=1}^{1} f^{\prime}{ }_{k}(x) f_{k}\right)(z)$ for any $z \in U_{i}$. Since

$$
\left.\mathrm{R}_{\mathrm{x}}(\mathrm{f})\right|_{\mathrm{U}_{\mathrm{i}}} \in \mathrm{~K}\left[\mathrm{U}_{\mathrm{i}}\right] \text { for any } 1 \leq \mathrm{i} \leq \mathrm{m},
$$

$R_{x}(f) \in \mathscr{\mathscr { G }}_{G}(G)$ for any $f \in \mathscr{\mathscr { O }}_{G}(G)$.
(ii), (iii) and (iv) Exercise.
Q.E.D.

Exercise 53. Prove Lemma 18.4.ii, iii and iv.

Henceforth left or right KG -module $\mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G})$ always means the left or right module defined in Lemma 18.4.
(18.5) Proposition. Let (G,K[G]) be an affine algebraic group over K .
(i) Let M be a finie dimensional left $K G$-submodule of $K[G]$, then M is rational.
(ii) Let N be a finite dimensional right KG -submodule of $\mathrm{K}[\mathrm{G}]$, then N is rational.

Proof. Let $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ be a K-basis of M. Let $g \in G$ and

$$
\mathrm{g} *\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)\left[\begin{array}{cc}
\rho_{11}(\mathrm{~g}), \rho_{12}(\mathrm{~g}), \ldots, & \rho_{1 \mathrm{n}}(\mathrm{~g}) \\
\rho_{21}(\mathrm{~g}), & \rho_{22}(\mathrm{~g}), \ldots, \\
\vdots & \rho_{2 \mathrm{n}}(\mathrm{~g}) \\
\vdots & \vdots \\
\rho_{\mathrm{n} 1}(\mathrm{~g}), \ldots \ldots \ldots ., & \rho_{\mathrm{nn}}(\mathrm{~g})
\end{array}\right]
$$

It is enough to prove that each $\rho_{\mathrm{ij}} \in \mathrm{K}[\mathrm{G}]$.

Now let $\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\} \cup\left\{\mathrm{w}_{\alpha}\right\}_{\alpha \in \mathscr{G}}$ be a K-basis of $\mathrm{K}[\mathrm{G}]$, then

$$
m^{*}\left(m_{i}\right)=\sum_{j=1}^{n} m_{j} \otimes \overline{\mathrm{f}}_{\mathrm{ji}}+\sum_{\alpha \in \mathscr{C}} \mathrm{w}_{\alpha} \otimes \overline{\mathrm{f}}_{\alpha \mathrm{i}}
$$

for some $\bar{f}_{j i}, \bar{f}_{\alpha i} \in K[G]$ where $m: \underset{(x, y)}{G \times G} \longrightarrow \mathrm{~Gy}$. Thus for any $g \in G$ and $x \in G$ we have

$$
\begin{gathered}
\left(\mathrm{g}_{\mathrm{*}} \mathrm{~m}_{\mathrm{i}}\right)(\mathrm{x})=\left(\mathrm{R}_{\mathrm{g}}\left(\mathrm{~m}_{\mathrm{i}}\right)\right)(\mathrm{x})=\mathrm{m}_{\mathrm{i}}(\mathrm{xg})=\mathrm{m}^{*}\left(\mathrm{~m}_{\mathrm{i}}\right)(\mathrm{x}, \mathrm{~g}) \\
\quad=\sum_{\mathrm{j}=1}^{\mathrm{n}} \overline{\mathrm{f}}_{\mathrm{j}}(\mathrm{~g}) \mathrm{m}_{\mathrm{j}}(\mathrm{x})+\sum_{\alpha \in \mathscr{b}} \overline{\mathrm{f}}_{\alpha \mathrm{i}}(\mathrm{~g}) \mathrm{w}_{\alpha}(\mathrm{x}) .
\end{gathered}
$$

Since $\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\} \cup\left\{\mathrm{w}_{\alpha}\right\}_{\alpha \in \mathscr{b}}$ is a K-basis of $\mathrm{K}[G], \quad \rho_{\mathrm{ji}}=\overline{\mathrm{f}}_{\mathrm{ji}} \in \mathrm{K}[G]$. for any $1 \leq i, j \leq n$.
Q.E.D.

Remark to Proposition 18.5. $m^{*}\left(m_{i}\right)=\sum_{j=1}^{n} m_{j} \otimes \rho_{j i}$ for any $1 \leq i \leq n$.
(18.6) Corollary. Let (G,K[G]) be an affine algebraic group over K. Then the left (respectively right) KG -module $\mathrm{K}[\mathrm{G}]$ is locally finite.

Proof. Let $f \in K[G]$. Since $m^{*}(f) \in K[G] \otimes K[G]$, we have

$$
m^{*}(f)=\sum_{i=1}^{l} f_{i} \otimes f_{i}^{\prime} \text { for some } f_{i}, f_{i}^{\prime} \in K[G]
$$

Hence

$$
\begin{aligned}
& (g * f)(x)=R_{g}(f)(x)=f(x g)=m^{*}(f)(x, g) \\
& =\left[\sum_{i=1}^{1} f^{\prime}{ }_{i}(g) f_{i}\right](x) \text { for any } g, x \in G
\end{aligned}
$$

Thus $(K G) * f \subset \sum_{i=1}^{l} K f_{i}$
and $(\mathrm{KG}) * \mathrm{f}$ is finite dimensional.
Q.E.D.

Now we show that an affine algebraic group is isomorphic to a closed subgroup of a general linear group.
(18.7) Theorem. Let ($G, K[G]$) be an affine algebraic group over K, then there exists a morphism of affine algebraic groups ρ of G into $G L(n, K)$, for some n, such that $\rho(\mathrm{G})$ is closed in $\mathrm{GL}(\mathrm{n}, \mathrm{K})$ and ρ is an isomorphism of affine varieties of G onto $\rho(\mathrm{G})$.

Proof. Let $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{m}}\right\}$, be a set of generators of $\mathrm{K}[\mathrm{G}]$ as K -algebra. Let M be a finite dimensional left KG-submodule of $\mathrm{K}[\mathrm{G}]$ containing $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{m}}\right\}$ (see Corollary 18.6). Let $\left\{\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\}$ be a K -basis of M , then with respect to this basis we can define a rational representation $\rho: G \longrightarrow G L(n, K)$ such that

$$
\mathrm{g} \longrightarrow\left(\rho_{\mathrm{ij}}(\mathrm{~g})\right)
$$

$$
\mathrm{g} *\left(\mathrm{~m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)\left[\begin{array}{cccc}
\rho_{11}(\mathrm{~g}), & \rho_{12}(\mathrm{~g}), \ldots, & \rho_{1 \mathrm{n}}(\mathrm{~g}) \\
\rho_{21}(\mathrm{~g}), & \rho_{22}(\mathrm{~g}), \ldots, & \rho_{2 \mathrm{n}}(\mathrm{~g}) \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{\mathrm{n} 1}(\mathrm{~g}), \ldots \ldots \ldots, \ldots, & \rho_{\mathrm{nn}}(\mathrm{~g})
\end{array}\right]
$$

for any $\mathrm{g} \in \mathrm{G}$. From Proposition 2.5 it is enough to show that ρ^{*} is surjective in order to prove $\rho: \mathrm{G} \rightarrow \rho(\mathrm{G})$ is an isomorphism of affine varieties. Since

$$
m^{*}\left(m_{i}\right)=\sum_{j=1}^{n} m_{j} \otimes \rho_{j i} \text { for any } 1 \leq i \leq n
$$

from Remark to Proposition 18.5, $m^{*}\left(m_{i}\right)(1, g)=m_{i}(g)=\sum_{j=1}^{n} \rho_{j i}(g) m_{j}(1)$ for all $\mathrm{g} \in \mathrm{G}$. Since $\rho_{\mathrm{ij}} \in \operatorname{Im} \rho^{*}$ for all $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$, we have $\mathrm{m}_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{j}}(1) \rho_{\mathrm{j}} \in \operatorname{Im} \rho^{*}$ for any $1 \leq \mathrm{i} \leq \mathrm{n}$. Hence $\operatorname{Im} \rho^{*} \supset \mathrm{M} \supset\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right\}$, which implies $\operatorname{Im} \rho^{*} \supset \mathrm{~K}[\mathrm{G}]$. Thus we have proved that $\operatorname{Im} \rho^{*}=\mathrm{K}[\mathrm{G}]$.
Q.E.D.

Because of this fact we also call affine algebraic groups linear algebraic groups.

Now we shall define induced modules of algebraic groups.
(18.8) Definition. Let $\left(G, \mathscr{C}_{G}\right)$ be an algebraic group over K and M be a vector space over K. We define Map (G, M) to be the K-space of all maps f of G into M such that $f(G)$ spans a finite dimensional K-subspace N of M (we write $N=K<f(G)>)$ and $f: G \rightarrow N$ is a morphism of varieties.

Exercise 54. Justify Definition 18.8, i.e., Map (G,M) is a K-subspace of $\{f \mid f$ is a map of G into $M\}$. The K-space operations of $\{f \mid f$ is a map of G into $M\}$ are:

$$
\begin{gathered}
\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)(\mathrm{g})=\mathrm{f}_{1}(\mathrm{~g})+\mathrm{f}_{2}(\mathrm{~g}) \\
(\mathrm{cf})(\mathrm{g})=\mathrm{cf}(\mathrm{~g}),
\end{gathered}
$$

where f_{1}, f_{2} and f are maps of G into M and $g \in G$ and $c \in K$.
Exercise 55. Let G and M be as in Definition 18.8. Let f be a map of G into M such that $f(G)$ is contained in some finite dimensional K-subspace L of M and $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{L}$ is a morphism of varieties. Then $\mathrm{f} \in \mathrm{Map}(\mathrm{G}, \mathrm{M})$.
(18.9) Proposition. Let (G, \mathscr{O}_{G}) be an algebraic group over K and M be a vector space over K. Then
(i) Map (G,M) is a left KG-module by the following operation

$$
\underset{(\mathrm{g}, \mathrm{f})}{\mathrm{G})} \mathrm{Map}(\mathrm{M}) \longrightarrow \underset{\mathrm{g} \neq \mathrm{f}}{\operatorname{Map}}(\mathrm{G}, \mathrm{M}),
$$

where $(\mathrm{g} * \mathrm{f})(\mathrm{x})=\mathrm{f}(\mathrm{xg})$ for any $\mathrm{x} \in \mathrm{G}$.
(ii) If $M=K$, then $M a p(G, K)=\mathscr{\mathscr { G }}_{G}(G)$.
(iii) $\mathscr{\Phi}_{G}(\mathrm{G}) \otimes_{\mathrm{K}} \mathrm{M}$ is a left KG-module by the following operation

$$
\begin{aligned}
G \times\left(\mathscr{\mathscr { G }}_{G}(\mathrm{G}) \otimes_{\mathrm{K}} \mathrm{M}\right) & \longrightarrow \mathscr{O}_{\mathrm{G}}(\mathrm{G}) \otimes_{\mathrm{K}} \mathrm{M}, \\
\left(\mathrm{~g}, \mathrm{f} \otimes_{\mathrm{m}}\right) & \longrightarrow(\mathrm{g} \neq \mathrm{f}) \otimes_{\mathrm{m}}
\end{aligned}
$$

and the map

$$
\begin{aligned}
\rho: \mathscr{G}_{\mathrm{G}}(\mathrm{G}) \otimes_{\mathrm{K}} \mathrm{M} & \longrightarrow \mathrm{Map}(\mathrm{G}, \mathrm{M}), \\
\mathrm{f} \otimes \mathrm{~m} & \longrightarrow \rho\left(\mathrm{f} \otimes_{\mathrm{m}}\right)
\end{aligned}
$$

where $\rho(\mathrm{f} \otimes \mathrm{m})(\mathrm{g})=\mathrm{f}(\mathrm{g}) \mathrm{m}(\mathrm{g} \in \mathrm{G})$, is a KG -isomorphism.
(iv) Map (G,M) is a locally finite KG-module if $\mathscr{H}_{G}(\mathrm{G})$ is locally finite as left module.

Proof. (i) Let $f \in \operatorname{Map}(G, M)$ and $N=K<f(G)>$. Since $K<(g * f)(G)>=N$ and $\mathrm{g} * \mathrm{f}: \underset{\mathrm{x}}{\mathrm{G}} \longrightarrow \mathrm{Gg} \xrightarrow[\mathrm{f}]{\mathrm{f}} \mathrm{N}$ is a morphism, we have $\mathrm{g} * \mathrm{f} \in \mathrm{Map}(\mathrm{G}, \mathrm{M})$. It is clear that $1 * f=f$ and $\left(g_{1} g_{2}\right) * f=g_{1 *}\left(g_{2} * f\right)$ for any $f \in M a p(G, M)$ and $g_{1}, g_{2} \in G$.
(ii) is clear from the definition.
(iii) Since $\mathscr{G}_{G}(\mathrm{G})$ is a (KG,K)-bimodule, $\mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G}) \otimes_{\mathrm{K}} \mathrm{M}$ becomes a KG-module by the given operation. Since the map

$$
\begin{aligned}
\psi: \mathscr{O}_{G}(\mathrm{G}) \times \mathrm{M} & \longrightarrow \operatorname{Map}(\mathrm{G}, \mathrm{M}), \\
(\mathrm{f}, \mathrm{~m}) & \longrightarrow \psi(\mathrm{f}, \mathrm{~m})
\end{aligned}
$$

where $\psi(\mathrm{f}, \mathrm{m})(\mathrm{g})=\mathrm{f}(\mathrm{g}) \mathrm{m}(\mathrm{g} \in \mathrm{G})$ is K -bilinear, ρ is a well-defined K -linear map.

Since

$$
\begin{aligned}
& \rho(\mathrm{g}(\mathrm{f} \otimes \mathrm{~m}))=\rho((\mathrm{g} * \mathrm{f}) \otimes \mathrm{m}): \mathrm{x} \longrightarrow \mathrm{f}(\mathrm{xg}) \mathrm{m} \\
& \mathrm{~g} * \rho(\mathrm{f} \otimes \mathrm{~m}): \mathrm{x} \longrightarrow \rho(\mathrm{f} \otimes \mathrm{~m})(\mathrm{xg})=\mathrm{f}(\mathrm{xg}) \mathrm{m},
\end{aligned}
$$

and
'where $\mathrm{g}, \mathrm{x} \in \mathrm{G}$ and $\mathrm{f} \otimes \mathrm{m} \in \mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G}) \otimes_{\mathrm{K}} \mathrm{M}, \rho$ is a KG-homomorphism.

Now let $\left\{f_{i} \mid i \in I\right\}$ and $\left\{m_{j} \mid j \in J\right\}$ be K-basis of $\mathscr{C}_{G}(G)$ and M respectively, then $\left\{f_{i} \otimes m_{j} \mid i \in I \quad\right.$ and $\left.j \in J\right\}$ is a K-basis of $\mathscr{C}_{G}(G) \otimes_{K} M$. Assume that $\rho\left({ }_{i} \Sigma_{j} c_{i j} f_{i} \otimes m_{j}\right)(x)=0$ for any $x \in G$, where $\left\{c_{i j}\right\} \subset K$ and almost all $c_{i j}$'s are zero. Since $\rho\left({ }_{i} \Sigma_{j} c_{i j} f_{i} \otimes m_{j}\right)(x)={ }_{i}{ }_{i}{ }_{j} c_{i j} f_{i}(x) m_{j}=\sum_{j}\left(\underset{i}{\sum} c_{i j} f_{i}(x)\right) m_{j}=0$ for any $x \in G, \sum_{i} c_{i j} f_{i}(x)=0$ for any $x \in G$ and $j \in J$.

Hence all $c_{i j}$'s are zero and ρ is injective. Let $h \in \operatorname{Map}(G, M)$ and $\left\{m_{1}, \ldots, m_{n}\right\}$ be a K-basis of $N=K<h(G)>$. Since

$$
\mathrm{h}: \mathrm{G} \rightarrow \mathrm{~N}=\mathrm{Km}_{1} \oplus \ldots \oplus \mathrm{Km}_{\mathrm{n}}
$$

is a morphism of varieties, each $\mathrm{X}_{\mathrm{i}} \circ \mathrm{h} \in \mathscr{G}_{\mathrm{G}}(\mathrm{G})$ where $\mathrm{X}_{\mathrm{i}} \in \mathrm{K}[\mathrm{N}] \quad(\mathrm{i}=1,2, \ldots, \mathrm{n})$. Since

$$
\rho\left[\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}} \circ \mathrm{~h}\right) \otimes \mathrm{m}_{\mathrm{i}}\right](\mathrm{x})=\mathrm{h}(\mathrm{x})
$$

for any $\mathrm{x} \in \mathrm{G}, \rho$ is surjective.
(iv) Since $\mathscr{\mathscr { G }}_{G}(G) \otimes_{K} M \cong \operatorname{Map}(G, M)$, it is enough to prove that $\mathscr{\mathscr { G }}_{G}(G) \otimes_{K} M$ is locally finite. Let $\sum_{i=1}^{1} f_{i} \otimes m_{i} \in \mathscr{G}_{G}(G) \otimes_{K} M$. Since

$$
K G\left[\sum_{i=1}^{l} f_{i} \otimes m_{i}\right] c \sum_{i=1}^{l} K G f_{i} \otimes m_{i}
$$

and each $K G f_{i} \otimes m_{i}$ is finite dimensional and rational, $K G\left(\sum_{i=1}^{1} f_{i} \otimes m_{i}\right)$ is also finite dimensional and rational from Proposition 18.2. Q.E.D.
(18.10) Definition. Let $\left(G, \mathscr{C}_{G}\right)$ be an algebraic group over K and H be a closed subgroup of G. Let V be a left KH-module, then we define the induced KG-module $\mathrm{V}_{\mathrm{H}}^{\mathrm{G}}$ induced from V to be the KG -module

$$
V_{H}^{G}=\{f \in \operatorname{Map}(G, V) \mid f(h g)=h f(g) \text { for all } h \in H \text { and } g \in G\}
$$

(18.11) Remark.

(i) Let G, H and V be as in Definition 18.10. Let $\{1\}$ be the trivial subgroup of G , then

In particular

$$
\begin{gathered}
V_{\{1\}}^{G}=\operatorname{Map}(G, V) . \\
K_{\{1\}}^{G}=\mathscr{O}_{G}(G)
\end{gathered}
$$

where K is considered as the one-dimensional trivial module of $\{1\}$.
If $\operatorname{Map}(G, V)$ is locally finite, e.g., G is affine, then V_{H}^{G} is locally finite.
(ii) A Mackey's Lemma (see Mackey [1]). Let G be a group and H be a subgroup of G. Let L be a left $k H$-module where k is a field. We write \hat{L} for the set of all maps $f: G \rightarrow L$ such that $f(h g)=h f(g)$ for any $h \in H$ and $g \in G$. Then
a) $\hat{\mathrm{L}}$ becomes a left kG -module by the following operation

$$
\begin{array}{ll}
\left(f_{1}+f_{2}\right)(g)=f_{1}(g)+f_{2}(g) & \left(f_{1}, f_{2} \in \hat{L}, g \in G\right) \\
(c f)(g)=c f(g) & (f \in \hat{L}, g \in G, c \in k) \\
(g * f)(x)=f(x g) & (f \in \hat{L}, g, x \in G)
\end{array}
$$

b) Let $G=\underset{j \in J}{U} H g_{j}$ (disjoint union) and $L=\underset{i \in I}{\oplus} \mathrm{kl}_{\mathrm{i}}$ (direct sum). Let $f_{i j}$ be the map of G into L such that $f_{i j}\left(h g_{k}\right)=\delta_{j k} h l_{i}$, then $f_{i j} \in \hat{L}$ for any $(\mathrm{i}, \mathrm{j}) \in \mathrm{I} \times \mathrm{J}$.
c) Let $L^{G}=k G \otimes_{k H} L$, then L^{G} has a k-basis $\left\{g_{j}{ }^{-1} \otimes l_{i} \mid(i, j) \in I \times J\right\}$.
d) The map $\iota: L^{G} \rightarrow \hat{L}$ which takes each $g_{j}{ }^{-1} \otimes l_{i}$ to $f_{i j}$, where $(i, j) \in I \times J$, is an injective kG -homomorphism.

Proof of (ii). (a), (b) and (c) are clear.
(d) Since $\left\{g_{j}^{-1} \otimes l_{i}\right\}$ forms a k-basis of L^{G} and $f_{i j}$'s are linearly independent, ι is an injective k-linear map. We show that $\left.\iota\left(g_{\left(g_{j}^{-1}\right.}^{-1} \otimes l_{i}\right)\right)=g * \iota\left(g_{j}^{-1} \otimes l_{i}\right)$ for any $g \in G$ and $(i, j) \in I \times J$. Since $f(h g)=h f(g)$ for all $f \in \hat{L}$, where $h \in H$ and $g \in G$, it is enough to show that

$$
\iota\left(g\left(g_{j}^{-1} \otimes l_{i}\right)\right)\left(g_{k}\right)=g_{*} \neq \iota\left(g_{j}^{-1} \otimes l_{i}\right)\left(g_{k}\right) \text { for any } k \in J
$$

Assume that $g g_{j}^{-1}=g^{-1} h$ for some $h \in H$ and $s \in J$, then

$$
\iota\left(\mathrm{g}\left(\mathrm{~g}_{\mathrm{j}}^{-1} \otimes \mathrm{l}_{\mathrm{i}}\right)\right)\left(\mathrm{g}_{\mathrm{k}}\right)=\delta_{\mathrm{sk}} \mathrm{hl}_{\mathrm{i}}
$$

If $g_{k} g=h^{\prime} g_{t}$ for some $h^{\prime} \in H$ and $t \in J$, then

$$
\mathrm{g} * \iota\left(\mathrm{~g}_{\mathrm{j}}^{-1} \otimes \mathrm{l}_{\mathrm{i}}\right)\left(\mathrm{g}_{\mathrm{k}}\right)=\mathrm{f}_{\mathrm{ij}}\left(\mathrm{~g}_{\mathrm{k}} \mathrm{~g}\right)=\delta_{\mathrm{jt}} \mathrm{~h}^{\prime} \mathrm{l}_{\mathrm{i}}
$$

Assume $j=t$, i.e., $\quad \delta_{j t} h^{\prime} l_{i}=h^{\prime} l_{i}\left(g_{k} g=h_{j} g_{j}\right)$. Since $g_{j} g^{-1}=h^{-1} g_{s}=h^{\prime-1} g_{k}$, $\mathrm{s}=\mathrm{k}$ and $\mathrm{h}=\mathrm{h}$, Conversely if $\mathrm{s}=\mathrm{k}$, then $\mathrm{j}=\mathrm{t}$ and $\mathrm{h}=\mathrm{h}$, Hence we have shown that ι is a $k G$-homomorphism.
Q.E.D.
(18.12) Proposition. Let ($G, \mathscr{\mathscr { C }}_{G}$) be an algebraic group over K and H be a closed subgroup of G . Let V be a KH-module.
(i) Let $\epsilon_{\mathrm{V}}: \mathrm{V}_{\mathrm{H}}^{\mathrm{G}} \longrightarrow \mathrm{V}$, then ϵ_{V} is a KH-homomorphism.

$$
\mathrm{f} \longrightarrow \mathrm{f}(1)
$$

(ii) For any locally finite rational KG-module M and KH -homomorphism φ of M into V , there exists a unique KG -homomorphism $\tilde{\varphi}: \mathrm{M} \rightarrow \mathrm{V}_{\mathrm{H}}^{\mathrm{G}}$ which makes the following diagram commutative.

Proof. (i) $\epsilon_{V}(h * f)=f(h)=h f(1)=h \epsilon_{V}(f)$ for any $h \in H$ and $f \in V_{H}^{G}$.
(ii) Let $\mathrm{m} \in \mathrm{M}$, we define $\tilde{\varphi}(\mathrm{m})$ to be the map of G into V such that

$$
\begin{aligned}
\tilde{\varphi}(\mathrm{m}): \mathrm{G} & \longrightarrow \mathrm{~V} \\
\mathrm{~g} & \longrightarrow \varphi(\mathrm{gm}) .
\end{aligned}
$$

Since KGm is finite dimensional and $\mathrm{G} \longrightarrow \mathrm{KGm}$ is a morphism of varieties from $\mathrm{g} \longrightarrow \mathrm{gm}$
Remark 17.2.ii and Proposition 18.2.v

$$
\begin{aligned}
\tilde{\varphi}(\mathrm{m}): \mathrm{G} & \longrightarrow \mathrm{KGm} \xrightarrow{\varphi} \varphi(\mathrm{KGm}), \mathrm{g} \mathrm{~m}^{(2)}
\end{aligned}
$$

is a morphism of varieties. Hence $\tilde{\varphi}(\mathrm{m}) \in \operatorname{Map}(\mathrm{G}, \mathrm{V})$. Clearly $\ddot{\varphi}(\mathrm{m})(\mathrm{hg})=\varphi(\mathrm{hgm})=$ $h \varphi(\mathrm{gm})=\mathrm{h} \tilde{\varphi}(\mathrm{m})(\mathrm{g})$ for any $\mathrm{h} \in \mathrm{H}$ and $\mathrm{g} \in \mathrm{G}$. Therefore, $\tilde{\varphi}(\mathrm{m}) \in \mathrm{V}_{\mathrm{H}}^{\mathrm{G}}$. Since

$$
\mathrm{x} *(\tilde{\varphi}(\mathrm{~m}))(\mathrm{g})=\tilde{\varphi}(\mathrm{m})(\mathrm{gx})=\varphi(\mathrm{gxm})=\tilde{\varphi}(\mathrm{xm})(\mathrm{g})
$$

for any $x, g \in G$ and $m \in M, \tilde{\varphi}$ is a KG-homomorphism. Finally, let $f: M \rightarrow V_{H}^{G}$ be a KG-homomorphism such that ϵ_{v} of $=\varphi$. Since $\{\mathrm{f}(\mathrm{m})\}(1)=\varphi(\mathrm{m})$ for any $\mathrm{m} \in \mathrm{M} \quad$ and $\quad\{\mathrm{f}(\mathrm{m})\}(\mathrm{g})=\mathrm{g} *\{\mathrm{f}(\mathrm{m})\}(1)=\mathrm{f}(\mathrm{gm})(1)=\varphi(\mathrm{gm})$, we have $\mathrm{f}=\tilde{\varphi}$. Q.E.D.

Corollary to Proposition 18.12 (Frobenius Reciprocity). Let M be a locally finite rational KG-module, then

$$
\operatorname{Hom}_{\mathrm{KH}}(\mathrm{M}, \mathrm{~V}) \cong \operatorname{Hom}_{\mathrm{KG}}\left(\mathrm{M}, \mathrm{~V}_{\mathrm{H}}^{\mathrm{G}}\right)
$$

as K -spaces where φ and $\tilde{\varphi}$ are as in (ii).
(18.13) Proposition (Transitivity of Induction). Let. (G, $\mathscr{\varphi}_{G}$) be an algebraic group over K and HCL be closed subgroups of G . Let V be a KH-module. Assume that the induced module $\mathrm{V}_{\mathrm{H}}^{\mathrm{G}}$ is locally finite, then

$$
\left(\mathrm{V}_{\mathrm{H}}^{\mathrm{L}}\right)_{\mathrm{L}}^{\mathrm{G}} \stackrel{1}{\cong} \mathrm{~V}_{\mathrm{H}}^{\mathrm{G}}
$$

Proof. Let $\epsilon_{1}: \mathrm{V}_{\mathrm{H}}^{\mathrm{G}} \longrightarrow \mathrm{V} \quad, \quad \epsilon_{2}: \mathrm{V}_{\mathrm{H}}^{\mathrm{L}} \longrightarrow \mathrm{V}$. and $\epsilon_{3}:\left(\mathrm{V}_{\mathrm{H}}^{\mathrm{L}}\right)_{\mathrm{L}}^{\mathrm{G}} \longrightarrow \mathrm{V}_{\mathrm{H}}^{\mathrm{L}}$. Then $\mathrm{f} \longrightarrow \mathrm{f}(1) \quad \mathrm{f} \longrightarrow \mathrm{f}(1) \quad \mathrm{f} \longrightarrow \mathrm{f}(1)$ there exists a KL-homomorphism $\psi: \mathrm{V}_{\mathrm{H}}^{\mathrm{G}} \rightarrow \mathrm{V}_{\mathrm{H}}^{\mathrm{L}}$ and a KG-homomorphism $\tilde{\psi}: \mathrm{V}_{\mathrm{H}}^{\mathrm{G}} \rightarrow$ $\left(\mathrm{V}_{\mathrm{H}}^{\mathrm{L}}\right)_{\mathrm{L}}^{\mathrm{G}}$ which make the following diagram commutative from Proposition 18.12.

Notice that $(\tilde{\psi}(\mathrm{f}))(\mathrm{g}): \underset{\mathrm{l}}{\mathrm{L} \longrightarrow \mathrm{f}(\mathrm{lg})} \mathrm{V}$ for any $\mathrm{f} \in \mathrm{V}_{\mathrm{H}}^{\mathrm{G}} \quad$ and $\quad \mathrm{g} \in \mathrm{G}$. We write $\tilde{\psi}(\mathrm{f})=\tilde{f}$. Now let $\mu \in\left(\mathrm{V}_{\mathrm{H}}^{\mathrm{L}}\right)_{\mathrm{L}}^{\mathrm{G}}$. We define $\bar{\mu}$ to be the map of G into V such that

$$
\bar{\mu}(\mathrm{g})=(\mu(\mathrm{g}))(1) \text { for any } \mathrm{g} \in \mathrm{G}
$$

Since

$$
\begin{aligned}
\bar{\mu}: \mathrm{G} & \longrightarrow \mathrm{~V}_{\mathrm{H}}^{\mathrm{L}} \epsilon_{2} \longrightarrow \mathrm{~V} \\
\mathrm{~g} & \longrightarrow \mu(\mathrm{~g}) \longrightarrow(\mu(\mathrm{g}))(1)
\end{aligned}
$$

and $\quad \bar{\mu}(\mathrm{hg})=(\mu(\mathrm{hg}))(1)=(\mathrm{h} * \mu(\mathrm{~g}))(1)=(\mu(\mathrm{g}))(\mathrm{h})=\mathrm{h}(\mu(\mathrm{g})(1))=\mathrm{h}(\bar{\mu}(\mathrm{g})) \quad$ for any $h \in H$ and $g \in G$, we have $\bar{\mu} \in V_{H}^{G}$. Since

$$
\tilde{\tilde{\mu}}(\mathrm{g}): \mathrm{L} \longrightarrow \frac{\mathrm{~V}}{\mu}(\mathrm{lg})
$$

and $\bar{\mu}(\lg)=(\mu(\lg))(1)=(l *(\mu(\mathrm{~g})))(1)=(\mu(\mathrm{g}))(\mathrm{l})$ for any $\mathrm{l} \in \mathrm{L}$ and $\mathrm{g} \in \mathrm{G}$, we have $\tilde{\mu}=\mu$. Hence $\tilde{\psi}$ is surjective. Injectivity of $\tilde{\psi}$ is clear.
Q.E.D.
(18.14) Lemma. Let $\left(G, \mathscr{\mathscr { G }}_{G}\right)$ be an algebraic group over K and M and N be locally finite rational KG-modules, then $M \otimes_{K} N$ becomes a locally finite rational KG-module under the following operation.

$$
\begin{aligned}
G \times M \otimes_{K} N & \longrightarrow M \otimes_{K} N \\
\left(g, \sum_{i} m_{i} \otimes n_{i}\right) & \longrightarrow \sum_{i} \operatorname{gm}_{i} \otimes g n_{i}
\end{aligned}
$$

Proof. Clearly, $M \otimes_{K} N$ is a $K G$-module by the above operation. Let $\sum_{i} m_{i} \otimes n_{i} \in$ $M \otimes_{K} N$. Since

$$
K G \sum_{i} m_{i} \otimes n_{i} \subset \sum_{i} K G\left(m_{i} \otimes n_{i}\right)
$$

and $K G\left(m_{i} \otimes n_{i}\right)$ is finite dimensional and rational for any $i, K G \sum_{i} m_{i} \otimes n_{i}$ is also finite dimensional and rational (see Proposition 18.2)
Q.E.D.
(18.15) Proposition (Tensor Identity). Let (G, \mathscr{C}_{G}) be an algebraic group over K and H be a closed subgroup of G . Let V be a KH-module and W be a locally finite rational KG -module. Then

$$
\begin{aligned}
\mathrm{V}_{\mathrm{H}}^{\mathrm{G}} \otimes_{\mathrm{K}} \mathrm{~W} & \stackrel{\rho}{\cong}\left(\mathrm{~V} \otimes_{\mathrm{K}} \mathrm{~W}\right)_{\mathrm{H}}^{\mathrm{G}} \\
\mathrm{f} \otimes \mathrm{~W} & \longrightarrow[\rho(\mathrm{f} \otimes \mathrm{~W}): \mathrm{g} \longrightarrow \mathrm{f}(\mathrm{~g}) \otimes \mathrm{gw}]
\end{aligned}
$$

as KG -modules. KG or KH -module structure of $\mathrm{V}_{\mathrm{H}}^{\mathrm{G}} \otimes_{\mathrm{K}} \mathrm{W}$ or $\mathrm{V} \otimes_{\mathrm{K}} \mathrm{W}$ is as defined in Proposition 18.2.iii.

Proof (see Cline, Parshall \& Scott [1]). We first show that the map

$$
\begin{aligned}
\Phi: \operatorname{Map}(G, V) \otimes_{K} W & \longrightarrow \operatorname{Map}\left(G, V \otimes_{K} W\right) \\
f \otimes W & \longrightarrow[\Phi(f \otimes W): g \rightarrow f(g) \otimes g W]
\end{aligned}
$$

is a KG-isomorphism. Let $\left\{v_{i} \mid i \in I\right\}$ be a K-basis of V. Since $V=\underset{i \in I}{\oplus} K v_{i}$ (direct sum) and $\operatorname{Map}\left(G, \mathrm{Kv}_{\mathrm{i}}\right) \subset \operatorname{Map}(\mathrm{G}, \mathrm{V})$,

$$
\operatorname{Map}(G, V)=\operatorname{Map}\left(G \underset{i \in I}{\oplus} \mathrm{Kv}_{\mathrm{i}}\right)=\underset{\mathrm{i} \in \mathrm{I}}{\oplus} \operatorname{Map}\left(\mathrm{G}, \mathrm{~K} v_{\mathrm{i}}\right)
$$

Hence we have

$$
\left.\operatorname{Map}(\mathrm{G}, \mathrm{~V}) \otimes_{\mathrm{K}} \mathrm{~W}=\underset{\mathrm{i} \in \mathrm{I}}{\oplus} \operatorname{Map}\left(\mathrm{G}, \mathrm{Kv}_{\mathrm{i}}\right)\right) \otimes_{\mathrm{K}} \mathrm{~W} \underset{\mathrm{i} \in \mathrm{I}}{\oplus}\left(\pi_{\mathrm{i}} \otimes 1_{\mathrm{W}}\right)\left(\operatorname{Map}(\mathrm{G}, \mathrm{~V}) \otimes_{\mathrm{K}} \mathrm{~W}\right),
$$

where $\pi_{i}: \operatorname{Map}(G, V) \rightarrow \operatorname{Map}\left(G, K v_{i}\right)$ is the projection. Notice that

$$
\begin{aligned}
\operatorname{Map}\left(G, K v_{i}\right) \otimes_{K}^{\prime} W & \cong\left(\pi_{i} \otimes 1_{W}\right)\left(\operatorname{Map}(G, V) \otimes_{K} W\right) \\
& =\operatorname{Map}\left(G, \mathrm{Kv}_{i}\right) \otimes_{K} W \\
f \otimes^{\prime} W & \longrightarrow \mathrm{f} \otimes \mathrm{~W}
\end{aligned}
$$

as K -spaces.

Similarly since $V \otimes_{\mathrm{K}} \mathrm{W} \underset{\mathrm{i} \in \mathrm{I}}{\oplus} \mathrm{Kv}_{\mathrm{i}} \otimes_{\mathrm{K}} \mathrm{W}$, we have

$$
\operatorname{Map}\left(\mathrm{G}, \mathrm{~V} \otimes_{\mathrm{K}} \mathrm{~W}\right)=\underset{\mathrm{i} \in \mathrm{I}}{\oplus} \operatorname{Map}\left(\mathrm{G}, \mathrm{Kv}_{\mathrm{i}} \otimes_{\mathrm{K}} \mathrm{~W}\right)
$$

Thus it is reasonable to check that

$$
\begin{aligned}
\left.\Phi\right|_{\operatorname{Map}\left(\mathrm{G}, \mathrm{Kv}_{\mathrm{i}}\right) \otimes_{\mathrm{K}} \mathrm{~W}}: \operatorname{Map}\left(\mathrm{G}, \mathrm{Kv}_{\mathrm{i}}\right) \otimes_{\mathrm{K}} \mathrm{~W} & \longrightarrow \operatorname{Map}\left(\mathrm{G}, \mathrm{Kv}_{\mathbf{i}} \otimes \mathrm{W}\right) \\
\mathrm{f} \otimes \mathrm{~W} & \longrightarrow[\Phi(\mathrm{f} \otimes \mathrm{~W}): \mathrm{g} \rightarrow \mathrm{f}(\mathrm{~g}) \otimes \mathrm{gw}]
\end{aligned}
$$

is a K -isomorphism. Let

$$
\begin{aligned}
\varphi: \operatorname{Map}(\mathrm{G}, \mathrm{~K}) \otimes_{\mathrm{K}} \mathrm{~W} & \longrightarrow \operatorname{Map}(\mathrm{G}, \mathrm{~W}) \\
\mathrm{f} \otimes \mathrm{~W} & \longrightarrow[\varphi(\mathrm{f} \otimes \mathrm{~W}): \mathrm{g} \rightarrow \mathrm{f}(\mathrm{~g}) \mathrm{gw}] .
\end{aligned}
$$

Since $\operatorname{Map}(G, K)=\mathscr{\varphi}_{G}(G)$ and

$$
\begin{aligned}
\varphi_{1}: \mathscr{O}_{\mathrm{G}}(\mathrm{G}) \otimes_{\mathrm{K}} \mathrm{~W} & \longrightarrow \operatorname{Map}(\mathrm{G}, \mathrm{~W}) \\
\mathrm{f} \otimes \mathrm{~W} & \longrightarrow\left[\varphi_{1}(\mathrm{f} \otimes \mathrm{~W}): \mathrm{g} \rightarrow \mathrm{f}(\mathrm{~g}) \mathrm{W}\right]
\end{aligned}
$$

is a KG-isomorphism (see Proposition 18.9.iii) and the map

$$
\begin{aligned}
\varphi_{2}: \operatorname{Map}(\mathrm{G}, \mathrm{~W}) & \longrightarrow \operatorname{Map}(\mathrm{G}, \mathrm{~W}) \\
\tau & \longrightarrow\left[\varphi_{2}(\tau): \mathrm{g} \rightarrow \mathrm{~g} \tau(\mathrm{~g})\right]
\end{aligned}
$$

is a K -isomorphism with inverse $\varphi_{2}{ }^{-1}: \tau \longrightarrow\left[\mathrm{g} \rightarrow \mathrm{g}^{-1} \tau(\mathrm{~g})\right], \varphi=\varphi_{2} \circ \varphi_{1}$ is a K - isomorphism. Hence Φ is a K-isomorphism. Let $f \otimes_{W} \in \operatorname{Map}(G, V) \otimes_{K} W$, then

$$
\Phi(g(f \otimes \mathrm{w}))(\mathrm{x})=\Phi(\mathrm{g} * \mathrm{f} \otimes \mathrm{gw})(\mathrm{x})=(\mathrm{g} \# \mathrm{f})(\mathrm{x}) \otimes \mathrm{xgw}=\mathrm{f}(\mathrm{xg}) \otimes \mathrm{xgw}=(\mathrm{g} \# \Phi(\mathrm{f} \otimes \mathrm{w}))(\mathrm{x})
$$ for any $g, x \in G$. Thus Φ is a KG-isomorphism.

Next we show that $\Phi\left(V_{H}^{G} \otimes_{\mathrm{K}} \mathrm{W}\right)=\left(\mathrm{V} \otimes_{\mathrm{K}} \mathrm{W}\right)_{\mathrm{H}}^{\mathrm{G}}$. Assume that $\mathrm{f} \otimes \mathrm{w} \in \mathrm{V}_{\mathrm{H}}^{\mathrm{G}} \otimes_{\mathrm{K}} \mathrm{W}$, then

$$
\Phi(f \otimes \mathrm{w})(\mathrm{hg})=\mathrm{f}(\mathrm{hg}) \otimes \mathrm{hgw}=\mathrm{hf}(\mathrm{~g}) \otimes \mathrm{hgw}=\mathrm{h} \Phi(\mathrm{f} \otimes \mathrm{w})(\mathrm{g})
$$

for any $h \in H$ and $g \in G$, which implies $\Phi\left(V_{H}^{G} \otimes_{K} W\right) C\left(V \otimes_{K} W\right)_{H}^{G}$.

Let $\tau \in\left(V \otimes_{\mathrm{K}} \mathrm{W}\right)_{\mathrm{H}}^{\mathrm{G}}$ and $\left\{\mathrm{w}_{\mathrm{j}} \mid \mathrm{j} \in \mathrm{J}\right\}$ be a K-basis of W , then we have

$$
\tau(\mathrm{g})=\sum_{\mathrm{j} \in \mathrm{~J}} \tau_{\mathrm{j}}(\mathrm{~g}) \otimes \mathrm{gw}_{\mathrm{j}}
$$

where $\tau_{\mathrm{j}}(\mathrm{g}) \in \mathrm{V}(\mathrm{j} \in \mathrm{J})$. Suppose that there exists

$$
\sum_{j \in J} f_{j} \otimes w_{j} \in \operatorname{Map}(G, V) \otimes_{K} W \text { such that } \Phi\left(\sum_{j \in J} f_{j} \otimes w_{j}\right)=\tau
$$

then

$$
\tau(\mathrm{g})=\sum_{\mathrm{j} \in \mathrm{~J}} \tau_{\mathrm{j}}(\mathrm{~g}) \otimes \mathrm{g} w_{\mathrm{j}}=\sum_{\mathrm{j} \in \mathrm{~J}} \mathrm{f}_{\mathrm{j}}(\mathrm{~g}) \otimes \mathrm{g} w_{\mathrm{j}}
$$

Therefore

$$
\mathrm{f}_{\mathrm{j}}(\mathrm{~g})=\tau_{\mathrm{j}}(\mathrm{~g}) \text { for any } \mathrm{j} \in \mathrm{~J} \text { and } \mathrm{g} \in \mathrm{G}
$$

Thus it is enough to prove that each $f_{j} \in V_{H}^{G}$. Since

$$
\tau(\mathrm{hg})=\sum_{\mathrm{j} \in \mathrm{~J}} \tau_{\mathrm{j}}(\mathrm{hg}) \otimes \mathrm{hgw}_{\mathrm{j}}=\mathrm{h} \tau(\mathrm{~g})=\sum_{\mathrm{j} \in \mathrm{~J}} \mathrm{~h} \tau_{\mathrm{j}}(\mathrm{~g}) \otimes \mathrm{h} g w_{\mathrm{j}}
$$

we have $f_{j}(h g)=h f_{j}(g)$ for any $h \in H$ and $g \in G$. Hence $f_{j} \in V_{H}^{G}$ and

$$
\rho=\Phi \mid V_{\mathrm{H}}^{\mathrm{G}} \otimes_{\mathrm{K}} \mathrm{~W}
$$

is a KG-isomorphism.
Q.E.D.

CHAPTER IV

COALGEBRAS AND LIE ALGEBRAS OF LINEAR ALGEBRAIC GROUPS

In this chapter we shall introduce the idea of Lie algebra g of a given linear algebraic group G relating it to the coalgebra of G and define the adjoint representation of G into $G L(g)$. As references to coalgebras and the related topics and Lie algebras we give:
J. A. Green, Locally finite representations. Journal of Algebra, Vol.41, 137-171 (1976) and Humphreys [1].

19. Coalgebras and Lie algebras of linear algebraic groups

In this section k denotes an arbitrary field.
(19.1) Definition. A triple $(\mathrm{R}, \mu, \mathrm{e})$, where R is a vector space over k , and $\mu: R \rightarrow R \otimes_{k} R, \quad e: R \rightarrow k$ are k-linear maps, is called a k-coalgebra if μ and e satisfy the following two conditions.
(i) $(1 \otimes \mu) \circ \mu=(\mu \otimes 1) \circ \mu$ and
(ii) $(\mathrm{e} \otimes 1) \circ \mu=1=(1 \otimes \mathrm{e}) \circ \mu$, where 1 is the identity map on R .

(19.2) Example. Let ($G, K[G]$) be a linear algebraic group over K. Put $R=K[G]$, $\mu=\mathrm{m}^{*}$ (the comorphism of the multiplication $\mathrm{m}: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$) and $\mathrm{e}=\mathrm{p}^{*}$ (the comorphism of $\mathrm{p}: \mathrm{G} \rightarrow \mathrm{G}$), then the triple ($\mathrm{R}, \mu, \mathrm{e}$) is a K-coalgebra, because $x \rightarrow 1$

and

Exercise 56. Verify the above example, Example 19.2.
(19.3) Proposition. Let (R, μ, e) be a k-coalgebra, then the dual space $A=\operatorname{Hom}_{\mathrm{k}}(\mathrm{R}, \mathrm{k})$ of R becomes a k -algebra with the product $\alpha \beta$ of elements $\alpha, \beta \in \mathrm{A}$ defined by

$$
\alpha \beta=(\alpha \otimes \beta) \circ \mu: \mathrm{R} \xrightarrow{\mu} \mathrm{R} \otimes_{\mathrm{k}} \mathrm{R} \xrightarrow{\alpha \otimes \beta} \mathrm{k} .
$$

This multiplication is associative with the unity element $\mathrm{e} \in \mathrm{A}$.
'Exercise 57. Prove Proposition 19.3.
(19.4) Definition. A vector space g over a field k, with a bilinear bracket product

$$
[,]: q_{x, y}^{x} q \longrightarrow{ }^{q} \longrightarrow[x, y]
$$

is said to be a Lie algebra over k if the following axioms are satisfied.
(i) $[x, x]=0$ for all $x \in g$.
(ii) $[\mathrm{x},[\mathrm{y}, \mathrm{z}]]+[\mathrm{y},[\mathrm{z}, \mathrm{x}]]+[\mathrm{z},[\mathrm{x}, \mathrm{y}]]=0$ (Jacobi identity) for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathfrak{g}$.

From (i) we have
(i) $[x, y]=-[y, x]$ for all $x, y \in g$. When the characteristic of k is not 2 , (i) and (i) are equivalent.

We review the following definitions:
(i) A k-linear map φ of a Lie algebra g over k into another Lie algebra g ' over k is called a homomorphism if

$$
\varphi([\mathrm{x}, \mathrm{y}])=[\varphi(\mathrm{x}), \varphi(\mathrm{y})] \text { for all } \mathrm{x}, \mathrm{y} \in g
$$

(ii) A k-subspace \mathscr{g} of a Lie algebra g over k is called an ideal of g if $[\mathrm{x}, \mathrm{y}] \in \mathscr{I}$ for any $\mathrm{x} \in \mathscr{g}$ and $\mathrm{y} \in \mathscr{I}$.
(iii) A k -subspace \mathscr{C} of a Lie algebra \mathscr{g} over k is called a Lie subalgebra of \mathscr{g} if $[\mathrm{x}, \mathrm{y}] \in \mathscr{C}$ whenever $\mathrm{x}, \mathrm{y} \in \mathscr{C}$.
(19.5) Example. Let A be an associative algebra over k. Define a bracket product as follows

$$
[,]: \underset{(a, b) \rightarrow a b-b a}{A \times A} \rightarrow A
$$

then with this bracket product A becomes a Lie algebra over k .
(19.6) Definition. Let a be a vector space over k with a bilinear product

$$
\begin{aligned}
& a \times a \longrightarrow a \\
& (\mathrm{x}, \mathrm{y}) \longrightarrow \mathrm{xy}
\end{aligned}
$$

(e.g. a is an associative algebra or a Lie algebra over k). A k-linear map D of a into itself is said to be a derivation of a if it satisfies

$$
\mathrm{D}(\mathrm{xy})=\mathrm{xD}(\mathrm{y})+\mathrm{D}(\mathrm{x}) \mathrm{y} \text { for all } \mathrm{x}, \mathrm{y} \in a
$$

(19.7) Lemma. (i) Let a be a vector space over k with a bilinear product $\underset{(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{xy}}{a \times \underset{a}{a}}$ and let $\operatorname{End}_{\mathrm{k}}(a)=\{\mathrm{f} \mid \mathrm{f}$ is a k -linear endomorphism of a into itself $\}$. $(x, y) \rightarrow x y$
Then the set of derivations,

$$
\operatorname{Der}_{\mathrm{k}}(a)=\left\{\mathrm{D} \in \operatorname{End}_{\mathrm{k}}(a) \mid \mathrm{D}(\mathrm{xy})=\mathrm{xD}(\mathrm{y})+\mathrm{D}(\mathrm{x}) \mathrm{y} \text { for all } \mathrm{x}, \mathrm{y} \in a\right\}
$$

forms a Lie algebra over k with the bracket product

$$
[,]: \operatorname{Der}_{\mathrm{k}}(a) \times \operatorname{Der}_{\mathrm{k}}(a) \longrightarrow \operatorname{Der}_{\mathrm{k}}(a)
$$

i.e., $\operatorname{Der}_{\mathrm{k}}(a)$ is a Lie subalgebra of $\operatorname{End}_{\mathrm{k}}(a)$ (see Example 19.5).
(ii) Let g be a Lie algebra over k. Let ad x be a map of g into itself such that ad x takes each $\mathrm{y} \in \mathcal{g}$ to $[\mathrm{x}, \mathrm{y}] \in g$, where $\mathrm{x} \in g$. Then $\operatorname{ad} \mathrm{x}$ is a derivation of g for each $x \in g$, and the map

$$
\text { ad : } \underset{x}{g \longrightarrow \operatorname{Der}_{k}(g)}
$$

is a Lie algebra homomorphism.

Exercise 58. Prove the above lemma.

Now we define the Lie algebra of a given linear algebraic group.
(19.8) Definition. Let ($G, K[G]$) be a linear algebraic group over K. Let

$$
\mathscr{L}(\mathrm{G})=\left\{\mathrm{D} \in \operatorname{Der}_{\mathrm{K}}(\mathrm{~K}[\mathrm{G}]) \mid \mathrm{D}_{\mathrm{L}} \mathrm{~L}_{\mathrm{g}}=\mathrm{L}_{\mathrm{g}} \circ \mathrm{D} \text { for any } \mathrm{g} \in \mathrm{G}\right\}
$$

then $\mathscr{L}(\mathrm{G})$ is a Lie subalgebra of $\operatorname{Der}_{\mathrm{K}}(\mathrm{K}[\mathrm{G}])$ and we call $\mathscr{L}(\mathrm{G})$ the Lie algebra of G .

Now let $X \in \operatorname{Hom}_{K}(K[G], K)$, where ($G, K[G]$) is a linear algebraic group over K as usual, then we define the right convolution $\# \mathrm{X}$ by X as a K-linear map of $\mathrm{K}[\mathrm{G}]$ into itself such that
(19.9)

$$
(\mathrm{f} * \mathrm{X})(\mathrm{g})=\mathrm{X}\left(\mathrm{~L}_{\mathrm{g}}(\mathrm{f})\right) \text { for any } \mathrm{f} \in \mathrm{~K}[\mathrm{G}] \text { and } \mathrm{g} \in \mathrm{G}
$$

One can easily check that (19.9) is well-defined, because for any $f \in K[G]$ we have

$$
\begin{gathered}
f * X=\sum_{i=1}^{1} X\left(f^{\prime}\right) f_{i} \\
m^{*}(f)=\sum_{i=1}^{l} f_{i} \otimes f_{i}^{\prime} \in K[G] \otimes K[G] .
\end{gathered}
$$

where
(19.10) Lemma. Let ($G, K[G]$) be a linear algebraic group over K. Let $\gamma \in T(G)_{1}$ $\left(\mathrm{CHom}_{K}(\mathrm{~K}[G], K)\right)$, then

$$
* \gamma \in \mathscr{L}(\mathrm{G})
$$

Proof. \quad Since $\quad\left\{\left(\mathrm{f}_{1} \mathrm{f}_{2}\right) * \gamma\right\}(\mathrm{g})=\gamma\left(\mathrm{L}_{\mathrm{g}}\left(\mathrm{f}_{1} \mathrm{f}_{2}\right)\right)=\gamma\left(\mathrm{L}_{\mathrm{g}}\left(\mathrm{f}_{1}\right) \mathrm{L}_{\mathrm{g}}\left(\mathrm{f}_{2}\right)\right)=$ $L_{g}\left(f_{1}\right)(1) \cdot \gamma\left(L_{g}\left(f_{2}\right)\right)+\gamma\left(L_{g}\left(f_{1}\right)\right) \cdot L_{g}\left(f_{2}\right)(1)$ for any $f_{1}, f_{2} \in K[G]$ and $g \in G$, where $\gamma \in \mathrm{T}(\mathrm{G})_{1}$, we have

$$
\left(\mathrm{f}_{1} \mathrm{f}_{2}\right) * \gamma \doteq \mathrm{f}_{1}\left(\mathrm{f}_{2} * \gamma\right)+\left(\mathrm{f}_{1} * \gamma\right) \mathrm{f}_{2},
$$

which implies $* \gamma \in \operatorname{Der}_{\mathrm{K}}(\mathrm{K}[\mathrm{G}])$ for any $\gamma \in \mathrm{T}(\mathrm{G})_{1}$.

Now let $g, h \in G, \gamma \in T(G)_{1}$ and $f \in K[G]$, then

$$
\begin{gathered}
\left\{\mathrm{L}_{\mathrm{h}} \circ(* \gamma)\right\}(\mathrm{f})(\mathrm{g})=\left\{\mathrm{L}_{\mathrm{h}}(\mathrm{f} * \gamma)\right\}(\mathrm{g})=(\mathrm{f} * \gamma)(\mathrm{hg})=\gamma\left(\mathrm{L}_{\mathrm{hg}}(\mathrm{f})\right) \\
\left\{(* \gamma) \circ \mathrm{L}_{\mathrm{h}}\right\}(\mathrm{f})(\mathrm{g})=\left\{(* \gamma)\left(\mathrm{L}_{\mathrm{h}}(\mathrm{f})\right)\right\}(\mathrm{g})=\left(\mathrm{L}_{\mathrm{h}}(\mathrm{f}) * \gamma\right)(\mathrm{g}) \\
=\gamma\left(\mathrm{L}_{\mathrm{g}}\left(\mathrm{~L}_{\mathrm{h}}(\mathrm{f})\right)\right)=\gamma\left(\mathrm{L}_{\mathrm{hg}}(\mathrm{f})\right)
\end{gathered}
$$

and

Thus we have $* \gamma \in \mathscr{L}(\mathrm{G})$ for all $\gamma \in \mathrm{T}(\mathrm{G})_{1}$. Q.E.D.

The next theorem gives us a reason why $g=T(G)_{1}$ can be considered as the Lie algebra of G .
(19.11) Theorem. Let ($\mathrm{G}, \mathrm{K}[\mathrm{G}]$) be a linear algebraic group over K. Put $g=T(G)_{1}$. Let θ be a map of $\operatorname{End}_{K}(K[G])$ into $\operatorname{Hom}_{K}(K[G], K)$ which takes each

$$
\mathrm{D} \in \operatorname{End}_{\mathrm{K}}(\mathrm{~K}[\mathrm{G}]) \text { to } \gamma_{\mathrm{D}} \in \operatorname{Hom}_{\mathrm{K}}(\mathrm{~K}[\mathrm{G}], \mathrm{K})
$$

such that

$$
\gamma_{\mathrm{D}}(\mathrm{f})=\{\mathrm{D}(\mathrm{f})\}(1) \text { for all } \mathrm{f} \in \mathrm{~K}[\mathrm{G}]
$$

Then Θ is a well-defined K -linear map, and
(1) $\theta(* X)=X$ for any $X \in \operatorname{Hom}_{K}(K[G], K)$;
(2) $\Theta((* X)(* Y))=X Y$ for any $X, Y \in \operatorname{Hom}_{K}(K[G], K)$, where

$$
X Y=(X \otimes Y) \circ \mathrm{m}^{*}
$$

(see Example 19.2 and Proposition 19.3);
(3) let η be a K-linear map of $\operatorname{Hom}_{\mathrm{K}}(\mathrm{K}[\mathrm{G}], \mathrm{K})$ to $\operatorname{End}_{\mathrm{K}}(\mathrm{K}[\mathrm{G}])$ such that

$$
\begin{aligned}
\eta: \operatorname{Hom}_{\mathrm{K}}(\mathrm{~K}[\mathrm{G}], \mathrm{K}) & \longrightarrow \operatorname{End}_{\mathrm{K}}(\mathrm{~K}[\mathrm{G}]) \\
\mathrm{X} & \longrightarrow \mathrm{X}
\end{aligned}
$$

then $\eta(g) \subset \mathscr{L}(\mathrm{G}), \Theta(\mathscr{L}(\mathrm{G})) \subset \mathscr{g}$ and

$$
\left(\left.\Theta\right|_{\mathscr{L}(\mathrm{G})}\right) \circ\left(\left.\eta\right|_{g}\right)=1_{g} \text { and }
$$

$$
\left(\left.\eta\right|_{\mathscr{g}}\right) \circ\left(\left.\Theta\right|_{\mathscr{L}(\mathrm{G})}\right)=1_{\mathscr{L}(\mathrm{G})}
$$

(4) from (2) and (3) we have

$$
\begin{gathered}
\mathscr{L}(\mathrm{G})=\{* \gamma \mid \gamma \in g\} \stackrel{\ominus}{=} g \text { and } \\
\theta\left(\left[* \gamma_{1}, * \gamma_{2}\right]\right)=\gamma_{1} \gamma_{2}-\gamma_{2} \gamma_{1} \text { for any } \gamma_{1}, \gamma_{2} \in g ;
\end{gathered}
$$

(5) from (4) g is a Lie subalgebra of $\operatorname{Hom}_{\mathrm{K}}(\mathrm{K}[\mathrm{G}], \mathrm{K})$, the bracket product of which is

$$
\begin{aligned}
{[,]: \operatorname{Hom}_{K}(\mathrm{~K}[\mathrm{G}], \mathrm{K}) \times \operatorname{Hom}_{\mathrm{K}}(\mathrm{~K}[\mathrm{G}], \mathrm{K}) } & \longrightarrow \operatorname{Hom}_{\mathrm{K}}(\mathrm{~K}[\mathrm{G}], \mathrm{K}) \\
\left(\gamma_{1}, \gamma_{2}\right) & \longrightarrow \gamma_{1} \gamma_{2}-\gamma_{2} \gamma_{1}
\end{aligned}
$$

(see Example 19.2 and Proposition 19.3), and $\Theta: \mathscr{L}(G) \cong \mathscr{g}$ is a Lie algebra isomorphism, i.e., a bijective Lie algebra homomorphism.

Proof. (1) Let $X \in \operatorname{Hom}_{K}(K[G], K)$, then

$$
\{\theta(* X)\}(f)=(f * X)(1)=X(f) \text { for any } f \in K[G] .
$$

Thus $\Theta(* X)=X$ for any $X \in \operatorname{Hom}_{K}(K[G], K)$.
(2) Let $X, Y \in \operatorname{Hom}_{K}(\mathrm{~K}[\mathrm{G}], \mathrm{K})$, then

$$
\begin{gathered}
\{\theta((* X)(* Y))\}(f)=\{(* X)(* Y)\}(f)(1) \\
=(* X)\left[\sum_{i=1}^{1} Y\left(f^{\prime}{ }_{i}\right) f_{i}\right](1)=\left[\sum_{i=1}^{1} Y\left(f^{\prime} i_{i}\right) f_{i} * X\right](1)=\sum_{i=1}^{1} Y\left(f^{\prime}{ }_{i}\right) X\left(f_{i}\right),
\end{gathered}
$$

for any $f \in K[G]$, where

$$
m^{*}(f)=\sum_{i=1}^{l} f_{i} \otimes f^{\prime} \prime_{i} \in K[G] \otimes K[G]
$$

Since

$$
(X Y)(f)=\left\{(X \otimes Y) \circ m^{*}\right\}(f)=(X \otimes Y)\left[\sum_{i=1}^{l} f_{i} \otimes f_{i}^{\prime}\right]=\sum_{i=1}^{l} X\left(f_{i}\right) Y\left(f_{i}^{\prime}\right)
$$

we have proved (2).
(3) It is clear that η is a well-defined K-linear map and also $\eta(g) \subset \mathscr{L}(\mathrm{G})$ (see Lemma 19.10). Now let $f_{1}, f_{2} \in K[G]$, then

$$
\begin{aligned}
\gamma_{D}\left(f_{1} f_{2}\right) & =\left\{D\left(f_{1} f_{2}\right)\right\}(1)=\left\{f_{1} D\left(f_{2}\right)+D\left(f_{1}\right) f_{2}\right\} \\
& =f_{1}(1) \cdot D\left(f_{2}\right)(1)+D\left(f_{1}\right)(1) \cdot f_{2}(1) \\
& =f_{1}(1) \gamma_{D}\left(f_{2}\right)+\gamma_{D}\left(f_{1}\right) f_{2}(1)
\end{aligned}
$$

for any $\mathrm{D} \in \mathscr{L}(\mathrm{G})$, which implies

$$
\Theta(\mathscr{L}(\mathrm{G})) \subset g
$$

From (1) we have

$$
\left(\left.\Theta\right|_{\mathscr{L}(\mathrm{G})}\right) \circ\left(\left.\eta\right|_{\mathscr{g}}\right)=1 \mathfrak{g}
$$

Conversely, let $\mathrm{D} \in \mathscr{L}(\mathrm{G})$, then

$$
\begin{gathered}
\{(\eta \circ \ominus)(\mathrm{D})\}(\mathrm{f})(\mathrm{g})=\left\{\eta\left(\gamma_{\mathrm{D}}\right)\right\}(\mathrm{f})(\mathrm{g})=\left(\mathrm{f}_{*} \gamma_{\mathrm{D}}\right)(\mathrm{g})=\gamma_{\mathrm{D}}\left(\mathrm{~L}_{\mathrm{g}}(\mathrm{f})\right) \\
=\mathrm{D}\left(\mathrm{~L}_{\mathrm{g}}(\mathrm{f})\right)(1)=\mathrm{L}_{\mathrm{g}}(\mathrm{D}(\mathrm{f}))(1)=\mathrm{D}(\mathrm{f})(\mathrm{g})
\end{gathered}
$$

for all $f \in K[G]$ and $g \in G$. Hence

$$
(\eta \circ \theta)(\mathrm{D})=\mathrm{D} \text {, i.e., }\left(\left.\eta\right|_{g}\right) \circ\left(\left.\theta\right|_{\mathscr{L}(\mathrm{G})}\right)=1_{\mathscr{L}(\mathrm{G})}
$$

(4) and (5) - straightforward. Q.E.D.
(19.12) Corollary. Let G, g and $\mathscr{L}(G)$ be as in the theorem, then

$$
\operatorname{dim}_{\mathrm{K}} \mathscr{L}(\mathrm{G})=\operatorname{dim}_{\mathrm{K}} \mathscr{g}=\operatorname{dim} \mathrm{G}
$$

(see Exercise 50 on p.171).
(19.13) Example. The Lie algebra of $(G, K[G])=\left(G L(n, K), K\left[f_{i j}, \delta \mid 1 \leq i, j \leq n\right]\right)$.

We follow the same notation as in Example 14.2. We write g for $T(G L(n, K))_{1}$. Let φ be a map of g into $\mathscr{g}(\mathrm{n}, \mathrm{K})$, the set of all $\mathrm{n} \times \mathrm{n}$ matrices over K , such that

$$
\varphi: g \longrightarrow q\left(\begin{array}{c}
(\mathrm{n}, \mathrm{~K}) \\
\gamma \\
\left.\gamma\left(\mathrm{f}_{\mathrm{ij}}\right)\right)
\end{array},\right.
$$

then φ is a well-defined Lie algebra isomorphism, where $g(\mathrm{n}, \mathrm{K})$ is considered as a Lie algebra with the bracket product as in Example 19.5.

Proof. It is easy to check that φ is a well-defined K-linear map. Since $\gamma(\Delta \delta)=$ $\gamma(1)=0=\Delta(1) \gamma(\delta)+\gamma(\Delta) \delta(1), \gamma(\delta)$ is determined by $\left\{\mathrm{f}_{\mathrm{ij}} \mid 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}\right\}$ for any $\gamma \in g$. Thus φ is injective. Since $\operatorname{dim}_{K} g=n^{2}, \varphi$ is bijective.

Now let $\gamma, \gamma^{\prime} \in g$, then

$$
\begin{aligned}
\gamma \gamma^{\prime}\left(\mathrm{f}_{\mathrm{ij}}\right) & =\left\{\left(\gamma \otimes \gamma^{\prime}\right) \circ \mathrm{m}^{*}\right\}\left(\mathrm{f}_{\mathrm{ij}}\right) \\
& =\left(\gamma^{\otimes} \gamma^{\prime}\right)\left[\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{ik}} \otimes \mathrm{f}_{\mathrm{kj}}\right]
\end{aligned}
$$

'Hence

$$
\begin{align*}
& =\sum_{\mathrm{k}=1}^{\mathrm{n}} \gamma\left(\mathrm{f}_{\mathrm{ik}}\right) \gamma^{\prime}\left(\mathrm{f}_{\mathrm{kj}}\right) . \\
\varphi\left(\left[\gamma, \gamma^{\prime}\right]\right) & =\varphi\left(\gamma \gamma^{\prime}-\gamma^{\prime} \gamma\right)=\left(\left(\gamma \gamma^{\prime}-\gamma^{\prime} \gamma\right)\left(\mathrm{f}_{\mathrm{ij}}\right)\right) \\
& =\left(\gamma \gamma^{\prime}\left(\mathrm{f}_{\mathrm{ij}}\right)\right)-\left(\gamma^{\prime} \gamma\left(\mathrm{f}_{\mathrm{ij}}\right)\right) \\
& =\left[\sum_{\mathrm{k}=1}^{\mathrm{n}} \gamma\left(\mathrm{f}_{\mathrm{ik}}\right) \gamma^{\prime}\left(\mathrm{f}_{\mathrm{kj}}\right)\right]-\left[\sum_{\mathrm{k}=1}^{\mathrm{n}} \gamma^{\prime}\left(\mathrm{f}_{\mathrm{ik}}\right) \gamma\left(\mathrm{f}_{\mathrm{kj}}\right)\right] \\
& =\varphi(\gamma) \varphi\left(\gamma^{\prime}\right)-\varphi\left(\gamma^{\prime}\right) \varphi(\gamma) \\
& =\left[\varphi(\gamma), \varphi\left(\gamma^{\prime}\right)\right]
\end{align*}
$$

for any $\gamma, \gamma^{\prime} \in g$.
The next proposition with Theorem 18.7 will show us that the Lie algebra of a given linear algebraic group is essentially a Lie subalgebra of $\mathscr{g}(\mathrm{n}, \mathrm{K})$ (see Example 19.13).
(19.14) Proposition. Let $\varphi: \mathrm{G} \rightarrow \mathrm{H}$ be a morphism of linear algebraic groups of G into H over K. Let $\mathscr{g}=\mathrm{T}(\mathrm{G})_{1}$ and $\mathscr{F}=\mathrm{T}(\mathrm{H})_{1}$ be Lie algebras of G and H respectively. Then
(i) $\widehat{\mathrm{d} \varphi}: \operatorname{Hom}_{\mathrm{K}}(\mathrm{K}[\mathrm{G}], \mathrm{K}) \longrightarrow \operatorname{Hom}_{\mathrm{K}}(\mathrm{K}[\mathrm{H}], \mathrm{K})$ is a K -algebra map, and $\mathrm{X} \longrightarrow \mathrm{X} \circ \varphi^{*}$
(ii) $\mathrm{d} \varphi: g_{\gamma} \longrightarrow \mathscr{H} \longrightarrow \gamma \circ \varphi^{*}$ (he a homomorphism of Lie algebras, where φ^{*} is the morphism of φ.

Proof. (i) It is clear that $\widehat{\mathrm{d} \varphi}$ is a well-defined K -linear map. Let e be the comorphism of $\begin{aligned} \mathrm{p}: \mathrm{G} & \longrightarrow \mathrm{G} \text {, then we have } \\ \mathrm{x} & \longrightarrow 1\end{aligned}$

$$
\begin{array}{rl}
\mathrm{e} \circ \varphi^{*} & \mathrm{~K}[\mathrm{H}] \xrightarrow[\mathrm{f}]{ } \xrightarrow{\varphi^{*}} \mathrm{~K}[\mathrm{G}] \xrightarrow{\mathrm{e}} \mathrm{~K} \circ \varphi \longrightarrow 1(\mathrm{c} \mathrm{~K}[\mathrm{G}]) . \\
(\mathrm{fo} \mathrm{\varphi})(1) \cdot 1
\end{array}
$$

Hence eo φ^{*} is the comorphism of $\mathrm{p}^{\prime}: \underset{\mathrm{x}}{\mathrm{H}} \longrightarrow \mathrm{H}$, because $\varphi(1)=1$. Thus $\widehat{\mathrm{d} \varphi}(\mathrm{e})=\left(\mathrm{p}^{\prime}\right)^{*}$.

Now let $X, Y \in \operatorname{Hom}_{K}(K[G], K)$, then

$$
\widehat{\mathrm{d} \varphi}(\mathrm{XY})=(\mathrm{XY}) \circ \varphi^{*}=(\mathrm{X} \otimes \mathrm{Y}) \circ \mathrm{m}^{*} \circ \varphi^{*}
$$

where $m: G \times G \rightarrow G$ is the multiplication of G. On the other hand

$$
\begin{aligned}
\widehat{\mathrm{d} \varphi}(\mathrm{X}) \widehat{\mathrm{d} \varphi}(\mathrm{Y}) & =\left(\mathrm{X} \circ \varphi^{*}\right)\left(\mathrm{Y} \circ \varphi^{*}\right) \\
& =\left\{\left(\mathrm{X} \circ \varphi^{*}\right) \otimes\left(\mathrm{Y} \circ \varphi^{*}\right)\right\} \circ \mathrm{m}^{*} \\
& =(\mathrm{X} \otimes \mathrm{Y}) \circ\left(\varphi^{*} \otimes \varphi^{*}\right) \circ \mathrm{m}^{*}
\end{aligned}
$$

where $\mathrm{m}^{\prime}: \mathrm{H} \times \mathrm{H} \rightarrow \mathrm{H}$ is the multiplication of H . Since the following diagram

is commutative, we have $\mathrm{m}^{*} \circ \varphi^{*}=\left(\varphi^{*} \otimes \varphi^{*}\right) \circ \mathrm{m}^{*}$, which implies

$$
\widehat{\mathrm{d} \varphi}(\mathrm{XY})=\widehat{\mathrm{d} \varphi}(\mathrm{X}) \widehat{\mathrm{d} \varphi}(\mathrm{Y})
$$

for any $X, Y \in \operatorname{Hom}_{K}(K[G], K)$.
(ii) is clear from (i).
Q.E.D.
(19.15) Proposition. Let G and H be linear algebraic groups over K. Let $\varphi: \mathrm{G} \rightarrow \mathrm{H}$ be a morphism of linear algebraic groups such that φ is an isomorphism of affine varieties of G onto $\varphi(\mathrm{G})$ (see Theorem 15.4). Then
(i) $\mathrm{d} \varphi: g \rightarrow \mathscr{H}$ is injective, where g and \mathscr{H} are Lie algebras of G and H respectively.
(ii) $\mathrm{d} \varphi(g)=\left\{\gamma \in \mathrm{T}(\mathrm{H})_{1} \mid \gamma(\mathscr{S}(\varphi(\mathrm{G}))=0\}\right.$.

Proof. (i) Since φ is an isomorphism of affine varieties of G onto $\varphi(\mathrm{G})$,

$$
\varphi^{*}: \mathrm{K}[\mathrm{H}] \rightarrow \mathrm{K}[\mathrm{G}]
$$

is surjective. Hence

$$
\mathrm{d} \varphi: \underset{\gamma}{g} \longrightarrow \gamma \circ \mathscr{H}^{\mathscr{B}}
$$

is injective.
(ii) Since Ker $\varphi^{*}=\mathscr{J}(\varphi(\mathrm{G}))$, we have

$$
\mathrm{d} \varphi(g) \subset\left\{\gamma \in \mathrm{T}(\mathrm{H})_{1} \mid \gamma(\mathscr{J}(\varphi(\mathrm{G}))=0\}\right.
$$

Let $\mathrm{X} \in \mathrm{T}(\mathrm{H})_{1}$ such that $\mathrm{X}\left(\operatorname{Ker} \varphi^{*}\right)=0$, then we can define a map

$$
\begin{aligned}
\gamma_{\mathrm{X}}: \mathrm{K}[\mathrm{G}] & \longrightarrow \mathrm{K}[\mathrm{H}] / \mathrm{Ker} \varphi^{*} \rightarrow \mathrm{~K} \\
\varphi^{*}(\mathrm{f}) & \longrightarrow \mathrm{f}+\mathrm{Ker} \varphi^{*} \longrightarrow \mathrm{X}(\mathrm{f})
\end{aligned},
$$

where $f \in K[H]$, which is well-defined and belongs to g. Since $d \varphi\left(\gamma_{X}\right)=\gamma_{X} \circ \varphi^{*}=X$, we have $X \in d \varphi(g)$.
Q.E.D.

20. Adjoint representations of linear algebraic groups

Let G be a linear algebraic group over K . Let

$$
\begin{aligned}
\mathrm{I}_{\mathrm{x}}: \mathrm{G} & \longrightarrow \mathrm{G} \\
\mathrm{~g} & \longrightarrow \mathrm{xgx}^{-1}
\end{aligned}
$$

be an inner automorphism of G defined by $x \in G$. Then I_{x} is a morphism of linear algebraic groups (see Lemma 14.6). Write Ad x for $d\left(I_{x}\right): g \rightarrow g$, where g is the Lie algebra of G. Then $A d x \in G L(g)$ for any $x \in G$, and we call the group homomorphism

$$
\begin{aligned}
\mathrm{Ad}: \mathrm{G} & \longrightarrow \mathrm{GL}(g) \\
\mathrm{x} & \longrightarrow \mathrm{Ad} \mathrm{x}
\end{aligned}
$$

the adjoint representation of G.
(20.1) Example. (We follow the same notation as in Example 14.2 and 19.13). Let $\mathrm{G}=\mathrm{GL}(\mathrm{n}, \mathrm{K})$ and $\mathscr{g}(\mathrm{n}, \mathrm{K})$ be the Lie algebra of G under the identification

$$
\begin{aligned}
& \mathrm{T}(\mathrm{G})_{1} \xlongequal{\cong} \mathscr{\longrightarrow} \mathscr{L}(\gamma(\mathrm{n}, \mathrm{~K}) \\
&\left(\gamma\left(\mathrm{f}_{\mathrm{ij}}\right)\right)
\end{aligned}
$$

(see Example 19.13). Then $\operatorname{Ad} \mathrm{x}(\gamma)=\mathrm{x} \gamma \mathrm{x}^{-1}$ for any $\gamma \in \mathscr{g}(\mathrm{n}, \mathrm{K})$ and $\mathrm{x} \in \mathrm{G}$.

Proof. Let $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{G}$ and $\mathrm{x}^{-1}=\left(\mathrm{z}_{\mathrm{ij}}\right) \in \mathrm{G}$. Then

$$
\begin{gathered}
\left\{\left(\mathrm{I}_{\mathrm{x}}\right)^{*}\left(\mathrm{f}_{\mathrm{ij}}\right)\right\}(\mathrm{y})=\mathrm{f}_{\mathrm{ij}}\left(\mathrm{xyx}^{-1}\right)=\sum_{\mathrm{l}}\left(\sum_{\mathrm{k}} \mathrm{x}_{\mathrm{ik}} \mathrm{y}_{\mathrm{kl}}\right) \mathrm{z}_{\mathrm{l} j} \\
=\sum_{\mathrm{k}, \mathrm{l}} \mathrm{x}_{\mathrm{ik}} \mathrm{y}_{\mathrm{kl}} \mathrm{z}_{\mathrm{lj}}=\sum_{\mathrm{k}, \mathrm{l}} \mathrm{x}_{\mathrm{ik}} \mathrm{z}_{\mathrm{lj}} \mathrm{f}_{\mathrm{kl}}(\mathrm{y})
\end{gathered}
$$

where $y=\left(y_{i j}\right) \in G$. Hence

$$
\left(I_{\mathrm{x}}\right)^{*}\left(\mathrm{f}_{\mathrm{ij}}\right)=\sum_{\mathrm{k}, \mathrm{l}} \mathrm{x}_{\mathrm{ik}} \mathrm{z}_{\mathrm{lj}} \mathrm{f}_{\mathrm{kl}}
$$

and

$$
\{\operatorname{Adx}(\gamma)\}\left(\mathrm{f}_{\mathrm{ij}}\right)=\gamma \circ\left(\mathrm{I}_{\mathrm{x}}\right)^{*}\left(\mathrm{f}_{\mathrm{ij}}\right)
$$

$$
=\gamma\left(\sum_{k, 1} \mathrm{x}_{\mathrm{ik}} z_{\mathrm{lj}} f_{\mathrm{k} 1}\right)=\sum_{\mathrm{k}, 1} \mathrm{x}_{\mathrm{ik}} \gamma\left(\mathrm{f}_{\mathrm{k} 1}\right) \mathrm{z}_{\mathrm{lj}}
$$

for any $\gamma \in \mathrm{T}(\mathrm{G})_{1}$. Thus we have shown that

$$
\{\operatorname{Adx}(\gamma)\}\left(\mathrm{f}_{\mathrm{ij}}\right)=\mathrm{x}\left(\gamma\left(\mathrm{f}_{\mathrm{ij}}\right)\right) \mathrm{x}^{-1}
$$

for any $\mathrm{x} \in \mathrm{G}$ and $\gamma \in \mathrm{T}(\mathrm{G})_{1}$.
Q.E.D.

Remark to Example 20.1. Following the same notation as in Example 19.13. Let $\mathrm{G}=\mathrm{GL}(\mathrm{n}, \mathrm{K}), g=\mathrm{T}(\mathrm{GL}(\mathrm{n}, \mathrm{K}))_{1}$ and $\mathrm{x} \in \mathrm{G}$. Then we have got the following commutative diagram:

Lie algebra homomorphism: $\left(\mathrm{m}_{\mathrm{ij}}\right) \longrightarrow \mathrm{x}\left(\mathrm{m}_{\mathrm{ij}}\right) \mathrm{x}^{-1}$
(20.2) Proposition. (i) Let (U, A) and $(\mathrm{V}, \mathrm{B}) \in \mathscr{A}(\mathrm{K})$ and $(\mathrm{u}, \mathrm{v}) \in \mathrm{U} \times \mathrm{V}$. Let $\begin{aligned} & \iota_{1}: U\left.\mathrm{U} \longrightarrow \mathrm{UxV} \text { and } \iota_{2}: V \longrightarrow \mathrm{X}, \mathrm{v}\right) \\ & \mathrm{y} \longrightarrow(\mathrm{u}, \mathrm{y})\end{aligned}$ be two injective morphisms as in the proof of Proposition 4.8 and

$$
\begin{aligned}
\varphi: \mathrm{T}(\mathrm{U} \times \mathrm{V})_{(\mathrm{u}, \mathrm{v})} & \stackrel{ }{\mathrm{T}}(\mathrm{U})_{\mathrm{u}}+\mathrm{T}(\mathrm{~V})_{\mathrm{v}} \\
\eta & \longrightarrow\left(\eta \circ \pi_{1}^{*}, \eta \circ \pi_{2}^{*}\right)
\end{aligned}
$$

be also as in Proposition 4.8, where $\pi_{1}: \mathrm{U} \times \mathrm{V} \rightarrow \mathrm{U}$ and $\pi_{2}: \mathrm{U} \times \mathrm{V} \rightarrow \mathrm{V}$ are the projections. Then for any $\left(\eta_{1}, \eta_{2}\right) \in \mathrm{T}(\mathrm{U})_{\mathrm{u}} \dot{+} \mathrm{T}(\mathrm{V})_{\mathrm{v}}$ we have

$$
\varphi\left(\eta_{1} \circ \iota_{1}^{*}+\eta_{2} \circ \iota_{2}^{*}\right)=\left(\eta_{1}, \eta_{2}\right)
$$

and

$$
\left(\eta_{1} \circ \iota_{1}^{*}+\eta_{2} \circ \iota_{2}^{*}\right)(\mathrm{f} \otimes \mathrm{~g})=\eta_{1}(\mathrm{f}) \mathrm{g}(\mathrm{v})+\mathrm{f}(\mathrm{u}) \eta_{2}(\mathrm{~g}),
$$

where $f \in A$ and $g \in B$.

We often identify $\left(\eta_{1}, \eta_{2}\right) \in \mathrm{T}(\mathrm{U})_{\mathrm{u}}+\mathrm{T}(\mathrm{V})_{\mathrm{v}}$ with $\eta_{1} \circ \iota_{1}^{*}+\eta_{2} \circ \iota_{2}{ }^{*} \in \mathrm{~T}(\mathrm{U} \times \mathrm{V})_{(\mathrm{u}, \mathrm{v})}$.
(ii) Let G be a linear algebraic group over K with the operations $m: G \times G \longrightarrow G$

$$
(x, y) \rightarrow x y
$$

and $\begin{aligned} \tau: G & \longrightarrow G \\ x & \longrightarrow x^{-1}\end{aligned}$ and the Lie algebra $g=T(G)_{1}$. Then

$$
(\mathrm{dm})_{(1,1)}\left(\gamma_{1}, \gamma_{2}\right)=\gamma_{1}+\gamma_{2} \text { for any }\left(\gamma_{1}, \gamma_{2}\right) \in g \dot{+} g
$$

and

$$
(\mathrm{d} \tau)_{1}(\gamma)=-\gamma \text { for any } \gamma \in \mathscr{g}
$$

Proof. (i) $\left(\eta_{1} \circ \iota_{1}{ }^{*}+\eta_{2} \circ \iota_{2}{ }^{*}\right)(\mathrm{f} \otimes \mathrm{g})=\eta_{1} \circ \iota_{1}{ }^{*}(\mathrm{f} \otimes \mathrm{g})+\eta_{2} \circ \iota_{2}{ }^{*}(\mathrm{f} \otimes \mathrm{g})=\eta_{1}(\mathrm{~g}(\mathrm{v}) \cdot \mathrm{f})+\eta_{2}(\mathrm{f}(\mathrm{u}) \cdot \mathrm{g})$ $=\eta_{1}(\mathrm{f}) \mathrm{g}(\mathrm{v})+\mathrm{f}(\mathrm{u}) \eta_{2}(\mathrm{~g})$.
(ii) Let $f \in K[G]$ and assume that

$$
m^{*}(f)=\sum_{i} f_{i} \otimes \mathrm{~g}_{\mathrm{i}} \in \mathrm{~K}[\mathrm{G}] \otimes \mathrm{K}[\mathrm{G}]
$$

Then for any $\left(\gamma_{1}, \gamma_{2}\right) \in g \dot{+} g$ we have

$$
\begin{aligned}
& \left\{(\mathrm{dm})_{(1,1)}\left(\gamma_{1}, \gamma_{2}\right)\right\}(\mathrm{f})=\left(\gamma_{1}, \gamma_{2}\right)\left(\mathrm{m}^{*}(\mathrm{f})\right)=\left(\gamma_{1}, \gamma_{2}\right)\left(\sum_{\mathrm{i}} \mathrm{f}_{\mathrm{i}} \otimes \mathrm{~g}_{\mathrm{i}}\right) \\
= & \sum_{\mathrm{i}} \gamma_{1}\left(\mathrm{f}_{\mathrm{i}}\right) \mathrm{g}_{\mathrm{i}}(1)+\sum_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}(1) \gamma_{2}\left(\mathrm{~g}_{\mathrm{i}}\right) \quad \text { (see (i)) } \\
= & \gamma_{1}\left(\mathrm{R}_{1}(\mathrm{f})\right)+\left(\mathrm{f}_{*} \gamma_{2}\right)(1) \quad \text { (see the proof of Lemma } 18.4 \text { and (19.9)) } \\
= & \gamma_{1}(\mathrm{f})+\gamma_{2}(\mathrm{f}) .
\end{aligned}
$$

Now let $\left(1_{G}, \tau\right)$ be a morphism of G into $G \times G$ which takes $x \in G$ to $\left(x, x^{-1}\right)$, then $m \circ\left(1_{G}, \tau\right)$ is also a morphism of G into G the differential of which at 1 is zero. Thus we have $\mathrm{d}\left(\mathrm{m} \circ\left(1_{G}, \tau\right)\right)_{1}=(\mathrm{dm})_{(1,1)} \circ \mathrm{d}\left(1_{G}, \tau\right)_{1}=0$. Let $\gamma \in \mathscr{g}$, then for each $f \otimes g \in K[G] \otimes K[G]$

$$
\begin{gathered}
\mathrm{d}\left(1_{\mathrm{G}}, \tau\right)_{1}(\gamma)(\mathrm{f} \otimes \mathrm{~g})=\gamma \circ\left(1_{\mathrm{G}}, \tau\right)^{*}(\mathrm{f} \otimes \mathrm{~g})=\gamma\left(1_{\mathrm{G}}{ }^{*}(\mathrm{f}) \tau^{*}(\mathrm{~g})\right) \\
={1_{\mathrm{G}}}^{*}(\mathrm{f})(1) \gamma\left(\tau^{*}(\mathrm{~g})\right)+\gamma\left(1_{\mathrm{G}}{ }^{*}(\mathrm{f})\right) \tau^{*}(\mathrm{~g})(1)
\end{gathered}
$$

Since $\left(\gamma,(\mathrm{d} \tau)_{1}(\gamma)\right)(\mathrm{f} \otimes \mathrm{g})=\gamma(\mathrm{f}) \mathrm{g}(1)+\mathrm{f}(1)(\mathrm{d} \tau)_{1}(\gamma)(\mathrm{g})$ from (i), we have $\mathrm{d}\left(1_{\mathrm{G}}, \tau\right)_{1}(\gamma)=\left(\gamma,(\mathrm{d} \tau)_{1}(\gamma)\right)$.
Hence for all $\gamma \in g$ we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~m} \circ\left(1_{\mathrm{G}}, \tau\right)\right)_{1}(\gamma)=(\mathrm{dm})_{(1,1)} \circ \mathrm{d}\left(1_{\mathrm{G}}, \tau\right)_{1}(\gamma) \\
= & (\mathrm{dm})_{(1,1)}\left(\gamma,(\mathrm{d} \tau)_{1}(\gamma)\right)=\gamma+(\mathrm{d} \tau)_{1}(\gamma)=0
\end{aligned}
$$

which implies $(\mathrm{d} \tau)_{1}(\gamma)=-\gamma$ for any $\gamma \in \mathscr{g}$.
Q.E.D.
(20.3) Lemma. (i) (see Exercise 11 on p.24). Let (U, A), ($\left.\mathrm{U}^{\prime}, \mathrm{A}^{\prime}\right),(\mathrm{V}, \mathrm{B})$ and $\left(V^{\prime}, B^{\prime}\right) \in \mathscr{A}(K)$ and $f: U \longrightarrow U^{\prime}, g: V \longrightarrow V^{\prime}$ be morphisms, then $f \times g:\left(u \times V \longrightarrow U^{\prime} \longrightarrow V^{\prime}\right) \rightarrow\left(V^{\prime}, v^{\prime}\right)$ is also a morphism with the comorphism

$$
\begin{aligned}
(f \times g)^{*}=f^{*} \otimes g^{*}: & A^{\prime} \otimes B^{\prime} \\
a^{\prime} \otimes b^{\prime} & \longrightarrow \mathrm{A}
\end{aligned}
$$

and the differential

$$
\begin{aligned}
\mathrm{d}(\mathrm{f} \times \mathrm{g})_{(\mathrm{u}, \mathrm{v})}=\left(\mathrm{df} f_{\mathrm{u}}, \mathrm{dg}_{\mathrm{v}}\right): \mathrm{T}(\mathrm{U})_{\mathrm{u}} \dot{+} \mathrm{T}(\mathrm{~V})_{\mathrm{v}} & \longrightarrow \mathrm{~T}\left(\mathrm{U}^{\prime}\right)_{u^{\prime}} \dot{+} \mathrm{T}\left(\mathrm{~V}^{\prime}\right)_{v^{\prime}} \\
(\gamma, \delta) & \left(\mathrm{d} \mathrm{f}_{\mathrm{u}}(\gamma), \mathrm{dg}_{\mathrm{v}}(\delta)\right)
\end{aligned}
$$

(ii) Let $(\mathrm{U}, \mathrm{A}),(\mathrm{V}, \mathrm{B}) \quad$ and $(\mathrm{W}, \mathrm{C}) \in \mathscr{6}(\mathrm{K}) \quad$ and $\quad \xi: \mathrm{W} \rightarrow \mathrm{U}, \quad \eta: \mathrm{W} \rightarrow \mathrm{V} \quad$ be morphisms, then

$$
\begin{aligned}
\chi: W & \longrightarrow U \times V \\
\mathrm{w} & \longrightarrow(\xi(\mathrm{w}), \eta(\mathrm{w}))
\end{aligned}
$$

is also a morphism (see Proposition 3.3) with the comorphism

$$
\begin{aligned}
\chi^{*}: A \otimes B & \longrightarrow C \\
a \otimes b & \longrightarrow \xi^{*}(\mathrm{a}) \eta^{*}(\mathrm{~b})
\end{aligned}
$$

and the differential

$$
\begin{aligned}
(\mathrm{d} \chi)_{\mathrm{w}}: \mathrm{T}(\mathrm{~W})_{\mathrm{w}} & \longrightarrow \mathrm{~T}(\mathrm{U})_{\xi(\mathrm{w})}+\mathrm{T}(\mathrm{~V})_{\eta(\mathrm{w})} \\
& \longrightarrow\left((\mathrm{d} \xi)_{\mathrm{w}}(\gamma), \quad(\mathrm{d} \eta)_{\mathrm{w}}(\gamma)\right)
\end{aligned}
$$

Proof. (ii) Let $\gamma \in \mathrm{T}(\mathrm{W})_{\mathrm{w}}$, then

$$
(\mathrm{d} \chi)_{\mathrm{w}}(\gamma)(\mathrm{a} \otimes \mathrm{~b})=\gamma \circ \chi^{*}(\mathrm{a} \otimes \mathrm{~b})=\gamma\left(\xi^{*}(\mathrm{a}) \eta^{*}(\mathrm{~b})\right)
$$

for all $a \otimes b \in A \otimes B$. Thus

$$
\begin{gathered}
(\mathrm{d} \chi)_{\mathrm{w}}(\gamma)(\mathrm{a} \otimes \mathrm{~b})=\left\{\xi^{*}(\mathrm{a})(\mathrm{w})\right\}\left\{\gamma\left(\eta^{*}(\mathrm{~b})\right)\right\}+\left\{\gamma\left(\xi^{*}(\mathrm{a})\right)\right\} \eta^{*}(\mathrm{~b})(\mathrm{w}) \\
=\left\{(\mathrm{d} \xi)_{\mathrm{w}}(\gamma)(\mathrm{a})\right\} \mathrm{b}(\eta(\mathrm{w}))+\mathrm{a}(\xi(\mathrm{w}))\left\{(\mathrm{d} \eta)_{\mathrm{w}}(\gamma)(\mathrm{b})\right\}=\left((\mathrm{d} \xi)_{\mathrm{w}}(\gamma),(\mathrm{d} \eta)_{\mathrm{w}}(\gamma)\right)(\mathrm{a} \otimes \mathrm{~b})
\end{gathered}
$$

for all $a \otimes b \in A \otimes B$.
Q.E.D.
(20.4) Proposition. We follow the same notation as in Example 20.1. Let $\mathrm{G}=\mathrm{GL}(\mathrm{n}, \mathrm{K})$ and $\mathscr{g}(\mathrm{n}, \mathrm{K})$ be the Lie algebra of G inter the identification

Then
 $1_{x}: \underset{\gamma}{\mathrm{g} \longrightarrow \mathrm{x} \gamma} \underset{\mathrm{g}}{\mathrm{g}}$. The differential of 1 at 1 is $\hat{\mathrm{i}}: \underset{\gamma \longrightarrow \mathrm{l} \gamma}{\longrightarrow} \boldsymbol{f}(g)$, where $\hat{\mathrm{l}}_{\gamma}: g \longrightarrow \underset{\gamma}{\longrightarrow} \underset{\gamma \delta}{ }$
and $g(g)=\operatorname{End}_{K}(g)$.
(ii) $\quad \mathrm{r}: \mathrm{G} \longrightarrow \mathrm{GL}(g)$ is a morphism of affine varieties, where $\mathrm{r}_{\mathrm{x}}: \underset{\gamma}{\mathrm{g}} \longrightarrow \underset{\gamma \mathrm{x}}{ } \underset{\mathrm{x}}{\boldsymbol{g}}$. The differential of r at 1 is $\hat{\mathrm{r}}: \underset{\gamma \longrightarrow \mathrm{r}_{\gamma}}{\longrightarrow} g(g)$, where $\hat{\mathrm{r}}_{\gamma}: g \longrightarrow g_{\delta \gamma}$.
(iii) Ad: $\begin{aligned} \mathrm{G} & \longrightarrow \operatorname{GL}(g) \text { is a morphism of linear algebraic groups whose differential at } \\ x & \operatorname{Ad} x\end{aligned}$ 1 is ad, i.e., $d(A d)_{1}=a d$ where

$$
(\operatorname{ad} X)(Y)=X Y-Y X \text { for any } X, Y \in g
$$

Proof. (i) It is clear that 1 is a well-defined map of G into $G L(g)$. Let $E_{s t}$ be the element g with 1 in the (s, t) position and zeros elsewhere. Let x be an $n \times n$
matrix over K , then the ($\mathrm{i}, \mathrm{j})$ th component of $\mathrm{x} \mathrm{E}_{\mathrm{st}}= \begin{cases}0 & \text { if } \mathrm{j} \neq \mathrm{t} \\ \mathrm{x}_{\mathrm{is}} & \text { if } \mathrm{j}=\mathrm{t} .\end{cases}$
Thus the matrix of l_{x}, where $x \in G$, with respect to the basis $\left\{E_{s t}\right\}$ of g is as follows.

The $\{(\mathrm{i}, \mathrm{j}),(\mathrm{s}, \mathrm{t})\}$ th component of the matrix of $\mathrm{l}_{\mathrm{x}}=\left\{\begin{array}{lll}0 & \text { if } & \mathrm{j} \neq \mathrm{t} \\ \mathrm{x}_{\mathrm{i}} & \text { if } & \mathrm{j}=\mathrm{t}\end{array}\right.$.
Hence the comorphism 1^{*} of l is given by the following formula
and

$$
\begin{gathered}
l^{*}: K[G L(g)] \rightarrow K[G] \\
l^{*}\left(f_{i j, s t}\right)=\left\{\begin{array}{lll}
0 & \text { if } & j \neq t \\
f_{\text {is }} & \text { if } & j=t
\end{array}\right.
\end{gathered}
$$

which implies 1 is a morphism.

Further we have

$$
(\mathrm{dl})_{1}(\gamma)\left(\mathrm{f}_{\mathrm{i}, \mathrm{st}}\right)=\gamma\left(\mathrm{l}^{*}\left(\mathrm{f}_{\mathrm{ij}, \mathrm{st}}\right)\right)=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{j} \neq \mathrm{t} \\
\gamma\left(\mathrm{f}_{\mathrm{is}}\right) & \text { if } \mathrm{j}=\mathrm{t}
\end{array} \text { for any } \gamma \in \mathfrak{g},\right.
$$

which implies $(\mathrm{dl})_{1}(\gamma)=\hat{1}_{\gamma}$.
(ii) (Exercise).
(iii) Since

$$
\begin{aligned}
& A d: G \xrightarrow{\left(1_{G}, \tau\right)} G \times G \xrightarrow{l \times r_{r}} G L(g) \times G L(g) \xrightarrow{m} G L(g), \\
& x \longrightarrow\left(x, x^{-1}\right) \longrightarrow\left(1_{x}, r_{x-1}\right) \longrightarrow 1_{x} \circ r_{x^{-1}}
\end{aligned}
$$

we have

$$
\mathrm{d}(\mathrm{Ad})_{1}=\mathrm{d}\left(\mathrm{~m} \circ(1 \times \mathrm{r}) \circ\left(1_{\mathrm{G}}, \tau\right)\right)_{1}=\mathrm{dm}_{\left(1_{g^{\prime}}, \mathcal{g}^{\prime}\right)} \circ \mathrm{d}\left(\mathrm{l}_{\times \mathrm{r}}\right)_{(1,1)} \circ \mathrm{d}\left(1_{\mathrm{G}}, \tau\right)_{1}
$$

Hence from (i), (ii), Proposition 20.2 and Lemma 20.3 we have

$$
\begin{aligned}
\mathrm{d}(\operatorname{Ad})_{1}(\gamma) & =\mathrm{dm}_{\left(1_{g}, 1_{g}\right)} \circ \mathrm{d}(\mathrm{l} \times \mathrm{r})_{(1,1)}(\gamma,-\gamma) \\
& =\mathrm{dm}_{\left(1_{g}, 1_{g}\right)}\left(\hat{\mathrm{l}}_{\gamma^{\prime}}-\hat{\mathrm{r}}_{\gamma}\right) \\
& =\hat{\mathrm{l}}_{\gamma}-\hat{\mathrm{r}}_{\gamma} \text { for any } \quad \gamma \in g .
\end{aligned}
$$

Thus $\left\{\mathrm{d}(\mathrm{Ad})_{1}(\gamma)\right\}\left(\gamma^{\prime}\right)=\gamma \gamma^{\prime}-\gamma^{\prime} \gamma$ for any $\gamma, \gamma^{\prime} \in g$, i.e., $\mathrm{d}(\mathrm{Ad})_{1}(\gamma)=\mathrm{ad} \gamma$ for any $\gamma \in g$.
Q.E.D.

Exercise 59. Prove Proposition 20.4.ii.
(20.5) Lemma. Let H be a closed subgroup of a linear algebraic group G over K and φ be a rational representation of G into $G L(V)$, where V is a finite dimensional vector space over K . Let W be a $\varphi(\mathrm{H})$-invariant subspace of V , i.e., $\varphi(\mathrm{h})(\mathrm{W}) \subset \mathrm{W}$ for all $\mathrm{h} \in \mathrm{H}$. Then
(i) $\quad \varphi_{0}: \mathrm{H} \rightarrow \mathrm{GL}(\mathrm{W})$, defined by $\varphi_{0}(\mathrm{~h})=\left.\varphi(\mathrm{h})\right|_{\mathrm{W}}(\mathrm{h} \in \mathrm{H})$, is a rational representation of H over K .
(ii) Let \mathscr{H} and g be the Lie algebras of H and G respectively, then we can embed \mathscr{H} into g by $\mathrm{d} \iota$ where $\iota: \mathrm{H} \subset \mathrm{G}$ is the inclusion map of H into G, and

$$
\begin{gathered}
\mathrm{d} \varphi(\gamma)(\mathrm{W}) \subset \mathrm{W} \\
\left.\mathrm{~d} \varphi(\gamma)\right|_{W}=\mathrm{d} \varphi_{0}(\gamma)
\end{gathered}
$$

and
for any $\gamma \in \mathscr{H}$, where $\mathrm{d} \varphi: g \rightarrow \mathscr{g}(\mathrm{~V})$ and $\mathrm{d} \varphi_{0}: \mathscr{F} \rightarrow \mathscr{g}(\mathrm{W})$ be the differentials of g and \mathscr{G} into the Lie algebras of linear transformations of V and W , i.e., $\mathscr{g}(\mathrm{V})=\operatorname{End}_{\mathrm{K}}(\mathrm{V})$ and $\mathscr{g}(\mathrm{W})=\mathrm{End}_{\mathrm{K}}(\mathrm{W})$ respectively.

Proof. Let $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{s}+1}, \ldots, \mathrm{v}_{\mathrm{t}}\right\}$ be a K -basis of V such that $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{s}}\right\}$ forms a K-basis of W. We identify $\mathrm{GL}(\mathrm{V})$ with $\mathrm{GL}(\mathrm{t}, \mathrm{K})$ and $\mathrm{GL}(\mathrm{W})$ with $\mathrm{GL}(\mathrm{s}, \mathrm{K})$ with respect to these basis. Let $\left(\varphi(\mathrm{h})_{\mathrm{ij}}\right)$ be a t×t matrix such that

$$
\begin{aligned}
& \varphi: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{~V}) \\
& \mathrm{U} \\
& \mathrm{H} \\
& \mathrm{~h} \longrightarrow\left[\varphi(\mathrm{~h}): \mathrm{v}_{\mathrm{j}} \longrightarrow \sum_{\mathrm{i}=1}^{\mathrm{t}} \varphi(\mathrm{~h})_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}}\right]
\end{aligned}
$$

and $\left(\varphi_{0}(\mathrm{~h})_{\mathrm{ij}}\right)$ be an $\mathrm{s} \times \mathrm{s}$ matrix such that

$$
\begin{aligned}
\varphi_{0}: & \mathrm{H} \longrightarrow \mathrm{GL}(\mathrm{~W}) \\
\mathrm{h} & \longrightarrow\left[\left.\varphi(\mathrm{~h})\right|_{\mathrm{W}}: \mathrm{v}_{\mathrm{j}} \rightarrow \sum_{\mathrm{i}=1}^{\mathrm{s}} \varphi_{0}(\mathrm{~h})_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}}\right],
\end{aligned}
$$

then we have

$$
\left(\varphi(\mathrm{h})_{\mathrm{ij}}\right)=\sqrt[s]{\mathrm{s} /}\left[\begin{array}{c|c}
\varphi_{0}(\mathrm{~h})_{\mathrm{ij}} & * \\
\hline 0 & *
\end{array}\right]
$$

(i) It is clear that φ_{0} is a group homomorphism. Since φ is a rational representation, all the maps
where

$$
\begin{aligned}
\varphi_{\mathrm{ij}}: \mathrm{G} & \longrightarrow \mathrm{~K} \\
\mathrm{~g} & \longrightarrow \varphi(\mathrm{~g})_{\mathrm{ij}}
\end{aligned}
$$

$$
\varphi(\mathrm{g}): \mathrm{v}_{\mathrm{j}} \longrightarrow \sum_{\mathrm{i}=1}^{\mathrm{t}} \varphi(\mathrm{~g})_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}}
$$

belong to $\mathrm{K}[\mathrm{G}](1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{t})$ from Proposition 18.2. Hence we have $\left(\varphi_{0}\right)_{\mathrm{ij}} \in \cdot \mathrm{K}[\mathrm{H}]$ for any $1 \leq i, j \leq s$, which shows that φ_{0} is a rational representation.
(ii) Since the inclusion map $\iota: \mathrm{H} \subset \mathrm{G}$ has the surjective comorphism $\iota^{*}: \mathrm{K}[\mathrm{G}] \rightarrow \mathrm{K}[\mathrm{H}]$,

$$
\underset{\gamma}{\mathrm{d} \ell: \mathscr{B}} \mathrm{C} q\left[\mathrm{~d} \iota(\gamma): \mathrm{f} \rightarrow \gamma\left(\left.\mathrm{f}\right|_{\mathrm{H}}\right)\right]
$$

is an injective Lie algebra homomorphism, where $\mathrm{f} \in \mathrm{K}[\mathrm{G}]$. Let $\gamma \in \mathscr{B}$, then we have

$$
\begin{aligned}
\left(\mathrm{d} \varphi(\mathrm{~d} \iota(\gamma))\left(\mathrm{f}_{\mathrm{ij}}\right)\right) & =\left(\gamma \circ(\varphi \circ \iota)^{*}\left(\mathrm{f}_{\mathrm{ij}}\right)\right) \\
& =\sqrt[s]{\mathrm{s} /}\left[\begin{array}{c|c}
\mathrm{d} \varphi_{0}(\gamma)\left(\mathrm{f}^{\prime}{ }_{\mathrm{ij}}\right) & * \\
\hline 0 & *
\end{array}\right]
\end{aligned}
$$

because $(\varphi \circ \iota)^{*}\left(f_{\mathrm{ij}}\right)=\varphi_{0}{ }^{*}\left(\mathrm{f}^{\prime}{ }_{\mathrm{ij}}\right) \quad$ for $\quad 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{s}$, where $\quad \mathrm{K}[\mathrm{GL}(\mathrm{V})]=\mathrm{K}\left[\mathrm{f}_{\mathrm{ij}}, \delta \mid\right.$ $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{t}]$ and $\mathrm{K}[\mathrm{GL}(\mathrm{W})]=\mathrm{K}\left[\mathrm{f}^{\prime}{ }_{\mathrm{ij}}, \delta^{\prime} \mid 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{s}\right] \quad$ according to the notation in Example 14.2. Hence
and

$$
\mathrm{d} \varphi(\mathrm{~d} \iota(\gamma))(\mathrm{W}) \subset \mathrm{W}
$$

for any $\gamma \in \mathscr{H}$. Q.E.D.
(20.6) Theorem. Let G be a linear algebraic group over K with the Lie algebra g. Let $\operatorname{Ad} x=d\left(I_{x}\right)$ for $x \in G$. Then
(i) Ad: $\begin{array}{rl}\mathrm{G} & \longrightarrow \mathrm{GL}(g) \text { is a morphism of linear algebraic groups, and } \\ \mathrm{x} & \mathrm{Ad} x\end{array}$
(ii) $\left.\quad \mathrm{d}(\mathrm{Ad})_{1}=\mathrm{ad}: q \longrightarrow q(g) \quad \underline{\mathrm{X}} \longrightarrow \mathrm{qad}: \mathrm{Y} \rightarrow[\mathrm{X}, \mathrm{Y}]\right)$, where $\mathrm{X}, \mathrm{Y} \in g$ and $g(g)=\operatorname{End}_{\mathrm{K}}(g)$.

Proof. (i) Let φ be an embedding of G into $G L(n, K)$ for some n as in Theorem 18.7. Since $\varphi: \mathrm{G} \cong \varphi(\mathrm{G})$ is an isomorphism of affine varieties, $\varphi^{*}: \mathrm{K}[\mathrm{GL}(\mathrm{n}, \mathrm{K})] \rightarrow \mathrm{K}[\mathrm{G}]$ is surjective and $\begin{aligned} \mathrm{d} \varphi: \underset{\gamma}{\boldsymbol{g}} \underset{\gamma}{\rightarrow} \underset{\gamma 0 \varphi^{*}}{g}(\mathrm{n}, \mathrm{K}) \text { is injective. }\end{aligned}$

From Proposition 20.4 we have
where

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{Ad}^{\mathrm{GL}}\right)_{1} & =\mathrm{ad}^{\mathrm{GL}}, \\
\mathrm{Ad}^{\mathrm{GL}}: \mathrm{GL}(\mathrm{n}, \mathrm{~K}) & \longrightarrow \mathrm{GL}(g l(\mathrm{n}, \mathrm{~K})) . \\
\mathrm{x} & \longrightarrow \mathrm{Ad}_{\mathrm{x}}^{\mathrm{GL}}
\end{aligned}
$$

In case of $G=G L(n, K)$ we write $A d^{G L}$ and $a d^{G L}$ for $A d$ and ad, respectively. Now let $\mathrm{g} \in \mathrm{G}$ and $\hat{\mathrm{I}}_{\varphi(\mathrm{g})}: \mathrm{GL}(\mathrm{n}, \mathrm{K}) \underset{\mathrm{x}}{\rightarrow \rightarrow \varphi(\mathrm{g}) \mathrm{x}(\mathrm{n}, \mathrm{K})} \underset{\varphi(\mathrm{g})^{-1}}{ }$, then $\mathrm{d}\left(\hat{\mathrm{I}}_{\varphi(\mathrm{g})} \circ \varphi\right)=\mathrm{d}\left(\hat{\mathrm{I}}_{\varphi(\mathrm{g})}\right) \circ \mathrm{d} \varphi=$ $\mathrm{d}\left(\mathrm{I}_{\varphi(\mathrm{g})}\right) \circ \mathrm{d} \varphi$ where $1_{\varphi(\mathrm{g})}: \varphi(\mathrm{G}) \longrightarrow \varphi(\mathrm{G}) \quad \underset{\mathrm{x}}{\longrightarrow(\mathrm{g}) \mathrm{x} \varphi(\mathrm{g})^{-1}}$. . Thus for each $\mathrm{g} \in \mathrm{G}$ we have

$$
\mathrm{Ad}_{\varphi(\mathrm{g})}^{\mathrm{GL}}(\mathrm{~d} \varphi(g))=\mathrm{d}\left(\hat{\mathrm{I}}_{\varphi(\mathrm{g})}\right) \circ \mathrm{d} \varphi(g)=\mathrm{d}\left(\mathrm{I}_{\varphi(\mathrm{g})}\right)(\mathrm{d} \varphi(g)) \subset \mathrm{d} \varphi(g)
$$

Hence $\mathrm{d} \varphi(g)$ is an $\mathrm{Ad}^{\mathrm{GL}}(\varphi(\mathrm{G}))$-invariant space of $\mathscr{g}(\mathrm{n}, \mathrm{K})$. From Lemma 20.5

$$
\begin{aligned}
\operatorname{Ad}: \varphi(\mathrm{G}) & \longrightarrow \mathrm{GL}(\mathrm{~d} \varphi(g)) \\
\varphi(\mathrm{g}) & \left.\longrightarrow \operatorname{Ad}^{G \mathrm{~L}} \varphi(\mathrm{~g})\right|_{\mathrm{d} \varphi(g)}
\end{aligned}
$$

is a morphism of linear algebraic groups, because

$$
\left.\operatorname{Ad}^{\mathrm{GL}} \varphi(\mathrm{~g})\right|_{\mathrm{d} \varphi(g)}=\mathrm{d}\left(\mathrm{I}_{\varphi(\mathrm{g})}\right)=\mathrm{Ad}_{\varphi(\mathrm{g})}
$$

(ii) Since $\left.\mathrm{d}\left(\mathrm{Ad}^{\mathrm{GL}}\right)(\mathrm{d} \varphi(\gamma))\right|_{\mathrm{d} \varphi(g)}=\mathrm{d}(\mathrm{Ad})(\mathrm{d} \varphi(\gamma))$ for each $\gamma \in g$ from Lemma 20.5, we have

$$
\mathrm{d}(\mathrm{Ad})(\mathrm{d} \varphi(\gamma))=\left.\mathrm{ad}^{\mathrm{GL}}(\mathrm{~d} \varphi(\gamma))\right|_{\mathrm{d} \varphi(g)}=\operatorname{ad}(\mathrm{d} \varphi(\gamma))
$$

for any $\gamma \in g$.
Q.E.D.
(20.7) Proposition. Let (G,K[G]) be a linear algebraic group over K with Lie algebra g, and V be a finite dimensional left KG-submodule of $K[G]$ (see Proposition 18.5). Let φ be the rational representation of G into $G L(V)$ afforded by V and its K-basis $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$, i.e.,

$$
\mathrm{g}^{*}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)\left[\begin{array}{c}
\varphi_{11}(\mathrm{~g}), \varphi_{12}(\mathrm{~g}), \ldots, \varphi_{1 \mathrm{n}}(\mathrm{~g}) \\
\varphi_{2}(\mathrm{~g}), \ldots \ldots \ldots ., \varphi_{2 \mathrm{n}}(\mathrm{~g}) \\
\vdots \\
\varphi_{\mathrm{n}}(\mathrm{~g}), \ldots \ldots \ldots ., \varphi_{\mathrm{nn}}(\mathrm{~g})
\end{array}\right]
$$

where $\varphi_{\mathrm{ij}} \in \mathrm{K}[\mathrm{G}]$ for any $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$. Then

$$
\mathrm{d} \varphi(\gamma)=\# \gamma \text { for any } \gamma \in g
$$

where $(\mathrm{v} * \gamma)(\mathrm{g})=\gamma\left(\mathrm{L}_{\mathrm{g}}(\mathrm{v})\right)(\mathrm{v} \in \mathrm{V}$ and $\mathrm{g} \in \mathrm{G})$ (see (19.9)).

Proof. Let $\mathrm{m}: \mathrm{G} \times \mathrm{G} \longrightarrow \mathrm{G}$, then from the Remark to Proposition 18.5 we have $(x, y) \longrightarrow x y$

$$
m^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{v}_{\mathrm{j}} \otimes \varphi_{\mathrm{ji}}
$$

for any $1 \leq i \leq n$. Hence we have

$$
\mathrm{v}_{\mathrm{i} *} \gamma=\sum_{\mathrm{j}=1}^{\mathrm{n}} \gamma\left(\varphi_{\mathrm{ji}}\right) \mathrm{v}_{\mathrm{j}}
$$

Since

$$
\mathrm{d} \varphi(\gamma)=\gamma \circ \varphi^{*}: \mathrm{f}_{\mathrm{ij}} \rightarrow \gamma\left(\varphi_{\mathrm{ij}}\right)
$$

for any $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$ where $\mathrm{K}[\mathrm{GL}(\mathrm{V})]=\mathrm{K}\left[\mathrm{f}_{\mathrm{ij}}, \delta \mid 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}\right] \quad$ as in Example 14.2, we have

$$
\mathrm{d} \varphi(\gamma)=* \gamma \text { for any } \gamma \in g
$$

Q.E.D.
(20.8) Proposition. Let $\left(\mathrm{G}_{\mathrm{i}}, \mathrm{K}\left[\mathrm{G}_{\mathrm{i}}\right]\right)(\mathrm{i}=1,2)$ be linear algebraic groups over K with Lie algebras g_{i}. Let

$$
\varphi_{\mathrm{i}}: \mathrm{G}_{\mathrm{i}} \longrightarrow \mathrm{GL}\left(\mathrm{~V}_{\mathrm{i}}\right) \quad(\mathrm{i}=1,2)
$$

be finite dimensional rational representations of G_{i}. Then
(i) The Lie algebra of $G_{1} \times G_{2}$ is $g_{1} \dot{+} g_{2}$ where

$$
\begin{array}{ll}
& g_{1}+g_{2}=\left\{\left(\gamma_{1}, \gamma_{2}\right) \mid \gamma_{\mathrm{i}} \in g_{\mathrm{i}}, \mathrm{i}=1,2\right\} \\
\text { and } & {\left[\left(\gamma_{1}, \gamma_{2}\right),\left(\gamma_{1}^{\prime}, \gamma_{2}{ }^{\prime}\right)\right]=\left(\left[\gamma_{1}, \gamma_{1}^{\prime}\right],\left[\gamma_{2}, \gamma_{2}^{\prime}\right]\right) .}
\end{array}
$$

(ii) $\varphi_{1} \dot{+} \varphi_{2}: \mathrm{G}_{1} \times \mathrm{G}_{2} \longrightarrow \mathrm{GL}\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) \quad$ is a rational

$$
\left(\mathrm{g}_{1}, \mathrm{~g}_{2}\right) \longrightarrow\left[\varphi_{1}+\varphi_{2}\left(\mathrm{~g}_{1}, \mathrm{~g}_{2}\right): \mathrm{v}_{1}+\mathrm{v}_{2} \rightarrow \varphi_{1}\left(\mathrm{~g}_{1}\right) \mathrm{v}_{1}+\varphi_{2}\left(\mathrm{~g}_{2}\right) \mathrm{v}_{2}\right]
$$

representation of $\mathrm{G}_{1} \times \mathrm{G}_{2}$ and

$$
\mathrm{d}\left(\varphi_{1} \dot{+} \varphi_{2}\right)\left(\gamma_{1}, \gamma_{2}\right)\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)=\left(\mathrm{d} \varphi_{1}\right)\left(\gamma_{1}\right) \mathrm{v}_{1}+\left(\mathrm{d} \varphi_{2}\right)\left(\gamma_{2}\right) \mathrm{v}_{2}
$$

where $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}_{\mathrm{i}}(\mathrm{i}=1,2)$.
(iii) $\varphi_{1} \otimes \varphi_{2}: G_{1} \times G_{2} \longrightarrow G L\left(V_{1} \otimes V_{2}\right)$ is a rational representation of $G_{1} \times G_{2}$ and $\left(\mathrm{g}_{1}, \mathrm{~g}_{2}\right) \longrightarrow \varphi_{1}\left(\mathrm{~g}_{1}\right) \otimes \varphi_{2}\left(\mathrm{~g}_{2}\right)$
$\mathrm{d}\left(\varphi_{1} \otimes \varphi_{2}\right)\left(\gamma_{1}, \gamma_{2}\right)\left(\mathrm{v}_{1} \otimes \mathrm{v}_{2}\right)=\left\{\left(\mathrm{d} \varphi_{1}\right)\left(\gamma_{1}\right) \mathrm{v}_{1}\right\} \otimes \mathrm{v}_{2}+\mathrm{v}_{1} \otimes\left\{\left(\mathrm{~d} \varphi_{2}\right)\left(\gamma_{2}\right) \mathrm{v}_{2}\right\}$.
Proof. (i) Let $\pi_{i}: G_{1} \times G_{2} \longrightarrow G_{i}$ be the projection of $G_{1} \times G_{2}$ onto G_{i} ($\mathrm{i}=1,2$), then we have the K-isomorphism φ of $\mathrm{T}\left(\mathrm{G}_{1^{\times}} \mathrm{G}_{2}\right)_{(1,1)}$ onto $g_{1} \dot{+} g_{2}$ which takes each $\gamma \in \mathrm{T}\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right)_{(1,1)}$ to $\left(\gamma \circ \pi_{1}{ }^{*}, \gamma \circ \pi_{2}{ }^{*}\right)$ (see Proposition 20.2). Since

$$
\begin{aligned}
\varphi\left(\left[\gamma, \gamma^{\prime}\right]\right) & =\left(\left[\gamma, \gamma^{\prime}\right] \circ \pi_{1}^{*},\left[\gamma, \gamma^{\prime}\right] \circ \pi_{2}^{*}\right) \\
& =\left(\left[\gamma \circ \pi_{1}^{*}, \gamma^{\prime} \circ \pi_{1}^{*}\right],\left[\gamma \circ \pi_{2}^{*}, \gamma^{\prime} \circ \pi_{2}^{*}\right]\right) \\
& =\left[\left(\gamma \circ \pi_{1}^{*}, \gamma \circ \pi_{2}^{*}\right),\left(\gamma^{\prime} \circ \pi_{1}^{*}, \gamma^{\prime} \circ \pi_{2}^{*}\right)\right] \\
& =\left[\varphi(\gamma), \varphi\left(\gamma^{\prime}\right)\right]
\end{aligned}
$$

for any $\gamma, \gamma^{\prime} \in \mathrm{T}\left(\mathrm{G}_{1 \times} \times \mathrm{G}_{2}\right)_{(1,1)}, \varphi$ is a Lie algebra isomorphism.
(ii) Since $\varphi_{1} \dot{+} \varphi_{2}: \mathrm{G}_{1} \times \mathrm{G}_{2} \longrightarrow \mathrm{GL}\left(\mathrm{V}_{1} \dot{+} \mathrm{V}_{2}\right)$ is the direct sum of rational representations

$$
\varphi_{\mathrm{i}} \circ \pi_{\mathrm{i}}: \mathrm{G}_{1} \times \mathrm{G}_{2} \longrightarrow \mathrm{G}_{\mathrm{i}} \longrightarrow \mathrm{GL}\left(\mathrm{~V}_{\mathrm{i}}\right) \quad(\mathrm{i}=1,2)
$$

$\varphi_{1}+\varphi_{2}$ is also a rational representation of $G_{1} \times G_{2}$. Since

$$
\begin{aligned}
\varphi_{1}+\varphi_{2}: \mathrm{G}_{1} \times \mathrm{G}_{2} & \longrightarrow \mathrm{GL}\left(\mathrm{~V}_{1}\right) \times \mathrm{GL}\left(\mathrm{~V}_{2}\right) \stackrel{\iota}{\mathrm{c}} \mathrm{GL}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right) \\
\left(\mathrm{g}_{1}, \mathrm{~g} 2\right) & \longrightarrow\left(\varphi_{1}\left(\mathrm{~g}_{1}\right), \varphi_{2}\left(\mathrm{~g}_{2}\right)\right)
\end{aligned}
$$

we have

From Lemma 20.5 we have $\mathrm{d}\left(\varphi_{1} \dot{+} \varphi_{2}\right)\left(\gamma_{1}, \gamma_{2}\right)\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)=\left(\mathrm{d} \varphi_{1}\right)\left(\gamma_{1}\right) \mathrm{v}_{1}+\left(\mathrm{d} \varphi_{2}\right)\left(\gamma_{2}\right) \mathrm{v}_{2}$.
(iii) Since $\varphi_{1} \otimes \varphi_{2}: \mathrm{G}_{1} \times \mathrm{G}_{2} \longrightarrow \mathrm{GL}\left(\mathrm{V}_{1} \otimes \mathrm{~V}_{2}\right)$ is the tensor product of rational representations

$$
\varphi_{\mathrm{i}} \circ \pi_{\mathrm{i}}: \mathrm{G}_{1} \times \mathrm{G}_{2} \xrightarrow{\pi_{\mathrm{i}}} \mathrm{G}_{\mathrm{i}} \xrightarrow{\varphi_{\mathrm{i}}} \mathrm{GL}\left(\mathrm{~V}_{\mathrm{i}}\right) \quad(\mathrm{i}=1,2),
$$

$\varphi_{1} \otimes \varphi_{2}$ is a rational representation of $\mathrm{G}_{1} \times \mathrm{G}_{2}$. Notice that

$$
\mathrm{d}\left(\varphi_{1} \otimes \varphi_{2}\right)\left(\gamma_{1}, \gamma_{2}\right)=\mathrm{d}\left(\varphi_{1} \otimes \varphi_{2}\right)\left(\gamma_{1}, 0\right)+\mathrm{d}\left(\varphi_{1} \otimes \varphi_{2}\right)\left(0, \gamma_{2}\right)
$$

and

$$
\mathrm{d}\left(\varphi_{1} \otimes \varphi_{2}\right)\left(\gamma_{1}, 0\right)=\mathrm{d}\left(\varphi_{1} \otimes \varphi_{2}\right) \circ \mathrm{d} \iota_{1}\left(\gamma_{1}\right)
$$

where $\iota_{1}: G_{1} \rightarrow G_{1 \times G_{2}}$. Hence it is enough to show that

$$
\mathrm{g} \longrightarrow(\mathrm{~g}, 1)
$$

$$
\mathrm{d}\left(\left(\varphi_{1} \otimes \varphi_{2}\right) \circ \iota_{1}\right)\left(\gamma_{1}\right)\left(\mathrm{v}_{1} \otimes \mathrm{v}_{2}\right)=\left\{\mathrm{d} \varphi_{1}\left(\gamma_{1}\right) \mathrm{v}_{1}\right\} \otimes \mathrm{v}_{2}
$$

Since

$$
\begin{aligned}
&\left(\varphi_{1} \otimes \varphi_{2}\right) \circ \iota_{1}: \mathrm{G}_{1} \longrightarrow \mathrm{GL}\left(\mathrm{~V}_{1} \otimes \mathrm{~V}_{2}\right) \\
& \mathrm{g} \longrightarrow\left[\varphi_{1}(\mathrm{~g}) \otimes 1_{\mathrm{V}_{2}}: \mathrm{v}_{1} \otimes \mathrm{v}_{2} \rightarrow \mathrm{gv}_{1} \otimes \mathrm{v}_{2}\right]
\end{aligned}
$$

where $1_{V_{2}}$ is the identity map of $V_{2}, \quad V_{1} \otimes V_{2}=\sum_{j=1}^{m} V_{1} \otimes \mathrm{Kw}_{j}$ is a direct sum of G_{1}-subspaces $\mathrm{V}_{1} \otimes \mathrm{Kw}_{\mathrm{j}}$ where $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right\}$ is a K -basis of V_{2}. Since the map $\mathrm{V}_{1} \otimes \mathrm{Kw}_{\mathrm{j}} \cong \mathrm{V}_{1}$ is a $K G_{1}$-isomorphism for any $1 \leq \mathrm{j} \leq m$, we have $\mathrm{v} \otimes \mathrm{w}_{\mathrm{j}} \longrightarrow \mathrm{v}$

$$
\left(\varphi_{1} \otimes \varphi_{2}\right) \circ \iota_{1}: \underset{\mathrm{g} \longrightarrow\left(\varphi_{1}(\mathrm{~g}), \varphi_{1}(\mathrm{~g}), \ldots, \varphi_{1}(\mathrm{~g})\right)}{\mathrm{GL}\left(\mathrm{~V}_{1}\right) \times \ldots \times \mathrm{GL}\left(\mathrm{~V}_{1}\right) \underset{\mathrm{G}=1}{\mathrm{GL}}\left(\sum_{\mathrm{m}}^{\mathrm{m}} \mathrm{~V}_{1} \otimes \mathrm{Kw}_{\mathrm{j}}\right) .}
$$

Hence $\mathrm{d}\left(\left(\varphi_{1} \otimes \varphi_{2}\right) \circ \iota_{1}\right)(\gamma)\left(\mathrm{v}_{1} \otimes \mathrm{v}_{2}\right)=\mathrm{d} \varphi_{1}(\gamma) \mathrm{v}_{1} \otimes \mathrm{v}_{2}$.
Q.E.D.

CHAPTER V

HOMOGENEOUS SPACES

We construct the quotient G / H where $(H, K[H])$ is a closed subgroup of a linear algebraic group (G,K[G]). We first explain separable morphisms and Zariski's Main Theorem and finally show the conjugacy of Borel subgroups.

Let $\left(G, \mathscr{C}_{G}\right)$ be an algebraic group over K and $\left(H, \mathscr{\mathscr { H }}_{H}\right)$ be a closed subgroup of G. Let G / H be the set of all left cosets H in G. Let

$$
\begin{aligned}
\nu: G & \longrightarrow \mathrm{G} / \mathrm{H} \\
\mathrm{~g} & \longrightarrow \mathrm{~g} \mathrm{H}
\end{aligned}
$$

be the natural map. We define a topology on G / H as follows: a subset U of G / H is open if and only if $\nu^{-1}(\mathrm{U})$ is open in G .

It is clear that this topology is well-defined and ν is an open map. Now let U be an open subset of G / H. We define $\mathscr{\mathscr { L }}(\mathrm{U})$ to be the set of all maps f of U into K such that
$\left.\quad \mathrm{fo} \nu\right|_{\nu^{-1}(\mathrm{U})} \in \mathscr{\mathscr { G }}_{\mathrm{G}}\left(\nu^{-1}(\mathrm{U})\right)$,
i.e., $\quad \mathscr{\mathscr { P }}(\mathrm{U})=\left\{\mathrm{f}: \mathrm{U} \rightarrow \mathrm{K} \mid\right.$ fo $\left.\left.\nu\right|_{\nu^{-1}(\mathrm{U})} \in \mathscr{\mathscr { G }}_{\mathrm{G}}\left(\nu^{-1}(\mathrm{U})\right)\right\}$,
then $\mathscr{\mathscr { \varphi }}$ is a sheaf of functions over K and ν is a morphism of ringed spaces ($\mathrm{G}, \mathscr{\mathscr { G }}_{\mathrm{G}}$) onto ($\mathrm{G} / \mathrm{H}, \mathscr{\mathscr { L }}$).

21. Separable morphisms

Let ($\mathrm{X}, \mathscr{\mathscr { O }}_{\mathrm{X}}$) be a prevariety over K and x be any fixed point of X . Let \mathscr{M}_{x} be the unique maximal ideal of the local ring $\mathscr{\mathscr { O }}_{x}$ (see Proposition 13.3). In $\S 13$ we defined the tangent space $T(X)_{x}$ of X at x to be

$$
\operatorname{Hom}_{\mathrm{K}}\left(\mathscr{M}_{\mathrm{x}} /\left(\mathscr{M}_{\mathrm{x}}\right)^{2}, \mathrm{~K}\right)
$$

and have shown that

$$
T(U)_{x} \cong T(X)_{x}
$$

as K-linear spaces for any affine open set U of X containing X.

Now let $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ be a morphism of prevarieties $\left(\mathrm{X}, \mathscr{\varphi}_{\mathrm{X}}\right)$ into $\left(\mathrm{Y}, \mathscr{\varphi}_{\mathrm{Y}}\right)$ over K . Let $\mathrm{y}=\varphi(\mathrm{x})$, then there exist affine open sets $\mathrm{U}(\mathrm{CX})$ and $\mathrm{V}(\mathrm{C} Y)$ such that

$$
\varphi(\mathrm{U}) \subset \mathrm{V}, \mathrm{U} \ni \mathrm{x} \text { and } \mathrm{V} \ni \mathrm{y} .
$$

Let $\varphi_{0}: \mathrm{U} \longrightarrow \mathrm{V}$, then φ_{0} is a morphism of affine varieties and we have

$$
\left(\varphi_{0}^{*}\right)^{-1}\left(g_{\mathrm{U}}(\mathrm{x})\right)=g_{\mathrm{V}}(\mathrm{y}) .
$$

Thus we have got a K-algebra homomorphism ψ of $\mathscr{\mathscr { y }}_{\mathrm{y}}$ into \mathscr{S}_{x} such that

$$
\begin{aligned}
\psi: \mathrm{K}[\mathrm{~V}]_{\mathcal{V}_{\mathrm{V}}(\mathrm{y})} & \longrightarrow \mathrm{K}[\mathrm{U}]_{\mathscr{J}_{\mathrm{U}}(\mathrm{x})}, \\
\mathrm{a} / \mathrm{s} & \longrightarrow \varphi_{0}{ }^{*}(\mathrm{a}) / \varphi_{0}{ }^{*}(\mathrm{~s})
\end{aligned}
$$

where $a, s \in K[V]$ and $s \notin \mathscr{g}_{\mathrm{V}}(\mathrm{y})$.
Let $\mathscr{K}_{\mathrm{y}}=\left\{\mathrm{a} / \mathrm{s} \mid \mathrm{a} \in \mathscr{I}_{\mathrm{V}}(\mathrm{y})\right.$ and $\left.\mathrm{s} \notin \mathscr{I}_{\mathrm{V}}(\mathrm{y})\right\}$ and

$$
\mathscr{K}_{\mathrm{x}}=\left\{\mathrm{a} / \mathrm{s} \mid \mathrm{a} \in \mathscr{I}_{\mathrm{U}}(\mathrm{x}) \quad \text { and } \mathrm{s} \notin \mathscr{I}_{\mathrm{U}}(\mathrm{x})\right\}
$$

be the maximal ideals of $\mathscr{\mathscr { y }}_{\mathrm{y}}$ and \mathscr{H}_{x} respectively, then we have

$$
\psi^{-1}\left(\mathscr{K}_{\mathrm{x}}\right)=\mathscr{K}_{\mathrm{y}} .
$$

Since $\psi\left(\mathscr{K}_{\mathrm{y}}\right) \subset \mathscr{K}_{\mathrm{x}}$ and $\psi\left(\mathscr{K}_{\mathrm{y}}{ }^{2}\right) \subset \mathscr{K}_{\mathrm{x}}{ }^{2}$, we can define a K-linear map $\tilde{\psi}$ of $\mathscr{K}_{\mathrm{y}} / \mathscr{K}_{\mathrm{y}}{ }^{2}$ into $\mathscr{K}_{\mathrm{x}} / \mathscr{K}_{\mathrm{x}}{ }^{2}$ as follows.

$$
\begin{aligned}
\tilde{\psi}: \mathscr{K}_{\mathrm{y}} / \mathscr{K}_{\mathrm{y}}{ }^{2} \longrightarrow \mathscr{K}_{\mathrm{x}} / \mathscr{K}_{\mathrm{x}}{ }^{2} \\
\mathrm{~m}+\mathscr{K}_{\mathrm{y}}{ }^{2} \longrightarrow \psi(\mathrm{~m})+\mathscr{K}_{\mathrm{x}}{ }^{2}
\end{aligned}
$$

Thus we can define a K-linear map $\mathrm{d} \varphi_{\mathrm{x}}$ of $\mathrm{T}(\mathrm{X})_{\mathbf{x}}$ into $\mathrm{T}(\mathrm{Y})_{\mathrm{y}}$ induced by $\tilde{\psi}$ as follows.

$$
\begin{aligned}
\mathrm{d} \varphi_{\mathrm{x}}: \operatorname{Hom}_{\mathrm{K}}\left(\mathscr{M}_{\mathrm{x}} / \mathscr{M}_{\mathrm{x}}^{2}, \mathrm{~K}\right) & \longrightarrow \operatorname{Hom}_{\mathrm{K}}\left(\mathscr{M}_{\mathrm{y}} / \mathscr{M}_{\mathrm{y}}^{2}, \mathrm{~K}\right) \\
\gamma & \longrightarrow \gamma \circ \tilde{\psi}^{2}
\end{aligned}
$$

(21.1) Definition. Let. $\left(\mathrm{X}, \mathscr{\mathscr { L }}_{\mathrm{X}}\right)$ and $\left(\mathrm{Y}, \mathscr{\varphi}_{\mathrm{Y}}\right)$ be prevarieties over K and $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ be a morphism of prevarieties, then we call the map

$$
\begin{aligned}
\mathrm{d} \varphi_{\mathrm{x}}: \mathrm{T}(\mathrm{X})_{\mathrm{x}} & \longrightarrow \mathrm{~T}(\mathrm{Y})_{\mathrm{y}} \\
\gamma & \longrightarrow \gamma \circ \tilde{\psi}
\end{aligned}
$$

the differential of φ at x where $\mathrm{x} \in \mathrm{X}$ and $\tilde{\psi}$ is as before.
(21.2) Remark. Let $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ be a morphism of prevarieties ($\mathrm{X}, \mathscr{\mathscr { C }}_{\mathrm{X}}$) into ($\mathrm{Y}, \mathscr{\mathscr { O }}_{\mathrm{Y}}$) over K. Let $x \in X$ and $y=\varphi(x)$ and U and V be affine open sets of X and Y respectively such that $\mathrm{U} \ni \mathrm{x}, \mathrm{V} \ni \mathrm{y}$ and $\varphi(\mathrm{U}) \subset \mathrm{V}$. Let $\varphi_{0}: \mathrm{U} \longrightarrow \mathrm{V} \longrightarrow \varphi(\mathrm{u})$. . Then we have the following commutative diagram.

$$
\begin{aligned}
& \mathrm{T}(\mathrm{U}) \mathrm{x} \stackrel{\rho_{1}}{N} \operatorname{Hom}_{\mathrm{K}}\left(\mathscr{I}_{\mathrm{U}}(\mathrm{x}) / \mathscr{I}_{\mathrm{U}}(\mathrm{x})^{2}, \mathrm{~K}\right) \stackrel{\rho_{2}}{N} \operatorname{Hom}_{\mathrm{K}}\left(\mathscr{M}_{\mathrm{x}} / \mathscr{K}_{\mathrm{x}}{ }^{2}, \mathrm{~K}\right)=\mathrm{T}(\mathrm{X})_{\mathrm{x}} \\
& \gamma \longrightarrow\left[\rho_{1}(\gamma): \mathrm{a}+\mathscr{I}_{\mathrm{U}}(\mathrm{x})^{2} \rightarrow \gamma(\mathrm{a})\right] \rightarrow\left[\rho_{2} \rho_{1}(\gamma): \mathrm{a} / 1+\mathscr{K}_{\mathrm{x}}{ }^{2} \rightarrow \gamma(\mathrm{a})\right] \\
& \downarrow\left(\mathrm{d} \varphi_{0}\right) \mathrm{x} \\
& \gamma \circ \varphi_{0}{ }^{*} \quad\left[\rho_{2} \circ \rho_{1}(\gamma) \circ \hat{\psi}: \mathrm{b} / 1+\mathscr{K}_{\mathrm{y}}{ }^{2} \rightarrow \gamma\left(\mathrm{~b} \circ \varphi_{0}\right)\right] \\
& \mathrm{T}(\mathrm{~V})_{\mathrm{y}} \stackrel{\rho_{1}}{\stackrel{1}{n}} \operatorname{Hom}_{\mathrm{K}}\left(\mathscr{I}_{\mathrm{V}}(\mathrm{x}) / \mathscr{I}_{\mathrm{V}}(\mathrm{x})^{2}, \mathrm{~K}\right) \stackrel{\rho_{2}}{\cong} \operatorname{Hom}_{\mathrm{K}}\left(\mathscr{K}_{\mathrm{y}} / \mathscr{K}_{\mathrm{y}}{ }^{2}, \mathrm{~K}\right)=\mathrm{T}(\mathrm{Y})_{\mathrm{y}} \\
& \gamma \circ \varphi_{0}{ }^{*} \rightarrow\left[\rho_{1}^{\prime}\left(\gamma \circ \varphi_{0}{ }^{*}\right): \mathrm{b}+\mathscr{J}_{\mathrm{V}}(\mathrm{x})^{2} \rightarrow \gamma\left(\mathrm{~b} \circ \varphi_{0}\right)\right] \rightarrow\left[\rho_{2}{ }^{\prime} \circ \rho_{1}{ }^{\prime}\left(\gamma \circ \varphi_{0}{ }^{*}\right): \mathrm{b} / 1+\mathcal{K}_{\mathrm{y}}{ }^{2} \rightarrow \gamma\left(\mathrm{~b} \circ \varphi_{0}\right)\right]
\end{aligned}
$$

From the above diagram we have the following proposition.
(21.3) Proposition. Let $\left(\mathrm{X}, \mathscr{\mathscr { C }}_{\mathrm{X}}\right),\left(\mathrm{Y}, \mathscr{\mathscr { Y }}_{\mathrm{Y}}\right)$ and $\left(\mathrm{Z}, \mathscr{\mathscr { C }}_{\mathrm{Z}}\right)$ be prevarieties cver K and $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ and $\psi: \mathrm{Y} \rightarrow \mathrm{Z}$ be morphisms. then we have the following commutative diagram:

for any $x \in X$.

Proof. See Proposition 4.7.
Q.E.D.
(21.4) Example. Let V be an $n+1$ - dimensional vector space over K and $\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be a K-basis of V . Let X_{i} be a map of V into K which takes

$$
c_{0} v_{0}+c_{1} v_{1}+\ldots+c_{n} v_{n} \text { to } c_{i}, \text { for } 0 \leq i \leq n
$$

then the pair ($\mathrm{V}, \mathrm{K}\left[\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$) is an affine variety over K (see Example 1.2).

Now let γ_{i} be a map of $\mathrm{K}[\mathrm{V}]$ into K such that

$$
\gamma_{i}(f)=\frac{\delta f}{\delta x_{i}}\left(v_{0}\right) \text { for any } f \in K[V]
$$

then the set $\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\mathrm{n}}\right\}$ forms a K -basis of $\mathrm{T}(\mathrm{V})_{\mathrm{v}_{0}}$ and $\gamma_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}$ for any $0 \leq i, j \leq n$ (see Example 4.5). Let $P(V)$ be the projective space defined by V (see $\S 11)$ and $P_{j}(V)=\left\{K\left(c_{0} v_{0}+\ldots+c_{n} v_{n}\right) \mid c_{j} \neq 0\right\}$.

Let

$$
\pi: \mathrm{V}-\{0\} \rightarrow \mathrm{P}(\mathrm{~V})
$$

be a map of $V-\{0\}$ into $P(V)$ which takes each $v \in V-\{0\}$ to $K v \in P(V)$. Then π is a morphism of the open subvariety $V-\{0\}$ of V onto $P(V)$, because for each $0 \leq j \leq n$

$$
\left.\pi\right|_{\mathrm{V}_{\mathrm{x}_{\mathrm{j}}}}: \mathrm{V}_{\mathrm{x}_{\mathrm{j}}} \longrightarrow \mathrm{P}_{\mathrm{j}}(\mathrm{~V})
$$

is a morphism of affine varieties where $V_{X_{j}}$ is the principal open subset of V defined by $X_{j} \in K[V]$. Further we have

$$
\operatorname{Ker}(\mathrm{d} \pi)_{\mathrm{v}_{0}}=\mathrm{K} \gamma_{0}
$$

Proof of the last statement: $\quad \operatorname{Ker}(\mathrm{d} \pi)_{\mathrm{v}_{0}}=\mathrm{K} \gamma_{0}$.

Since $V_{X_{0}}$ is an affine open subset of V and $\pi\left(V_{X_{0}}\right) \subset P_{0}(V)$,

$$
(\mathrm{d} \pi)_{\mathrm{v}_{0}}=\left(\mathrm{d} \pi_{0}\right)_{\mathrm{v}_{0}}: \mathrm{T}\left(\mathrm{~V}_{\mathrm{X}_{0}}\right)_{\mathrm{v}_{0}} \longrightarrow \mathrm{~T}\left(\mathrm{P}_{0}(\mathrm{~V})\right)_{\mathrm{Kv}_{0}}
$$

where $\pi_{0}=\left.\pi\right|_{\mathrm{V}_{\mathrm{X}_{0}}}: \mathrm{V}_{\mathrm{X}_{0}} \rightarrow \mathrm{P}_{0}(\mathrm{~V})$. Let $\iota: \mathrm{V}_{\mathrm{X}_{0}} \mathrm{C} \mathrm{V}$ be the inclusion map, then

$$
\begin{aligned}
(\mathrm{d} \iota)_{\mathrm{v}_{0}}: \mathrm{T}\left(\mathrm{~V}_{\mathrm{x}_{0}}\right)_{\mathrm{v}_{0}} & \longrightarrow \mathrm{~T}(\mathrm{~V})_{\mathrm{v}_{0}} \\
\gamma & \longrightarrow \gamma \circ \iota^{*}
\end{aligned}
$$

is bijective where ι^{*} is the comorphism of ι, i.e.,

$$
\begin{gathered}
\iota^{*}: \mathrm{K}[\mathrm{~V}] \subset \mathrm{K}[\mathrm{~V}]_{\mathrm{X}_{0}} \\
\alpha \longrightarrow \frac{\alpha}{1}
\end{gathered}
$$

We shall write $\gamma_{i}{ }^{\prime}$ for the element in $T\left(\mathrm{~V}_{\mathrm{X}_{0}}\right)_{\mathrm{v}_{0}}$ such that $\gamma_{\mathrm{i}}=\gamma_{\mathrm{i}}{ }^{\prime} \circ \iota^{*}$ where $0 \leq \mathrm{i} \leq \mathrm{n}$. Thus

$$
\mathrm{T}\left(\mathrm{~V}_{\mathrm{x}_{0}}\right)_{\mathrm{v}_{0}}=\mathrm{K} \gamma_{0}{ }^{\prime} \oplus \mathrm{K} \gamma_{1}^{\prime} \oplus \ldots \oplus \mathrm{K} \gamma_{\mathrm{n}}^{\prime}
$$

Since

$$
\begin{aligned}
\pi_{0}: \mathrm{V}_{\mathrm{x}_{0}} & \longrightarrow \mathrm{P}_{0}(\mathrm{~V}) \\
\mathrm{v} & \longrightarrow \mathrm{Kv}
\end{aligned}
$$

and

$$
\begin{aligned}
\pi_{0}^{*}: \mathrm{K}\left[\frac{\mathrm{X}_{1}}{X_{0}}, \frac{\mathrm{X}_{2}}{\mathrm{X}_{0}}, \ldots, \frac{\mathrm{X}_{\mathrm{n}}}{\mathrm{X}_{0}}\right] & \longrightarrow \mathrm{K}\left[\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{n}}\right]_{\mathrm{X}_{0}}, \\
\mathrm{f} & \longrightarrow \mathrm{f} \circ \pi_{0}
\end{aligned}
$$

we have

$$
\pi_{0}^{*}\left(\frac{X_{i}}{X_{0}}\right)=\frac{X_{i}}{X_{0}} \text { for any } 1 \leq i \leq n .
$$

Thus

$$
\left(\mathrm{d} \pi_{0}\right)_{\mathrm{v}_{0}}\left(\mathrm{c}_{0} \gamma_{0}{ }^{\prime}+\mathrm{c}_{1} \gamma_{1}^{\prime}+\ldots+\mathrm{c}_{\mathrm{n}} \gamma_{\mathrm{n}}{ }^{\prime}\right)=\left(\mathrm{c}_{0} \gamma_{0}{ }^{\prime}+\mathrm{c}_{1} \gamma_{1}^{\prime}+\ldots+\mathrm{c}_{\mathrm{n}} \gamma_{\mathrm{n}}{ }^{\prime}\right) \circ \pi_{0}{ }^{*}=0
$$

if and only if

$$
\left(\mathrm{c}_{0} \gamma_{0}^{\prime}+\mathrm{c}_{1} \gamma_{1}^{\prime}+\ldots+\mathrm{c}_{\mathrm{n}} \gamma_{\mathrm{n}}^{\prime}\right)\left(\frac{X_{\mathrm{i}}}{X_{0}}\right)=\mathrm{c}_{\mathrm{i}}=0 \text { for any } 1 \leq \mathrm{i} \leq \mathrm{n} .
$$

Hence Ker $(\mathrm{d} \pi)_{\mathrm{v}_{0}}=\mathrm{K} \gamma_{0}$.
(21.5) Definition. Let $\left(\mathrm{X}, \mathscr{\mathscr { C }}_{\mathrm{X}}\right)$ and ($\mathrm{Y}, \mathscr{\mathscr { O }}_{\mathrm{Y}}$) be irreducible varieties over $\mathrm{K} . \mathrm{We}$ call a dominant morphism $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ separable if $\mathrm{K}(\mathrm{X})$ is separable over $\mathrm{K}(\mathrm{Y})$ (see Definition 6.17).
(21.6) Remark. Let $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ be a dominant morphism of irreducible varieties X into Y .
(i) Since $K(X)$ is finitely generated over $K(Y), \varphi$ is spearable if and only if $\mathrm{K}(\mathrm{X})$ is separably generated over $\mathrm{K}(\mathrm{Y})$ (see Corollary 6.19).
(ii) If $\operatorname{dim} \mathrm{X}=\operatorname{dim} \mathrm{Y}$, then $[\mathrm{K}(\mathrm{X}): \mathrm{K}(\mathrm{Y})]<\infty$. If φ is separable and $\operatorname{dim} \mathrm{X}=\operatorname{dim} \mathrm{Y}$, then $K(X)$ is separably algebraic over $K(Y)$ (see Exercise 22 on p.49).
(21.7) Definition. Let $\mathrm{E} \supset \mathrm{L} \supset \mathrm{k}$ be a sequence of fields. We define a k -linear derivation D of L into E to be a k-linear map of L into E such that

$$
D(x y)=x D(y)+y D(x) \text { for any } x, y \in L
$$

(c.f. Proposition 6.21). We write $\operatorname{Der}_{k}(L, E)$ for the set of all k-linear derivations of L into $E . \operatorname{Der}_{k}(L, E)$ becomes a vector space over E by the following operations

$$
\begin{aligned}
\left(D_{1}+D_{2}\right)(x) & =D_{1}(x)+D_{2}(x) & & \left(D_{1}, D_{2} \in \operatorname{Der}_{k}(L, E) \text { and } x \in L\right) \\
(a D)(x) & =a D(x) & & \left(D \in \operatorname{Der}_{k}(L, E), a \in E \text { and } x \in L\right) .
\end{aligned}
$$

(21.8) Lemma. Let X be an irreducible variety over K, then for any extension field E of $K(X)$, we have

$$
\operatorname{dim} X=\operatorname{dim}_{E} \operatorname{Der}_{K}(K(X), E)
$$

Proof. Since K is perfect, $K(X)$ is separable over K (see Corollary 6.20) Since $\mathrm{K}(\mathrm{X})$ is finitely generated over $\mathrm{K}, \mathrm{K}(\mathrm{X})$ is separably generated over K (see Corollary 6.19). Hence there exists a transcendence base $\left\{t_{1}, t_{2}, \ldots, t_{r}\right\}$ of $K(X)$ over K such that $K(X)$ is separably algebraic over $K\left(t_{1}, t_{2}, \ldots, t_{r}\right)$.

Let d_{i} be a map of $K\left(t_{1}, \ldots, t_{r}\right)$ into E such that

$$
d_{i}\left(\frac{g\left(t_{1}, \ldots, t_{r}\right)}{f\left(t_{1}, \ldots, t_{r}\right)}\right)=\frac{\delta}{\delta t_{i}}\left(\frac{g\left(t_{1}, \ldots, t_{r}\right)}{f\left(t_{1}, \ldots, t_{r}\right)}\right),
$$

where $g\left(t_{1}, \ldots, t_{r}\right), f\left(t_{1}, \ldots, t_{r}\right) \in K\left[t_{1}, \ldots, t_{r}\right]$ and $f\left(t_{1}, \ldots, t_{r}\right) \neq 0$, then d_{i} is a K-linear derivation of $K\left(t_{1}, \ldots, t_{r}\right)$ into E and $d_{i}\left(t_{j}\right)=\delta_{i j}$ for any $1 \leq i, j \leq r$. From Proposition 6.21 we can extend d_{i} to a derivation D_{i} of $K(X)$ into E. It is clear that $\left\{D_{i} \mid 1 \leq i \leq r\right\}$ are linearly independent over E.

Now let D be any fixed element of $\operatorname{Der}_{K}(K(X), E)$. Let $e_{i}=D\left(t_{i}\right)$ and $D_{0}=D-\sum_{i=1}^{n} e_{i} D_{i}$, then $D_{0} \in \operatorname{Der}_{K}(K(X), E) \quad$ and $\quad D_{0}\left(K\left(t_{1}, \ldots, t_{r}\right)\right)=0$. Since $K(X) \quad$ is separably algebraic and finitely generated over $K\left(t_{1}, \ldots, t_{r}\right)$, $\mathrm{K}(\mathrm{X})=\left\{\mathrm{K}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{r}}\right)\right\}[\alpha]$ for some $\alpha \in \mathrm{K}(\mathrm{X})$. Let $\mathrm{F}(\mathrm{T})$ be a monic minimal polynomial of α over $K\left(t_{1}, \ldots, t_{r}\right)$, then we have

$$
\mathrm{D}_{0}(\mathrm{~F}(\alpha))=\left\{\mathrm{D}_{0}(\alpha)\right\} \mathrm{F}^{\prime}(\alpha)=0
$$

where $F^{\prime}(T)$ is the derivative of $F(T)$. Since α is separably algebraic over $K\left(t_{1}, t_{2}, \ldots, t_{r}\right)$, we have $D_{0}(\alpha)=0$. Thus

$$
D_{0}=0 \text {, i.e., } D=\sum_{i=1}^{n} e_{i} D_{i}
$$

Hence $\operatorname{dim}_{E} \operatorname{Der}_{K}(K(X), E)=r=\operatorname{dim} X$.
(21.9) Theorem. Let $\left(X, \mathscr{\mathscr { C }}_{\mathrm{X}}\right)$ and $\left(\mathrm{Y}, \mathscr{\mathscr { L }}_{\mathrm{Y}}\right)$ be irreducible varieties over K and $\varphi: X \rightarrow Y$ be a dominant morphism. Then there exists a simple point $\mathrm{X} \in \mathrm{X}$ such
that $\varphi(x)$ is also simple in Y. For such a pair of simple points x and $\varphi(x)$ if

$$
(\mathrm{d} \varphi)_{\mathrm{x}}: \mathrm{T}(\mathrm{X})_{\mathrm{x}} \rightarrow \mathrm{~T}(\mathrm{Y})_{\varphi(\mathrm{x})}
$$

is surjective, then φ is separable.

Proof (see Humphreys [2, Theorem 5.5]). Since the set of all simple points of a given irreducible variety forms a non-empty open set from Theorem 7.18 , there exists a pair of simple points $\mathrm{x} \in \mathrm{X}$ and $\varphi(\mathrm{x}) \in \mathrm{Y}$ from the assumption that φ is dominant. Similarly if $\mathrm{x} \in \mathrm{X}$ and $\varphi(\mathrm{x}) \in \mathrm{Y}$ are simple, there exist smooth affine open subvarieties U and V in X and Y respectively such that $\mathrm{x} \in \mathrm{U}, \varphi(\mathrm{x}) \in \mathrm{V}$ and $\varphi(\mathrm{U}) \subset \mathrm{V}$. Since the closure of $\varphi(\mathrm{U})$ in V is the intersection of the closure of $\varphi(\mathrm{U})$ in Y with V ,

$$
\left.\varphi\right|_{\mathrm{U}}: \mathrm{U} \rightarrow \mathrm{~V}
$$

is also dominant. Thus it is enough to prove the theorem in case X and Y are affine and smooth.

Let $\varphi^{*}: \mathrm{K}[\mathrm{Y}] \rightarrow \mathrm{K}[\mathrm{X}]$ be the comorphism of φ, then φ^{*} is injective (see Lemma 8.3). Hence we can consider $\mathrm{K}(\mathrm{Y})$ as a subfield of $\mathrm{K}(\mathrm{X})$ by φ^{*}. We shall assume that the characteristic of K is a positive prime, say p. Let L be a subfield of $\mathrm{K}(\mathrm{X})$ containing K and

$$
\mathrm{D}: \mathrm{L} \rightarrow \mathrm{~K}(\mathrm{X})
$$

be a derivation, i.e.,

$$
D(x+y)=D(x)+D(y) \text { and } D(x y)=x D(y)+y D(x)
$$

for any $x, y \in L$. Since $K^{p}=K$ and

$$
D\left(a^{p}\right)=a^{p} \cdot D(1)+p D(a) a^{p-1}=0
$$

for any $a \in K, D$ is always K-linear.

Let $\mathrm{n}=\operatorname{dim} \mathrm{X}$ and $\mathrm{d}=\operatorname{dim} \mathrm{Y}$. Let δ be the restriction map of $\operatorname{Der}_{\mathrm{K}}(\mathrm{K}(\mathrm{X}), \mathrm{K}(\mathrm{X}))$ into $\operatorname{Der}_{\mathrm{K}}(\mathrm{K}(\mathrm{Y}), \mathrm{K}(\mathrm{X}))$, i.e.,

$$
\begin{gathered}
\delta: \operatorname{Der}_{\mathrm{K}}(\mathrm{~K}(\mathrm{X}), \mathrm{K}(\mathrm{X})) \longrightarrow \operatorname{Der}_{\mathrm{K}}(\mathrm{~K}(\mathrm{Y}), \mathrm{K}(\mathrm{X})) \\
\left.\mathrm{D} \longrightarrow \mathrm{D}\right|_{\mathrm{K}(\mathrm{Y})}
\end{gathered}
$$

From Proposition 6.23 $\mathrm{K}(\mathrm{X})$ is separable over $\mathrm{K}(\mathrm{Y})$ if δ is surjective.

Since δ is $K(X)$-linear and $\operatorname{dim}_{K(X)} \operatorname{Der}_{K}(K(X), K(X))=n$ and $\operatorname{dim}_{K(X)} \operatorname{Der}_{K}(K(Y)$, $\mathrm{K}(\mathrm{X}))=\mathrm{d}$ from Lemma 21.8, it is enough to show that $\operatorname{dim}_{\mathrm{K}(\mathrm{X})} \operatorname{Ker} \delta=\mathrm{n}-\mathrm{d}$ for
the surjectivity of δ. Since $\operatorname{dim}_{K(X)} \operatorname{Ker} \delta \geq n-d$ and $\operatorname{Ker} \delta=\operatorname{Der}_{K(Y)}(K(X), K(X))$, we shall show that any $n-d+1 K(Y)$-linear derivations $\left\{D_{k}\right\}$ of $K(X)$ into itself are linearly dependend over $K(X)$.

Now let $\mathscr{\mathscr { O }}_{\mathrm{x}}$ be the local ring of x in $\mathrm{K}(\mathrm{X})$. Let $\mathrm{a}, \mathrm{s} \in \mathrm{K}[\mathrm{X}]$ and $\mathrm{s} \neq 0$. Since

$$
D_{k}\left(s \cdot \frac{a}{s}\right)=D_{k}(a)=D_{k}(s) \cdot \frac{a}{s}+s D_{k}\left(\frac{a}{s}\right)
$$

we have $s^{2} D_{k}\left(\frac{a}{s}\right)=D_{k}(a) \cdot s-a D_{k}(s)$, which implies

$$
D_{k}\left(\frac{a}{s}\right)=\frac{D_{k}(a) \cdot s-a D_{k}(s)}{s^{2}}
$$

Since $K[X]$ is finitely generated as K-algebra, multiplying non-zero element of $K[X]$ to D_{k} we can assume that

$$
\mathrm{D}_{\mathrm{k}}(\mathrm{~K}[\mathrm{X}]) \subset \mathrm{K}[\mathrm{X}] .
$$

Thus we can assume that

$$
\mathrm{D}_{\mathrm{k}}\left(\mathscr{\mathscr { O }}_{\mathrm{x}}\right) \subset \mathscr{S}_{\mathrm{x}} \text { for any } 1 \leq \mathrm{k} \leq \mathrm{n}-\mathrm{d}+1
$$

From the definition of derivation, we have

$$
\mathrm{D}_{\mathrm{k}}\left(\mathscr{K}_{\mathrm{x}}^{\mathrm{r}}\right) \subset \mathscr{K}_{\mathrm{x}}{ }^{\mathrm{r}-1} \text { for any } \mathrm{r} \geq 2,
$$

where \mathscr{K}_{x} is the maximal ideal of $\mathscr{\mathscr { x }}_{\mathrm{x}}$. Since

$$
D_{\mathrm{k}}\left(\mathscr{K}_{\mathrm{x}}{ }^{\mathrm{r}}+\mathrm{z}\right) \subset \mathscr{M}_{\mathrm{x}}{ }^{\mathrm{r}-1}+\mathrm{D}_{\mathrm{k}}(\mathrm{z})\left(\mathrm{z} \in \mathscr{\varphi}_{\mathrm{x}}\right)
$$

D_{k} is continuous on \mathscr{S}_{x} by the \mathscr{K}_{x}-adic topology (see Definition 6.31). Let

$$
\begin{aligned}
\tilde{\psi}: \mathscr{K}_{\mathrm{y}} / \mathscr{K}_{\mathrm{y}}{ }^{2} & \longrightarrow \mathscr{K}_{\mathrm{x}} / \mathscr{K}_{\mathrm{x}}{ }^{2}, \text { where } \mathrm{y}=\varphi(\mathrm{x}) \\
\mathrm{m}+\mathscr{M}_{\mathrm{y}}{ }^{2} & \longrightarrow \psi(\mathrm{~m})+\mathscr{K}_{\mathrm{x}}{ }^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\psi: \mathscr{\mathscr { H }}_{\mathrm{y}} \longrightarrow \mathscr{\mathscr { L }}_{\mathrm{x}} \quad\left(\mathrm{a}, \mathrm{~s} \in \mathrm{~K}[\mathrm{Y}] \text { and } \mathrm{s} \notin \mathscr{I}_{\mathrm{Y}}(\mathrm{y})\right), \\
\mathrm{a} / \mathrm{s} \longrightarrow \varphi^{*}(\mathrm{a}) / \varphi^{*}(\mathrm{~s})
\end{aligned}
$$

then $\tilde{\psi}$ is injective, because

$$
\begin{aligned}
(\mathrm{d} \varphi)_{\mathrm{x}}: \operatorname{Hom}_{\mathrm{K}}\left(\mathscr{K}_{\mathrm{x}} / \mathscr{K}_{\mathrm{x}}^{2}, \mathrm{~K}\right) & \longrightarrow \operatorname{Hom}_{\mathrm{K}}\left(\mathscr{K}_{\mathrm{y}} / \mathscr{K}_{\mathrm{y}}^{2}, \mathrm{~K}\right) \\
\gamma & \longrightarrow \gamma \circ \tilde{\psi}
\end{aligned}
$$

is surjective.

Now let $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{t}} \in \mathscr{K}_{\mathrm{y}}$ be a minimal set of generators of \mathscr{S}_{y}-module \mathscr{K}_{y}, then from Lemma 7.15 the set $\left\{f_{1}+\mathscr{K}_{\mathrm{y}}{ }^{2}, \ldots, \mathrm{f}_{\mathrm{t}}+\mathscr{K}_{\mathrm{y}}{ }^{2}\right\}$ forms a K-basis for $\mathscr{K}_{\mathrm{y}} / \mathscr{K}_{\mathrm{y}}{ }^{2}$. Since y is simple, we have $\mathrm{t}=\mathrm{d}$. Since $\tilde{\psi}$ is injective, we can extend $\left\{\psi\left(\mathrm{f}_{1}\right)+\mathscr{K}_{\mathrm{x}}{ }^{2}, \ldots\right.$, $\left.\psi\left(\mathrm{f}_{\mathrm{d}}\right)+\mathscr{M}_{\mathrm{x}}{ }^{2}\right\} \quad$ to a K-basis $\quad\left\{\psi\left(\mathrm{f}_{1}\right)+\mathscr{M}_{\mathrm{x}}{ }^{2}, \ldots, \psi\left(\mathrm{f}_{\mathrm{d}}\right)+\mathscr{M}_{\mathrm{x}}{ }^{2}, \mathrm{f}_{\mathrm{d}+1}+\mathscr{M}_{\mathrm{x}}{ }^{2}, \ldots\right.$, $\left.\mathrm{f}_{\mathrm{n}}+\mathscr{M}_{\mathrm{x}}{ }^{2}\right\}$ of $\mathscr{K}_{\mathrm{x}} / \mathscr{K}_{\mathrm{x}}{ }^{2}$. We shall identify f_{i} with $\psi\left(\mathrm{f}_{\mathrm{i}}\right)(1 \leq \mathrm{i} \leq \mathrm{d})$. Let R be a K-subalgebra of $\mathscr{\mathscr { L }}_{\mathrm{x}}$ generated by $\left\{\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}\right\}$. By induction on $1 \geq 1$ we can show that for any 1 we have

$$
\mathscr{S}_{\mathrm{x}}=\mathrm{R}+\mathscr{M}_{\mathrm{x}}{ }^{1}
$$

Hence R is dense in the \mathscr{K}_{r}-adic todologv on \mathscr{H}_{x}.

Since $\operatorname{dim}_{K(X)} \operatorname{Der}_{K}\left(K\left(f_{d+1}, \ldots, f_{n}\right), K(X)\right) \leq n-d$ from Lemma 21.8, we have

$$
\left(\sum_{k=1}^{n-d+1} g_{k} D_{k}\right)\left(K\left[f_{d+1}, \ldots, f_{n}\right]\right)=0
$$

where $K\left[f_{d+1}, \ldots, f_{n}\right]$ is the K-subalgebra of \mathscr{E}_{x} generated by $\left\{f_{d+1}, \ldots, f_{n}\right\}$ and $K\left(f_{d+1}, \ldots, f_{n}\right)$ is the quotient field of $K\left[f_{d+1}, \ldots, f_{n}\right]$ and $\left\{g_{k}\right\} \subset K(X)$ and $\left\{g_{k}\right\} \neq\{0\}$. We can assume that $\left\{g_{k}\right\} \subset \mathscr{H}_{\mathrm{x}}$. Since $\mathrm{D}_{\mathrm{k}, \mathrm{s}}$ are $\mathrm{K}(\mathrm{Y})$-linear, we have

$$
\left(\Sigma g_{k} D_{k}\right)(R)=0
$$

Since R is dense in \mathscr{H}_{x} and $\mathscr{\mathscr { L }}_{\mathrm{x}}$ is Hausdorff, we have

$$
\left(\Sigma \mathrm{g}_{\mathrm{k}} \mathrm{D}_{\mathrm{k}}\right)(\overline{\mathrm{R}})=\left(\Sigma \mathrm{g}_{\mathrm{k}} \mathrm{D}_{\mathrm{k}}\right)\left(\mathscr{\mathscr { L }}_{\mathrm{x}}\right) \subset \overline{\{0\}}=\{0\},
$$

i.e., $\left(\Sigma g_{k} D_{k}\right)\left(\mathscr{O}_{\mathrm{x}}\right)=0$. Hence $\Sigma g_{\mathrm{k}} \mathrm{D}_{\mathrm{k}}=0$ on $\mathrm{K}(\mathrm{X})$ and $\left\{\mathrm{D}_{\mathrm{k}}\right\}$ are linearly dependent over $K(X)$. Q.E.D.

Exercise 60. Let $\left\{f_{1}, \ldots, f_{n}\right\}$ be as in the proof of Theorem 21.9. Show that $\left\{f_{1}, \ldots, f_{n}\right\}$ are algebraically independent over K .

22. Zariski's Main Theorem

Zariski's Main Theorem. Let ($\mathrm{X}, \mathscr{\mathscr { C }}_{\mathrm{X}}$) and ($\mathrm{Y}, \mathscr{\mathscr { Y }}_{\mathrm{Y}}$) be irreducible varieties over K. Assume that Y is smooth. Let $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ be a surjective morphism of X onto Y such that the comorphism of φ induces an isomorphism of $\mathrm{K}(\mathrm{Y})$ onto $\mathrm{K}(\mathrm{X})$ (see p.143) and $\left|\varphi^{-1}(\mathrm{y})\right|<\infty$ for any $\mathrm{y} \in \mathrm{Y}$, then φ is an isomorphism of varieties.

For the proof of this theorem we need the following propositions.
(22.1) Definition. An element a of a commutative ring R is said to be irreducible if a is not a unit and is not a product of any two non-units of R. We call an integral domain R is a unique factorization domain if
(i) every non-unit of R is a product of finite irreducible elements, and
(ii) if the factorization in (i) is unique up to order and unit elements.
(22.2) Lemma. Let R be a Noetherian integral domain, then R satisfies the condition (i) in Definition 22.1.

Proof. Let $a \neq 0$ be a non-unit element of R. Assume that $a=a_{1} a_{2}$ for some non-unit elements $a_{1}, a_{2} \in R$. Since $R a \underset{\neq}{q} a_{1}$ and R satisfies the ascending chain condition (see p.25), a has an irreducible divisor. Thus we have a sequence $\left\{b_{n}\right\}$ of elements in R such that

$$
\mathrm{b}_{0}=\mathrm{a} \text { and } \mathrm{b}_{\mathrm{n}-1}=\mathrm{b}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}},
$$

where p_{n} is irreducible. Since

$$
R b_{0} \subset R b_{1} \subset R b_{2} \subset \ldots \subset R b_{n}=R b_{n+1}=\ldots
$$

for some n, we have

$$
\mathrm{a}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}
$$

a product of irreducible elements.
Q.E.D.
(22.3) Proposition. A Noetherian integral domain R is a unique factorization domain if and only if every prime ideal β of height 1 in R is principal.

Proof (see Nagata [1, Theorem 13.1]). Assume that R is a unique factorization domain. Let β be a prime ideal of height 1 , that is, $~ \mu$ contains no prime ideals except $\{0\}$ and itself. Let a be an irreducible element of R contained in μ. Since R is a unique factorization domain, Ra is a prime ideal. Hence $\mathrm{Ra}=\rho$.

Conversely assume that every prime ideal of height 1 is principal. Let $a_{1} \ldots a_{m}=b_{1} \ldots b_{n}$ be factorizations of an element $c \in R$ as products of irreducible elements $\left\{a_{i}\right\}$ and $\left\{\mathrm{b}_{\mathrm{j}}\right\}$ (see Lemma 22.2). We show the uniqueness by induction on n . When $\mathrm{n}=1$, c is irreducible and the assertion holds. From Lemma 7.14 and the assumption an irreducible element a in R generates a prime ideal Ra , because any prime ideal of R which is minimal among prime ideals of R containing Ra is principal. Since $a_{1} \ldots a_{m} \in R b_{1}$ and $R b_{1}$ is prime, $\mathrm{a}_{\mathrm{i}} \in \mathrm{Rb}_{1}$ for some $\mathrm{i}(1 \leq \mathrm{i} \leq m)$. We may assume that $a_{1} \in R b_{1}$, i.e., $a_{1}=u b_{1}$ for some unit $u \in R$.
Thus we have $u a_{2} \ldots a_{m}=b_{2} \ldots b_{n}$. Hence by induction the uniqueness holds.
Q.E.D.

Let $\left(\mathrm{X}, \mathscr{\mathscr { O }}_{\mathrm{X}}\right)$ be an irreducible variety over K and x be a simple point of X . Let \mathscr{O}_{x} be the local ring at x with unique maximal ideal \mathscr{K}_{x}. Let $\mathrm{r}=\operatorname{dim} \mathrm{X}$, then any minimal set of generators of \mathscr{C}_{x}-module \mathscr{K}_{x} consists of r -elements from Lemma 7.15. Hence the height of $\mathscr{K}_{\mathrm{x}}=\mathrm{r}$
from Proposition 7.10 and Theorem 7.17.

From Proposition 22.3 we have the following theorem. For the proof of this theorem see Nagata [1, Theorem 28.7].
(22.4) Theorem. Let R be a Noetherian local ring with unique maximal ideal \mathscr{K} and r be the height of \mathscr{K}. Assume that R is an integral domain and any minimal set of generators of R -module \mathscr{M} consists of r-element s . Then R is a unique factorization domain.

Now we shall prove the Zariski's Main Theorem.

Proof of the Zariski's Main Theorem. Let y be any fixed point of Y and V be an affine open neighbourhood of y in Y. Let $U \subset \varphi^{-1}(V)$ be an affine open subset of Y such that

$$
\mathrm{U} \cap \varphi^{-1}(\mathrm{y}) \neq \emptyset
$$

Let $\mathrm{K}[\mathrm{V}]=\mathscr{S}_{\mathrm{Y}}(\mathrm{V})$ and $\mathrm{K}[\mathrm{U}]=\mathscr{\mathscr { S }}_{\mathrm{X}}(\mathrm{U})$, then we have an embedding

$$
\begin{gathered}
\varphi^{*}: \mathrm{K}[\mathrm{~V}] \subset \mathrm{K}[\mathrm{U}] \\
\mathrm{a} \longrightarrow \mathrm{ao} \varphi
\end{gathered}
$$

and an isomorphism

$$
\varphi^{*}: \mathrm{K}(\mathrm{~V}) \longrightarrow \mathrm{K}(\mathrm{U})
$$

$$
a / b \longrightarrow \varphi^{*}(a) / \varphi^{*}(b)
$$

(see p.143). Let $\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}$ be a set of generators of $K[U]$ over $\varphi^{*}(K[V])$, i.e., $\mathrm{K}[\mathrm{U}]=\varphi^{*}(\mathrm{~K}[\mathrm{~V}])\left[\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{r}}\right]$.
"Assume that for any $f \in K[U]$ there exists $g \in K[V]$ such that $g(y) \neq 0$ and $\mathrm{f} \in \varphi^{*}\left(\mathrm{~K}[\mathrm{~V}]_{\mathrm{g}}\right)$ (for the definition of $\mathrm{K}[\mathrm{V}]_{\mathrm{g}}$ see Lemma 2.7)."

Let $g_{i} \in K[V]$ such that $g_{i}(y) \neq 0$ and $f_{i} \in \varphi^{*}\left(K[V]_{g_{i}}\right)$ where $1 \leq i \leq r$. Let $\mathrm{g}=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\mathrm{r}}$, then we have $\mathrm{f}_{\mathrm{i}} \in \varphi^{*}\left(\mathrm{~K}[\mathrm{~V}]_{\mathrm{g}}\right)$ and

$$
\begin{aligned}
\mathrm{K}[\mathrm{U}]_{\varphi^{*}(\mathrm{~g})} & =\varphi^{*}\left(\mathrm{~K}[\mathrm{~V}]_{\mathrm{g}}\right)\left[\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{r}}\right] \\
& =\varphi^{*}\left(\mathrm{~K}[\mathrm{~V}]_{\mathrm{g}}\right)
\end{aligned}
$$

Let V^{\prime} be the principal open set in V defined by g, i.e.,

$$
V^{\prime}=V_{g}
$$

then $\varphi: \mathrm{U}_{\varphi^{*}(\mathrm{~g})} \rightarrow \mathrm{V}^{\prime}$ is an isomorphism of varieties from Lemma 2.4 and there exists a morphism

$$
\psi: \mathrm{V}^{\prime} \longrightarrow \mathrm{U}
$$

such that $\varphi \circ \psi=1_{V^{\prime}}$, i.e., $\varphi \circ \psi\left(y^{\prime}\right)=y^{\prime}$ for all $y^{\prime} \in V^{\prime}$. Since $\varphi\left(\psi\left(\mathrm{V}^{\prime}\right)\right)=\mathrm{V}^{\prime}$,

$$
\varphi^{-1}\left(V^{\prime}\right) \supset \psi\left(V^{\prime}\right)
$$

Thus we have the following morphisms between $\varphi^{-1}\left(\mathrm{~V}^{\prime}\right)$ and V^{\prime} :

$$
\varphi: \varphi^{-1}\left(\mathrm{~V}^{\prime}\right) \longrightarrow \mathrm{V}^{\prime} \text { and } \psi: \mathrm{V}^{\prime} \longrightarrow \varphi^{-1}\left(\mathrm{~V}^{\prime}\right) .
$$

Since $\varphi \circ(\psi \circ \varphi)=(\varphi \circ \psi) \circ \varphi=\varphi$ on $\varphi^{-1}\left(V^{\prime}\right)$ and φ is injective on a dense open subset of X from Theorem 13.14, $\quad \psi \circ \varphi=1_{\varphi^{-1}\left(\mathrm{~V}^{\prime}\right)} \quad$ on a dense open subset of $\varphi^{-1}\left(V^{\prime}\right)$. From Remark 10.10 we have $\psi \circ \varphi=1_{\varphi^{-1}\left(V^{\prime}\right)}$ on $\varphi^{-1}\left(V^{\prime}\right)$. Hence for any $y \in Y$ there exists an affine open neighbourhood V^{\prime} of y in Y such that φ is an isomorphism of varieties on $\varphi^{-1}\left(V^{\prime}\right)$.

Thus it is enough to show that for any $f \in K[U]$ there exists $g \in K[V]$ such that $\mathrm{g}(\mathrm{y}) \neq 0$ and $\mathrm{f} \in \varphi^{*}\left(\mathrm{~K}[\mathrm{~V}]_{\mathrm{g}}\right)$.

Let $f \in K[U]$, then $f=\frac{\varphi^{*}(a)}{\varphi^{*}(b)}$ for some $a, b \in K[V] \quad(b \neq 0)$. Since $\mathscr{\mathscr { S }}_{y}$ is a unique factorization domain from Theorem 22.4, we may assume that a and b are relatively prime in \mathscr{H}_{y}. We have to show that

$$
b(y) \neq 0
$$

(then take $\mathrm{g}=\mathrm{b}$). Therefore we assume that $\mathrm{b}(\mathrm{y})=0$, and lead to a contradiction. Let $\beta \in \mathscr{H}_{\mathrm{y}}$ be an irreducible factor of b such that $\mathrm{b}=\beta \cdot \mathrm{b}$. Let W be an affine open subset of Y such that

$$
\mathrm{y} \in \mathrm{~W} \subset \mathrm{~V} \text { and } \beta, \mathrm{b}^{\prime} \in \mathscr{\mathscr { Y }}_{\mathrm{Y}}(\mathrm{~W})
$$

Let E be an irreducible component of

$$
\left\{x \in \varphi^{-1}(W) \mid \varphi^{*}(\beta)(x)=0\right\}
$$

such that $\mathrm{E} \cap \varphi^{-1}(\mathrm{y}) \neq \emptyset$. Since φ is surjective, E is non-empty and $\operatorname{dim} \mathrm{E}=\operatorname{dim} \mathrm{X}-1$ (see Exercise 14 on p. 32 and Theorem 7.8). Since

$$
\varphi^{*}(\mathrm{a})=\mathrm{f} \cdot \varphi^{*}(\mathrm{~b})=\mathrm{f} \cdot \varphi^{*}\left(\mathrm{~b}^{\prime}\right) \cdot \varphi^{*}(\beta)
$$

we have $\quad \varphi(\mathrm{E}) \subset\{\mathrm{w} \in \mathrm{W} \mid \mathrm{a}(\mathrm{w})=0$ and $\beta(\mathrm{w})=0\}$.
Let Z be an irreducible component of $\{w \in W \mid a(w)=\beta(w)=0\}$ containing $\varphi(\mathrm{E})$. Then $\left.\varphi\right|_{\mathrm{E}}$ is a morphism of E into Z .

Let $\mu=\beta \mathscr{\mathscr { H }}_{y} \cap \mathrm{~K}[\mathrm{~W}]$, then β is a prime ideal in $\mathrm{K}[\mathrm{W}]$ and a $\notin \rho$. We shall show that $J_{K[W]}(Z) \supset \mu$.
Let q be a prime ideal of $\mathrm{K}[\mathrm{W}]$ which is contained in $\mathscr{g}_{\mathrm{K}[\mathrm{W}]}(\mathrm{Z})$ and is minimal among prime ideals containing $\beta \mathrm{K}[\mathrm{W}]$ (see Lemma 7.13). Let $\mathrm{S}=\mathrm{K}[\mathrm{W}]-\mathcal{I}_{\mathrm{K}[\mathrm{W}]}(\mathrm{y})$, then we have $S^{-1} \beta \mathrm{~K}[\mathrm{~W}] \subset \mathrm{S}^{-1} \boldsymbol{q}$. Since

$$
\beta \mathrm{K}[\mathrm{~W}] \subset \beta=\left(\mathrm{S}^{-1} \beta \mathrm{~K}[\mathrm{~W}]\right) \cap \mathrm{K}[\mathrm{~W}] \subset \mathrm{S}^{-1} \mathscr{q} \cap \mathrm{~K}[\mathrm{~W}]=\mathscr{q}
$$

we have $\beta=q \subset g_{K[W]}(Z)$.

Thus we have got a strictly descending sequence of prime ideals

$$
\mathscr{V}_{\mathrm{K}[\mathrm{~W}]}(\mathrm{Z}) \nsupseteq \not \vDash\{0\}
$$

Hence we have a strictly increasing sequence of closed irreducible sets

$$
\begin{gathered}
\mathrm{Z} \varsubsetneqq \mathscr{W}_{W}(\mu) \varsubsetneqq \mathrm{W}, \\
\operatorname{dim} \mathrm{Z} \leqq \operatorname{dim} \mathrm{Y}-2 .
\end{gathered}
$$

which implies
From Corollary 13.8 we have

$$
\operatorname{dim}\left(\left.\varphi\right|_{\mathrm{E}}\right)^{-1}(\mathrm{w}) \geqq 1 \text { for any } \mathrm{w} \in \varphi(\mathrm{E})
$$

contradicting to the fact that $\left|\varphi^{-1}(\mathrm{w})\right|<\infty$ for any $\mathrm{w} \in \mathrm{Y}$.
Q.E.D.

23. Quotient spaces of linear algebraic groups

We shall construct the quotient space G / H in case ($G, K[G]$) is a linear algebraic group over K and ($\mathrm{H}, \mathrm{K}[\mathrm{H}]$) is its closed subgroup.
(23.1) Lemma. Let $\left(G, \mathscr{C}_{G}\right)$ be an algebraic group over K and V be a finite dimensional rational left KG-module, i.e.,

$$
\begin{aligned}
\varphi: \mathrm{G} & \longrightarrow \mathrm{GL}(\mathrm{~V}) \\
\mathrm{g} & \longrightarrow[\varphi(\mathrm{~g}): \mathrm{v} \rightarrow \mathrm{gv}]
\end{aligned}(\mathrm{v} \in \mathrm{~V})
$$

is a rational representation.

Let $\mathrm{d} \leq \operatorname{dim}_{\mathrm{K}} \mathrm{V}$, then
(i) $\Lambda^{\mathrm{d} V}$ is also a finite dimensional rational left KG-module under the following operation:

$$
\underset{\left(\mathrm{g}, \mathrm{v}_{1} \Lambda \ldots \Lambda \mathrm{v}_{\mathrm{d}}\right) \rightarrow \mathrm{gv}_{1} \Lambda \ldots . . \Lambda \mathrm{gv}_{\mathrm{d}} .}{\mathrm{G} \times \Lambda^{\mathrm{d}} \mathrm{~d}}
$$

We write $\Lambda^{d} \varphi$ for this representation of G into $G L\left(\Lambda^{d} V\right)$;
(ii) If G is a linear algebraic group with Lie algebra g, then

$$
d\left(\wedge^{d} \varphi\right)(\gamma)\left(v_{1} \wedge \ldots \wedge v_{d}\right)=\sum_{i=1}^{d} v_{1} \Lambda \ldots \wedge(d \varphi)(\gamma) v_{i} \Lambda \ldots \wedge v_{d}
$$

where $\gamma \in g$ and $v_{1} \wedge \ldots \wedge \mathrm{v}_{\mathrm{d}} \in \wedge^{\mathrm{d}} \mathrm{V}$.
Proof. (i) Since the map $g_{L}: \underset{\left(v_{1}, \ldots, v_{d}\right) \rightarrow \operatorname{gv}_{1} \Lambda . \ldots . \Lambda v_{d}}{V} \times \ldots \times V$ is K-multilinear and alternating, $g\left(v_{1} \wedge \ldots \wedge v_{d}\right)=\mathrm{gv}_{1} \wedge \ldots \wedge \mathrm{gv}_{\mathrm{d}}$ is a well-defined left operation of G on $\Lambda^{d} \mathrm{~V}$.

Let $\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\}$ be a K -basis of V , then

$$
\left\{m_{i_{1}} \wedge \ldots \wedge m_{i_{d}} \mid i_{1}<i_{2}<\ldots<i_{d}\right\}
$$

forms a K-basis of $\Lambda^{d} V$ (see Proposition 11.9). Let

$$
\mathrm{g}\left(\mathrm{~m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)\left[\begin{array}{l}
\varphi_{11}(\mathrm{~g}), \varphi_{12}(\mathrm{~g}), \ldots, \varphi_{\mathrm{ln}}(\mathrm{~g}) \\
\varphi_{21}(\mathrm{~g}), \ldots \ldots \ldots, ., \varphi_{2 \mathrm{n}}(\mathrm{~g}) \\
\vdots \\
\varphi_{\mathrm{n} 1}(\mathrm{~g}), \ldots \ldots \ldots, \varphi_{\mathrm{nn}}(\mathrm{~g})
\end{array}\right]
$$

where $\varphi_{i j} \in \mathscr{\mathscr { G }}_{\mathrm{G}}(\mathrm{G})$ for any $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$. Since

$$
g\left(m_{1} \wedge \ldots \wedge m_{d}\right)=g m_{1} \wedge \ldots \wedge \mathrm{gm}_{d}=\left(\sum_{i=1}^{n} \varphi_{i_{1}}(g) m_{i}\right) \wedge \ldots \wedge\left(\sum_{i=1}^{n} \varphi_{i_{d}}(g) m_{i}\right)
$$

and only products and sums of $\left\{\varphi_{\mathrm{ij}} \mid 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{d}\right\}$ appear as coefficients of the linear combination of $\left\{m_{i_{1}} \wedge \ldots \wedge m_{i_{d}} \mid i_{1}<i_{2}<\ldots<i_{d}\right\} \quad$ which expresses $\mathrm{g}\left(\mathrm{m}_{1} \Lambda \ldots \wedge \mathrm{~m}_{\mathrm{d}}\right), \Lambda^{\mathrm{d}} \mathrm{V}$ is also a rational KG -module.
(ii) Let a_{d} be the K -subspace of $\mathrm{T}^{\mathrm{d}}(\mathrm{V})=\mathrm{V} \underset{\mathrm{d}}{\otimes \ldots} \otimes \mathrm{V}$ generated by all elements of the form

$$
x_{1} \otimes \ldots \otimes x_{d} \in V \otimes \ldots \otimes V
$$

where $x_{i}=x_{j}$ for some $i \neq j$. Clearly a_{d} is a KG-submodule of $T^{d}(V)$ (see Proposition 18.2). Hence

$$
\begin{aligned}
\Lambda^{\mathrm{d}} \varphi: \mathrm{G} & \longrightarrow \mathrm{GL}\left(\mathrm{~T}^{\mathrm{d}}(\mathrm{~V}) / a_{\mathrm{d}}\right) \\
\mathrm{g} & \longrightarrow\left[\mathrm{v}_{1} \otimes \ldots \otimes \mathrm{v}_{\mathrm{d}}+a_{\mathrm{d}} \rightarrow \otimes^{\mathrm{d}} \varphi(\mathrm{~g})\left(\mathrm{v}_{1} \otimes \ldots \otimes \mathrm{v}_{\mathrm{d}}\right)+a_{\mathrm{d}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\otimes^{\mathrm{d}} \varphi: \mathrm{G} & \longrightarrow \mathrm{G} \times \ldots \times \mathrm{G} \longrightarrow \mathrm{GL}\left(\mathrm{~T}^{\mathrm{d}}(\mathrm{~V})\right) \\
\mathrm{g} & \longrightarrow\left(\mathrm{~g}_{\underset{\mathrm{d}}{ } \ldots, \mathrm{~g}) \longrightarrow \varphi\left(\mathrm{g}_{\mathrm{d}} \otimes_{\mathrm{d}} \ldots \otimes \varphi(\mathrm{~g}) .\right.} .\right.
\end{aligned}
$$

Since $d\left(\wedge^{d} \varphi\right)=\left(d\left(\otimes^{d} \varphi\right)\right)^{\sim}$, where

$$
\begin{aligned}
\left(\mathrm{d}\left(\otimes^{\mathrm{d}} \varphi\right)\right)^{\sim}: g & \longrightarrow g l\left(\mathrm{~T}^{\mathrm{d}}(\mathrm{~V}) / a_{\mathrm{d}}\right) \\
\gamma & \longrightarrow\left[\mathrm{v}+a_{\mathrm{d}} \rightarrow \mathrm{~d}\left(\otimes^{\mathrm{d}} \varphi\right)(\gamma) \mathrm{v}+a_{\mathrm{d}}\right]
\end{aligned}
$$

from Exercise 61, we have

$$
d\left(\wedge^{d} \varphi\right)(\gamma)\left(v_{1} \wedge \ldots \wedge v_{d}\right)=\sum_{i=1}^{d} v_{1} \Lambda \ldots \wedge(d \varphi)(\gamma) v_{i} \wedge \ldots \wedge v_{d}
$$

$\left(\gamma \in g, \mathrm{v}_{1} \Lambda \ldots \wedge \mathrm{v}_{\mathrm{d}} \in \wedge^{\mathrm{d}} \mathrm{V}\right)$ from Lemma 20.3 and Proposition 20.8.
Q.E.D.

Exercise 61. Let ($\mathrm{G}, \mathrm{K}[\mathrm{G}]$) be a linear algebraic group over K and (H, $\mathrm{K}[\mathrm{H}]$) be its closed subgroup. Let $\varphi: G \rightarrow G L(V)$ be a finite dimensional rational representation of G over K and let W be a $\varphi(\mathrm{H})$-invariant subspace of V . Let

$$
\begin{aligned}
\tilde{\varphi}: \mathrm{H} & \longrightarrow \mathrm{GL}(\mathrm{~V} / \mathrm{W}) \\
\mathrm{h} & \longrightarrow \tilde{\varphi}(\mathrm{~h}): \mathrm{v}+\mathrm{W} \rightarrow \mathrm{hv}+\mathrm{W}
\end{aligned}
$$

be a rational representation of H defined by $\mathrm{KH}-$ module V / W (see Proposition 18.2). Then show that

$$
\mathrm{d} \tilde{\varphi}=(\mathrm{d} \varphi)^{\sim}
$$

where

$$
\begin{aligned}
(\mathrm{d} \varphi)^{N}: \mathscr{H} & \longrightarrow g^{\ell}(\mathrm{V} / \mathrm{W}) \\
\gamma & \longrightarrow(\mathrm{d} \varphi)^{N}(\gamma): \mathrm{v}+\mathrm{W} \rightarrow(\mathrm{~d} \varphi)(\gamma)(\mathrm{v})+\mathrm{W}
\end{aligned}
$$

and \mathscr{H} is a Lie algebra of H .
(23.2) Proposition. Let ($G, K[G]$) be a linear algebraic group over K with Lie algebra g and (H, K[H]) be a closed subgroup of G with Lie algebra \mathscr{H}. Then there exist a finite dimensional left KG-submodule V of $K[G]$ (see Lemma 18.4 and Proposition 18.5) together with a subspace W of V such that

$$
H=\{g \in G \mid g * W=W\}
$$

and

$$
\mathscr{H}=\{\gamma \in g \mid(\mathrm{d} \varphi)(\gamma) \mathrm{W} \subset \mathrm{~W}\}
$$

where

$$
\varphi: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{~V})
$$

$$
\mathrm{g} \longrightarrow[\varphi(\mathrm{~g}): \mathrm{v} \rightarrow \mathrm{~g} * \mathrm{v}](\mathrm{v} \in \mathrm{~V})
$$

Further let $d=\operatorname{dim}_{K} W$, then for any $g \in G$ we have $g * W=W$ if and only if $\mathrm{g} *\left(\Lambda^{\mathrm{d}} \mathrm{W}\right)=\Lambda^{\mathrm{d}} \mathrm{W}$, and for any $\gamma \in g$ we have $\mathrm{W} * \gamma \subset \mathrm{~W}$ i.e. $(\mathrm{d} \varphi)(\gamma) \mathrm{W} \subset \mathrm{W}$ if and only if $\left(\mathrm{d} \Lambda^{\mathrm{d}} \varphi\right)(\gamma) \Lambda^{\mathrm{d}} \mathrm{W} \subset \Lambda^{\mathrm{d}} \mathrm{W}$ (see Proposition 20.7).

Proof. Let $\mathscr{I}(\mathrm{H})$ be the ideal of functions of $\mathrm{K}[\mathrm{G}]$ vanishing on H . Since $\mathrm{K}[\mathrm{G}]$ is Noetherian, $\mathscr{J}(\mathrm{H})$ has a finite set of generators $f_{1}, f_{2}, \ldots, f_{r}$ as ideal. Let

$$
\mathrm{V}=\mathrm{KG} * \mathrm{f}_{1}+\ldots+\mathrm{KG} * \mathrm{f}_{\mathrm{r}},
$$

then from Corollary 18.6 V is finite dimensional. Let

$$
\mathrm{W}=\mathrm{V} \cap \mathscr{G}(\mathrm{H})
$$

then we have $h * W=W$ for any $h \in H$.

Conversely assume that $g * W=W$ for some $g \in G$, then $\mathrm{g}_{\boldsymbol{*}} \mathrm{f}_{\mathrm{i}} \in \mathscr{F}(\mathrm{H})$ for any $1 \leq \mathrm{i} \leq \mathrm{r}$.
Hence $g \nVdash \mathscr{G}(\mathrm{H}) \subset \mathscr{G}(\mathrm{H})$, which implies $\mathrm{g} \in \mathrm{H}$ from Proposition 1.7. Therefore, we have

$$
\mathrm{H}=\{\mathrm{g} \in \mathrm{G} \mid \mathrm{g} * \mathrm{~W}=\mathrm{W}\} .
$$

Now let $\gamma \in \mathscr{H}$, then from Lemma 20.5 we have

$$
\gamma \in\{\gamma \in g \mid \mathrm{d} \varphi(\gamma) \mathrm{W} \subset \mathrm{~W}\}
$$

Assume that

$$
\mathrm{d} \varphi(\gamma) \mathrm{W} \subset \mathrm{~W},
$$

i.e., $\mathrm{W}{ }^{*} \gamma \subset \mathrm{~W}$ for some $\gamma \in g$. Since

$$
\mathscr{I}(\mathrm{H}) \gamma=(\mathrm{WK}[\mathrm{G}]) * \gamma \subset(\mathrm{~W} * \gamma) \mathrm{K}[\mathrm{G}]+\mathrm{W}(\mathrm{~K}[\mathrm{G}] * \gamma)
$$

(see Lemma 19.10), we have

$$
\mathscr{J}(\mathrm{H}) * \gamma \subset \mathscr{I}(\mathrm{H}) .
$$

Hence $\mathrm{f} \gamma(1)=\gamma(\mathrm{f})=0$ for any $\mathrm{f} \in \mathscr{G}(\mathrm{H})$. Therefore, we have $\gamma \in \mathscr{H}$ from Proposition 19.15. Hence we have shown that

$$
\mathscr{H}=\{\gamma \in g \mid \mathrm{d} \varphi(\gamma) \mathrm{W} \subset \mathrm{~W}\}
$$

By definition $g *\left(\Lambda^{d} W\right)=\Lambda^{d} W$ if $g * W=W$ ($g \in G$) (see Lemma 23.1). Assume that $g_{*}\left(\Lambda^{d} W\right)=\Lambda^{d} W$ for some $g \in G$. Let $\left\{v_{1}, \ldots, v_{d}, \ldots, v_{d+t-1}\right\}$ be a K-basis of $W+g * W$ such that $\left\{v_{1}, \ldots, v_{d}\right\}$ forms a K-basis of W and $\left\{v_{t}, \ldots, v_{d}\right\}$ forms a Kbasis of $W \cap \mathrm{~g} * \mathrm{~W}$ and $\left\{\mathrm{v}_{\mathrm{t}}, \mathrm{v}_{\mathrm{t}+1}, \ldots, \mathrm{v}_{\mathrm{d}}, \ldots, \mathrm{v}_{\mathrm{d}+\mathrm{t}-1}\right\}$ forms a K -basis of $\mathrm{g} * \mathrm{~W}$. Since $g *\left(v_{1} \wedge \ldots \wedge v_{d}\right)=c v_{t} \Lambda \ldots \wedge v_{d+t-1}$ for some $c \in K-\{0\}$ and $c v_{t} \wedge \ldots \wedge v_{d+t-1} \in$ $K v_{1} \wedge \ldots \wedge v_{d}$ and $\left\{v_{1} \wedge \ldots \wedge v_{d}, v_{t} \wedge \ldots \wedge v_{d+t-1}\right\}$ form a part of a K-basis of $\wedge^{d} V$, we have $t=1$. Hence $g * W=W$.

Since

$$
d\left(\wedge^{d} \varphi\right)(\gamma)\left(w_{1} \Lambda \ldots \wedge w_{d}\right)=\sum_{i=1}^{d} w_{1} \Lambda \ldots \wedge(d \varphi)(\gamma) w_{i} \Lambda \ldots \wedge w_{d}
$$

from Lemma 23.1 where $w_{1}, \ldots, w_{d} \in V$, we have

$$
\mathrm{d}\left(\wedge^{\mathrm{d}} \varphi\right)(\gamma) \wedge^{d} \mathrm{~W} \subset \wedge^{\mathrm{d}} \mathrm{~W}
$$

if $(\mathrm{d} \varphi)(\gamma) \mathrm{W} \subset \mathrm{W}$. Assume that

$$
\mathrm{d}\left(\Lambda^{\mathrm{d}} \varphi\right)(\gamma) \Lambda^{\mathrm{d}} \mathrm{~W} \subset \Lambda^{\mathrm{d}} \mathrm{~W}
$$

for some $\gamma \in g$. Let $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{d}}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be a K-basis of V and

$$
(\mathrm{d} \varphi)(\gamma) \mathrm{v}_{\mathrm{i}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{ki}} \mathrm{v}_{\mathrm{k}}
$$

Then

$$
\begin{aligned}
& d\left(\Lambda^{d} \varphi\right)(\gamma)\left(v_{1} \Lambda \ldots \wedge v_{d}\right)=\sum_{i=1}^{d} v_{1} \Lambda \ldots \wedge(d \varphi)(\gamma) v_{i} \wedge \ldots \wedge v_{d} \\
& =\sum_{i=1}^{d} \sum_{k=1}^{n} c_{k i} v_{1} \Lambda \ldots \Lambda v_{i-1} \Lambda v_{k} \wedge v_{i+1} \Lambda \ldots \wedge v_{d} \in K v_{1} \wedge \ldots \wedge v_{d} .
\end{aligned}
$$

Hence $c_{k i}=0$ if $k>d$. Therefore, $(\mathrm{d} \varphi)(\gamma) \mathrm{W} c \mathrm{~W}$.
Q.E.D.
(23.3) Corollary (C. Chevalley). Let (G, K[G]) be a linear algebraic group over K and (H, K[H]) be a closed subgroup of G . Let g and \mathscr{H} be the Lie algebras of G and H respectively. Then there exists a finite dimensional rational left KG-module V with one dimensional subspace $\mathrm{L} \subset \mathrm{V}$ such that
and

$$
\mathrm{H}=\{\mathrm{g} \in \mathrm{G} \mid \varphi(\mathrm{g}) \mathrm{L}=\mathrm{L}\}
$$

$$
\mathscr{H}=\{\gamma \in \mathscr{g} \mid(\mathrm{d} \varphi)(\gamma) \mathrm{L} \subset \mathrm{~L}\}
$$

where

$$
\begin{aligned}
\varphi: G & \longrightarrow \mathrm{GL}(\mathrm{~V}) \\
\mathrm{g} & \longrightarrow[\varphi(\mathrm{~g}): \mathrm{v} \rightarrow \mathrm{gv}](\mathrm{v} \in \mathrm{~V}) .
\end{aligned}
$$

Now let G, H, V and L be as in Corollary 23.3. Let $P(V)$ be the projective space defined by V (see $\S 11$). Let

$$
\pi: \mathrm{V}-\{0\} \rightarrow \mathrm{P}(\mathrm{~V})
$$

be a map of $V-\{0\}$ into $P(V)$ which takes each $v \in V-\{0\}$ to $K v \in P(V)$, then π is a morphism of the open subvariety $V-\{0\}$ into $P(V)$ (see Example 21.4). Let

$$
\begin{gathered}
\mathrm{G} \times \mathrm{P}(\mathrm{~V}) \longrightarrow \mathrm{P}(\mathrm{~V}) \\
(\mathrm{g}, \pi(\mathrm{v})
\end{gathered} \longrightarrow \pi(\mathrm{gv}),
$$

then G operates on $P(V)$ morphically by the following Lemma.
(23.4) Lemma. Let $\left(G, \mathscr{\mathscr { G }}_{G}\right)$ be an algebraic group over K and $\varphi: G \rightarrow G L(V)$ be a finite dimensional rational representation. Let $\pi: V-\underset{\mathrm{V}}{\boldsymbol{q} \rightarrow \mathrm{P}} \underset{\mathrm{K}}{\rightarrow} \mathrm{P}(\mathrm{V})$ be the morphism as above, then by the map

$$
\psi: \underset{(\mathrm{g}, \pi(\mathrm{v}))}{\mathrm{G} \times \mathrm{P}(\mathrm{~V})} \longrightarrow \mathrm{P}(\mathrm{~V})
$$

$\mathrm{P}(\mathrm{V})$ becomes a G-variety (see Definition 17.1), where $\mathrm{gv}=\varphi(\mathrm{g}) \mathrm{v}$.
Proof. Let $\mathrm{V}^{\prime}=\mathrm{V}-\{0\}$ and $\varphi^{\prime}: \mathrm{G} \times \mathrm{V}^{\prime} \rightarrow \mathrm{V}^{\prime}$, then φ^{\prime} is also a morphism of $(\mathrm{g}, \mathrm{v}) \longrightarrow \mathrm{gv}$ varieties and we have the following commutative diagram.

Let $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ be a K-basis of V. Since

$$
\begin{aligned}
& \rho_{\mathrm{j}}: G \times P_{j}(V) \longrightarrow G \times V^{\prime} \\
& \quad\left(g, K\left(c_{0} v_{0}+\ldots+c_{n} v_{n}\right)\right) \rightarrow\left(g, \frac{c_{0}}{c_{j}} v_{0}+\ldots+v_{j}+\ldots+\frac{c_{n}}{c_{j}} v_{n}\right)
\end{aligned}
$$

is a morphism of varieties and $\pi \circ \varphi^{\prime} \circ \rho_{\mathrm{j}}=\left.\psi\right|_{\mathrm{G} \times \mathrm{P}_{\mathrm{j}}(\mathrm{V})}$ where $0 \leq \mathrm{j} \leq \mathrm{n}, \quad \psi$ is a morphism of varieties. Q.E.D.

Let $X=G \cdot x$ where $x=L \in P(V)$, then from Proposition $17.8 \quad X$ is open in \bar{X}. Hence X is a quasi-projective variety over K. (see Definition 11.5). Thus we have
got a quasi-projective homogeneous space X of G (see Definition 17.9) with certain point $\mathrm{x} \in \mathrm{X}$ such that

$$
H=\{g \in G \mid g x=x\}
$$

Further we have
(23.5) Proposition. Let G, H, V and L be as in Corollary 23.3. Let $P(V)$ be the projective space defined by V and $x=L \in P(V)$. Let X be the quasi-projective homogeneous space of G as above, then
(i) $\quad\left(\mathrm{d} \varphi_{\mathrm{x}}\right)_{1}: g \longrightarrow \mathrm{~T}(\mathrm{X})_{\mathrm{x}}$ is surjective where $\varphi_{\mathrm{x}}: \mathrm{G} \longrightarrow \mathrm{X} \longrightarrow \mathrm{X} \cdot \mathrm{x}$;
(ii) the map $\psi: \mathrm{G}^{0} \longrightarrow \mathrm{G}^{0} \cdot \mathrm{x}$ is a separable morphism where G^{0} is the irreducible $g \longrightarrow g \cdot x$
component of G containing 1 .

Proof. Since $\varphi_{x}: G \longrightarrow X$ is a morphism of varieties and G^{0} is closed in G, the map $\mathrm{g} \longrightarrow \mathrm{g} \cdot \mathrm{x}$

$$
\begin{aligned}
& \mathrm{G}^{0} \mathrm{C} \mathrm{G} \xrightarrow{\varphi_{\mathrm{x}}} \mathrm{X} \\
& \mathrm{~g} \xrightarrow{\mathrm{~g}} \mathrm{~g} \cdot \mathrm{x}
\end{aligned}
$$

is also a morphism. Hence from Exercise 40 on p. 113 the map $G^{0} \longrightarrow \overline{G^{0} \cdot x}$ is a $\mathrm{g} \longrightarrow \mathrm{g} \cdot \mathrm{x}$
morphism. From the proof of Lemma $17.12 \mathrm{G}^{0} \cdot \mathrm{x}$ is open and closed in X . Hence the map

$$
\begin{aligned}
\psi: \mathrm{G}^{0} & \longrightarrow \mathrm{G}^{0} \cdot \mathrm{x} \\
\mathrm{~g} & \longrightarrow \mathrm{~g} \cdot \mathrm{x}
\end{aligned}
$$

is a morphism.

Since G^{0} is open in G and $\left.\varphi_{x}\right|_{G^{0}}=\psi$,

$$
\mathrm{T}(\mathrm{G})_{1}=\mathrm{T}\left(\mathrm{G}^{0}\right)_{1}, \mathrm{~T}(\mathrm{X})_{\mathrm{x}}=\mathrm{T}\left(\mathrm{G}^{0} \cdot \mathrm{x}\right)_{\mathrm{x}} \text { and }\left(\mathrm{d} \varphi_{\mathrm{x}}\right)_{1}=(\mathrm{d} \psi)_{1}
$$

From Theorem 13.14 there exists a point $g^{\prime} \cdot x$ in $G^{0} \cdot x$ such that $\operatorname{dim} \psi^{-1}\left(\mathrm{~g}^{\prime} \cdot \mathrm{x}\right)=\operatorname{dim} \mathrm{G}^{0}-\operatorname{dim} \mathrm{G}^{0} \cdot \mathrm{x}$,
where $g^{\prime} \in G^{0}$.

Since $\psi^{-1}\left(g^{\prime} \cdot x\right)=\left\{g \in G^{0} \mid g \cdot x=g^{\prime} \cdot x\right\}=g^{\prime}\left(G^{0} \cap H\right)$ and $H \supset H \cap G^{0} \supset H^{0}$ where H^{0} is the irreducible component of H containing 1 , we have

$$
\operatorname{dim} \psi^{-1}\left(g^{\prime} \cdot x\right)=\operatorname{dim} G^{0} \cap H=\operatorname{dim} H
$$

Thus

$$
\operatorname{dim}_{K} T(G)_{1}=\operatorname{dim}_{K} T(H)_{1}+\operatorname{dim}_{K} T(X)_{x}
$$

(i) From the above argument it is enough to show that $\operatorname{Ker}\left(\mathrm{d} \varphi_{\mathrm{x}}\right)_{1}=\mathscr{H}$. Let $\mathrm{L}=\mathrm{Kv}$ for some $v \in L-\{0\}$ and $\left\{v=v_{0}, v_{1}, \ldots, v_{n}\right\}$ be a K-basis of V. Then the map

$$
\begin{gathered}
\rho: \mathrm{GL}(\mathrm{~V}) \longrightarrow \mathrm{V}-\{0\} \\
\mathrm{f} \longrightarrow \mathrm{f}(\mathrm{v})
\end{gathered}
$$

is a morphism of varieties and

$$
\begin{aligned}
&(\mathrm{d} \rho)_{1}: \mathscr{L}(\mathrm{V}) \longrightarrow \mathrm{T}(\mathrm{~V})_{\mathrm{v}} \\
& \\
&(\mathrm{v})
\end{aligned}
$$

Since

$$
\begin{aligned}
& \varphi_{\mathrm{x}}: \mathrm{G} \xrightarrow{\varphi} \mathrm{GL}(\mathrm{~V}) \xrightarrow{\rho} \mathrm{V}-\{0\} \xrightarrow{\pi} \mathrm{X} \\
& \mathrm{~g} \longrightarrow \mathrm{gV}(\mathrm{~g}) \xrightarrow{\longrightarrow} \pi(\mathrm{gv})=\mathrm{g} \cdot \mathrm{x}
\end{aligned}
$$

and

$$
\left(\mathrm{d} \varphi_{\mathrm{x}}\right)_{1}: g \xrightarrow{(\mathrm{~d} \varphi)_{1}} g(\mathrm{~V}) \xrightarrow{(\mathrm{d} \rho)_{1}} \mathrm{~T}(\mathrm{~V})_{\mathrm{V}} \xrightarrow{(\mathrm{~d} \pi)_{\mathrm{v}}} \mathrm{~T}(\mathrm{X})_{\mathrm{x}},
$$

we have

$$
\begin{aligned}
\operatorname{Ker}\left(\mathrm{d} \varphi_{\mathrm{x}}\right)_{1} & =\left(\mathrm{d}(\rho \circ \varphi)_{1}\right)^{-1}\left(\operatorname{Ker}(\mathrm{~d} \pi)_{\mathrm{v}}\right) & & \\
& =\left(\mathrm{d}(\rho \circ \varphi)_{1}\right)^{-1}(\mathrm{~L}) & & \text { (see Example 21.4) } \\
& =\mathscr{A} & & \text { (see Corollary 23.3). }
\end{aligned}
$$

(ii) is clear from Theorem 21.9.

Exercise 62. Verify the statement $\begin{aligned} &(\mathrm{d} \rho)_{1}: \mathscr{f}(\mathrm{V}) \longrightarrow \mathrm{T}(\mathrm{V})_{\mathrm{v}} \text { in the above proof. } \\ & \underset{\gamma}{ }(\mathrm{v})\end{aligned}$

Now we define the quotient space G/H.
(23.6) Definition. Let ($G, \mathscr{\mathscr { H }}_{G}$) be an algebraic group over K and ($H, \mathscr{\mathscr { H }}_{H}$) be a closed subgroup of G. We call a pair ($G / H, a$) of a homogeneous space G / H of G and a point a in G / H whose isotropy group is H a quotient of G by H if for any pair (Y, b) of a homogeneous space Y of G and a point $b \in Y$ whose isotropy group contains H there exists a unique G-morphism φ of G / H into Y such that $\varphi(\mathrm{a})=\mathrm{b}$.

(23.7) Theorem. Let ($G, K[G]$) be a linear algebraic group over K and ($H, K[H]$) be a closed subgroup of G. Let V be a finite dimensional rational left $K G$-module with one dimensional subspace LCV such that

$$
\mathrm{H}=\{\mathrm{g} \in \mathrm{G} \mid \mathrm{gL}=\mathrm{L}\}
$$

Let $\pi: V-\{0\} \underset{\mathrm{V}}{\longrightarrow} \longrightarrow \mathrm{P}(\mathrm{V})$ and $\mathrm{x}=\mathrm{L}$. Let $\mathrm{X}=\mathrm{G} \cdot \mathrm{x}$ where G operates on $\mathrm{P}(\mathrm{V})$ as follows

$$
\begin{aligned}
& \mathrm{G} \times \mathrm{P}(\mathrm{~V}) \longrightarrow \mathrm{P}(\mathrm{~V}) \\
& (\mathrm{g}, \pi(\mathrm{v})) \longrightarrow \pi(\mathrm{gv}) .
\end{aligned}
$$

Then the pair (X, x) is a quotient of G by H and is unique up to G-isomorphism of G-varieties.

Proof. From the definition of quotient the uniqueness is clear. Let $\nu: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}$ and ($\mathrm{G} / \mathrm{H}, \mathscr{\oiiint}$) be as in p. 218 and let (Y, b) be as in Definition 23.6. Let

$$
\begin{aligned}
\varphi: \mathrm{G} / \mathrm{H} & \longrightarrow \mathrm{Y} \\
\mathrm{gH} & \longrightarrow \mathrm{gb},
\end{aligned}
$$

then φ is a well defined G-map. Let

$$
\begin{aligned}
\varphi_{\mathrm{b}}: \mathrm{G} & \longrightarrow \mathrm{Y} \\
\mathrm{~g} & \text { g.b }
\end{aligned}
$$

then we have the following commutative diagram

Let O be an open set in Y, then

$$
\begin{aligned}
\varphi^{-1}(O) & =\{g H \mid g \in G \text { and } g \cdot b \in O\} \\
& =\nu(\{g \in G \mid g \cdot b \in O\}) \\
& =\nu\left(\varphi_{\mathrm{b}}^{-1}(O)\right) .
\end{aligned}
$$

Hence $\varphi^{-1}(\mathrm{O})$ is open in G / H.

Since $\nu^{-1}\left(\varphi^{-1}(0)\right)=\varphi_{\mathrm{b}}^{-1}(0)$ and $\mathrm{fo}\left(\left.\varphi_{\mathrm{b}}\right|_{\varphi_{\mathrm{b}}^{-1}(0)}\right) \in \mathscr{\mathscr { G }}_{G}\left(\varphi_{\mathrm{b}}^{-1}(0)\right)$ for any $\mathrm{f} \in \mathscr{\mathscr { O }}_{\mathrm{Y}}(0)$, we have

$$
\mathrm{f} \circ\left(\left.\varphi\right|_{\varphi^{-1}(0)}\right) \in \mathscr{\varphi}^{\left(\varphi^{-1}(0)\right)} .
$$

Therefore φ is a morphism of ringed space.

Now we shall show that if (Y, b) were (X, x) then $\varphi: \mathrm{G} / \mathrm{H} \longrightarrow \mathrm{X}$ would be an $\mathrm{gH} \longrightarrow \mathrm{g} \cdot \mathrm{x}$
isomorphism of ringed spaces. Clearly φ is bijective. Let U be an open set in G / H. Since $\varphi(\mathrm{U})=\varphi_{\mathrm{x}}\left(\nu^{-1}(\mathrm{U})\right)$ and φ_{x} is an open map from Lemma 17.12, $\varphi(\mathrm{U})$ is open in X. Hence φ is a homeomorphism.

Finally we shall show that φ^{-1} is also a morphism of ringed spaces. Let O be an open set in X . If the map

$$
\begin{aligned}
\Phi: \mathscr{S}_{\mathrm{X}}(\mathrm{O}) & \longrightarrow \mathscr{\mathscr { L }}\left(\varphi^{-1}(\mathrm{O})\right) \\
\mathrm{f} & \left.\longrightarrow \mathrm{fo} \mathrm{\varphi}\right|_{\varphi^{-1}(0)}
\end{aligned}
$$

is a K -algebra isomorphism, then $\varphi^{-1}: \mathrm{X} \rightarrow \mathrm{G} / \mathrm{H}$ is a morphism of ringed spaces. Since the map Φ is clearly an injective K-algebra homomorphism, it is enough to show that Φ is surjective, that is, for any

$$
\hat{\mathrm{f}} \in \mathscr{\mathscr { C }}\left(\varphi^{-1}(\mathrm{O})\right)
$$

there exists $F \in \mathscr{O}_{X}(O)$ such that

$$
\hat{\mathrm{f}}=\left.\mathrm{F} \circ \varphi\right|_{\varphi^{-1}(0)}
$$

Now let

$$
\mathscr{G}_{G}\left(\varphi_{x}^{-1}(O)\right)^{H}
$$

$$
=\left\{f \in \mathscr{\mathscr { G }}_{\mathrm{G}}\left(\varphi_{\mathrm{x}}^{-1}(\mathrm{O})\right) \mid \mathrm{f}(\mathrm{gh})=\mathrm{f}(\mathrm{~g}) \text { for any } \mathrm{g} \in \varphi_{\mathrm{x}}^{-1}(\mathrm{O}) \text { and } \mathrm{h} \in \mathrm{H}\right\}
$$

(Notice that $\varphi_{\mathrm{x}}{ }^{-1}(\mathrm{O})=\nu^{-1}\left(\varphi^{-1}(\mathrm{O})\right.$) and $\varphi_{\mathrm{x}}{ }^{-1}(\mathrm{O}) \mathrm{h}=\varphi_{\mathrm{x}}{ }^{-1}(\mathrm{O})$ for any $\mathrm{h} \in \mathrm{H}$. .) Then we have got the following bijective correspondence:

$$
\mathscr{\mathscr { H } (\varphi ^ { - 1 } (\mathrm { O })) = \{ \hat { \mathrm { f } } : \varphi ^ { - 1 } (\mathrm { O }) \rightarrow \mathrm { K } | \hat { \mathrm { f } \circ \nu } | _ { \varphi _ { \mathrm { x } } ^ { - 1 } (\mathrm { O }) } \in \mathscr { \mathscr { G } } _ { \mathrm { G } } (\varphi _ { \mathrm { x } } ^ { - 1 } (\mathrm { O })) \} \longrightarrow \mathscr { \mathscr { G } } _ { \mathrm { G } } (\varphi _ { \mathrm { x } } ^ { - 1 } (\mathrm { O })) ^ { \mathrm { H } }} \underset{\hat{\mathrm{f}} \xrightarrow[\mathrm{f} \circ \nu]{ }}{ }
$$

Thus we only have to show that for any $f \in \mathscr{O}_{G}\left(\varphi_{x}{ }^{-1}(\mathrm{O})\right)$ such that $f(g h)=f(g)$ $\left(\mathrm{g} \in \varphi_{\mathrm{x}}{ }^{-1}(\mathrm{O})\right.$ and $\left.\mathrm{h} \in \mathrm{H}\right)$ there exists $\mathrm{F} \in \mathscr{\mathscr { L }}_{\mathrm{X}}(\mathrm{O})$ such that

$$
\mathrm{f}=\mathrm{F} \circ \varphi_{\mathrm{x}} \text { on } \varphi_{\mathrm{x}}^{-1}(\mathrm{O})
$$

Let G^{0} be the connected component of G containing 1 , then $G=\bigcup_{i=1}^{t} G^{0} g_{i}$ (disjoint union of open subsets) and

$$
X=G \cdot x=\bigcup_{i=1}^{t} G^{0} g_{i} x=G^{0} g_{i_{1}} x U \ldots U G^{0} g_{i_{S}} x
$$

(disjoint union of G^{0}-orbits in $X, s \leqq t$). Then $G^{0} g_{i_{1}} x, \ldots, G^{0} g_{i_{s}} x$ are the irreducible components of X and each $G^{0} g_{i_{j}} x$ is open and closed in X.

Now let $\mathrm{U}_{\mathrm{i}}=\varphi_{\mathrm{x}}{ }^{-1}(\mathrm{O}) \cap \mathrm{G}^{0} \mathrm{~g}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{t})$, then

$$
\varphi_{x}^{-1}(O)=\bigcup_{i=1}^{t}\left(\varphi_{x}^{-1}(O) \cap G^{0} g_{i}\right)={\underset{i=1}{t}}_{U_{i}}
$$

Let $f_{i}=\left.f\right|_{U_{i}}$, then $f \in \mathscr{\mathscr { G }}_{G}\left(\varphi_{x}{ }^{-1}(O)\right)$ if and only if

$$
\mathrm{f}_{\mathrm{i}} \in \mathscr{O}_{G}\left(\mathrm{U}_{\mathrm{i}}\right) \text { for any } 1 \leq \mathrm{i} \leq \mathrm{t} .
$$

Let φ_{i} be a map of G^{0} into $G^{0} g_{i} x$ which takes each $g \in G^{0}$ to $g_{i} g x$, i.e.,

$$
\varphi_{\mathrm{i}}: \mathrm{G}^{0} \longrightarrow \mathrm{~g}_{\mathrm{i}} \mathrm{G}^{0} \mathrm{~g}_{\mathrm{i}}^{-1} \longrightarrow \mathrm{G}^{0} \mathrm{~g}_{\mathrm{i}} \mathrm{x}
$$

$$
\mathrm{g} \longrightarrow \mathrm{gi}_{\mathrm{i}} \mathrm{gg}_{\mathrm{i}}^{-1} \longrightarrow \mathrm{~g}_{\mathrm{i}} \mathrm{gg}_{\mathrm{i}}^{-1} \mathrm{~g}_{\mathrm{i}} \mathrm{x}
$$

Since $\quad g_{i} g x \in 0 \quad \Leftrightarrow g_{i} g \in \varphi_{x}{ }^{-1}(O)$

$$
\begin{aligned}
& \Leftrightarrow g \in \mathrm{gi}^{-1} \varphi_{\mathrm{x}}^{-1}(\mathrm{O}) \\
& \Leftrightarrow g \in \mathrm{gi}^{-1} U_{\mathrm{i}}\left(=\mathrm{gi}^{-1} \varphi_{\mathrm{x}}^{-1}(\mathrm{O}) \cap \mathrm{G}^{0}\right)
\end{aligned}
$$

for any $g \in G^{0}$, we have

$$
\varphi_{i}^{-1}(\mathrm{O})=\mathrm{g}_{\mathrm{i}}^{-1} \mathrm{U}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{t}) .
$$

Let $H^{0}=H \cap G^{0}$ and

$$
\begin{aligned}
\mathrm{f}_{\mathrm{i}}{ }^{0}: \varphi_{\mathrm{i}}^{-1}(\mathrm{O}) & \longrightarrow \mathrm{K}_{\mathrm{i}}\left(\mathrm{~g}_{\mathrm{i}} \mathrm{~g}\right)
\end{aligned}
$$

where $1 \leq i \leq t$, then $f_{i}{ }^{0} \in \mathscr{O}_{G}\left(\varphi_{i}{ }^{-1}(O)\right)=\mathscr{\mathscr { G }}^{0} 0\left(\varphi_{i}{ }^{-1}(\mathrm{O})\right)$ (see Exercise 37 on p.111) and

$$
\mathrm{f}_{\mathrm{i}}^{0}(\mathrm{gh})=\mathrm{f}_{\mathrm{i}}\left(\mathrm{~g}_{\mathrm{i}} \mathrm{gh}\right)=\mathrm{f}\left(\mathrm{~g}_{\mathrm{i}} \mathrm{gh}\right)=\mathrm{f}\left(\mathrm{~g}_{\mathrm{i}} \mathrm{~g}\right)=\mathrm{f}_{\mathrm{i}}^{0}(\mathrm{~g})
$$

for any $g \in \varphi_{i}^{-1}(O)$ and $h \in H^{0}$. Thus if we showed that for each $f_{i}{ }^{0} \in \mathscr{O}_{G} 0\left(\varphi_{i}{ }^{-1}(O)\right)$ such that $\mathrm{f}_{\mathrm{i}}{ }^{0}(\mathrm{gh})=\mathrm{f}_{\mathrm{i}}{ }^{0}(\mathrm{~g})\left(\mathrm{g} \in \varphi_{\mathrm{i}}{ }^{-1}(\mathrm{O})\right.$ and $\left.\mathrm{h} \in \mathrm{H}^{0}\right)$ there exists

$$
F_{i} \in \mathscr{C}_{G^{0} g_{i} x}\left(O \cap G^{0} g_{i} x\right)
$$

such that $f_{i}{ }^{0}=F_{i} \circ \varphi_{i}$ on $\varphi_{i}{ }^{-1}(\mathrm{O})$, we should have

$$
\mathrm{f}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}} \circ \varphi_{\mathrm{x}}
$$

on each $\varphi_{\mathrm{x}}^{-1}(\mathrm{O}) \cap \mathrm{G}^{0} \mathrm{~g}_{\mathrm{i}}$ and the function $\mathrm{F} \in \mathscr{\mathscr { C }}_{\mathrm{X}}(\mathrm{O})$ such that

$$
\left.\mathrm{F}\right|_{\mathrm{OOG}}{ }_{\mathrm{g}}^{\mathrm{i}^{\mathrm{x}}} \mathrm{~F}=\mathrm{F}_{\mathrm{i}}
$$

for each $1 \leq i \leq t$ should be the desired one.

Hence from now on we assume that G is connected. Let

$$
\Gamma=\left\{(\mathrm{g}, \mathrm{f}(\mathrm{~g})) \mid \mathrm{g} \in \varphi_{\mathrm{x}}^{-1}(\mathrm{O})\right\} \subset \varphi_{\mathrm{x}}^{-1}(\mathrm{O}) \times \mathrm{K}
$$

and

$$
\Gamma^{\prime}=\left(\left.\varphi_{\mathrm{x}}\right|_{\varphi_{\mathrm{x}}-1(0)} \times 1_{\mathrm{K}}\right)(\Gamma)
$$

where

$$
\left.\varphi_{\mathrm{x}}\right|_{\varphi_{\mathrm{x}}^{-1}(0)} \times 1_{\mathrm{K}}: \varphi_{\mathrm{x}}^{-1}(\mathrm{O}) \times \mathrm{K} \longrightarrow 0 \times \mathrm{K}
$$

$$
(g, k) \longrightarrow(g \cdot x, k)
$$

Then $\Gamma^{\prime} \mathcal{C} \times \mathrm{K}$ and

$$
0 \times \mathrm{K}-\Gamma^{\prime}=\left(\left.\varphi_{\mathrm{x}}\right|_{\varphi_{\mathrm{x}}^{-1}(0)} \times 1_{\mathrm{K}}\right)\left(\varphi_{\mathrm{x}}^{-1}(\mathrm{O}) \times \mathrm{K}-\Gamma\right)
$$

Since the map $\left.\varphi_{x}{ }^{-1}(\mathrm{O}) \times \mathrm{K} \rightarrow \mathrm{g}, \mathrm{k}\right) \longrightarrow(\mathrm{f}(\mathrm{g}), \mathrm{k}) \mathrm{K}$ is a morphism of varieties and Γ is its inverse image of $\Delta(\mathrm{K})=\{(\mathrm{k}, \mathrm{k}) \mid \mathrm{k} \in \mathrm{K}\}, \Gamma$ is closed in $\varphi_{\mathrm{x}}{ }^{-1}(\mathrm{O}) \times \mathrm{K}$. Let $\mathrm{G} \times \mathrm{K}$ be the product of algebraic groups ($\mathrm{G}, \mathrm{K}[\mathrm{G}]$) and ($\mathrm{K}, \mathrm{K}[\mathrm{X}]$) (see Examples 14.9), then $\mathrm{G} \times \mathrm{K}$ operates on $\mathrm{X} \times \mathrm{K}$ morphically as follows:

$$
\begin{aligned}
& (G \times K) \times(X \times K) \longrightarrow X \times K \\
& ((g, k),(y, z)) \longrightarrow(g \cdot y, k+z)
\end{aligned}
$$

Since $(G \times K)(x, 0)=X \times K, X \times K$ is a homogeneous space of $G \times K$. Hence the map

$$
\begin{aligned}
\varphi_{\mathrm{x}} \times 1_{K}: G \times K & \longrightarrow X \times K \\
(\mathrm{~g}, \mathrm{k}) & \longrightarrow(\mathrm{g} \cdot \mathrm{x}, \mathrm{k})
\end{aligned}
$$

is an open map from Lemma 17.12. Thus

$$
\left.\varphi_{\mathrm{x}}\right|_{\varphi_{\mathrm{x}}^{-1}(\mathrm{O})} \times 1_{\mathrm{K}}: \varphi_{\mathrm{x}}^{-1}(\mathrm{O}) \times \mathrm{K} \longrightarrow \mathrm{O} \times \mathrm{K}
$$

is also an open map and Γ^{\prime} is closed in $0 \times \mathrm{K}$.

Let $\lambda=\left.\pi_{1}\right|_{\Gamma},: \Gamma^{\prime} \rightarrow \mathrm{O}$ where $\pi_{1}: \mathrm{O} \times \mathrm{K} \rightarrow \mathrm{O}$ is the projection, then

$$
\lambda: \Gamma^{\prime} \subset \mathrm{O} \times \mathrm{K} \xrightarrow{\pi_{1}} \mathrm{O}
$$

is a morphism of varieties. Since $\Gamma^{\prime}=\left\{(\mathrm{g} \cdot \mathrm{x}, \mathrm{f}(\mathrm{g})) \mid \mathrm{g} \in \varphi_{\mathrm{x}}{ }^{-1}(\mathrm{O})\right\}, \lambda$ is bijective. Since Γ^{\prime} is the image of the morphism

$$
\begin{aligned}
\varphi_{\mathrm{x}}^{-1}(\mathrm{O}) & \longrightarrow \mathrm{O} \times \mathrm{K} \\
\mathrm{~g} & \longrightarrow(\mathrm{~g} \cdot \mathrm{x}, \mathrm{f}(\mathrm{~g})),
\end{aligned}
$$

Γ^{\prime} is irreducible. If

$$
\begin{aligned}
\lambda: \Gamma^{\prime}=\left\{(\mathrm{g} \cdot \mathrm{x}, \mathrm{f}(\mathrm{~g})) \mid \mathrm{g} \in \varphi_{\mathrm{x}}^{-1}(\mathrm{O})\right\} & \longrightarrow \mathrm{O} \\
(\mathrm{~g} \cdot \mathrm{x}, \mathrm{f}(\mathrm{~g})) & \longrightarrow \mathrm{g} \cdot \mathrm{x}
\end{aligned}
$$

is an isomorphism of varieties, then the map

$$
\begin{aligned}
\mathrm{F}: \mathrm{O} \xrightarrow{\lambda^{-1}} \Gamma^{\prime} \xrightarrow{\left.\pi_{2}\right|_{\Gamma}} \mathrm{g} \cdot \mathrm{x} \longrightarrow(\mathrm{~g} \cdot \mathrm{x}, \mathrm{f}(\mathrm{~g})) \longrightarrow \mathrm{f}(\mathrm{~g}) \longrightarrow \mathrm{f}(\mathrm{~g})
\end{aligned}
$$

belongs to $\mathscr{\mathscr { S }}_{\mathrm{X}}(\mathrm{O})$, where $\pi_{2}: \mathrm{O} \times \mathrm{K} \rightarrow \mathrm{K}$ is the projection, and satisfies the condition

$$
\mathrm{f}=\mathrm{F} \circ \varphi_{\mathrm{x}} \text { on } \varphi_{\mathrm{x}}^{-1}(\mathrm{O})
$$

Now we shall show that λ is an isomorphism of varieties. Since λ is a bijective morphism, λ is dominant and we can embed $K(O)$ into $K\left(\Gamma^{\prime}\right)$. Since Γ^{\prime} is the image of the morphism

$$
\begin{aligned}
\varphi_{\mathrm{x}}^{-1}(\mathrm{O}) & \longrightarrow \mathrm{O} \times \mathrm{K} \\
\mathrm{~g} & \longrightarrow(\mathrm{~g} \cdot \mathrm{x}, \mathrm{f}(\mathrm{~g}))
\end{aligned}
$$

and Γ^{\prime} is closed in $O \times K$, the map

$$
\begin{aligned}
\varphi_{\mathrm{x}}{ }^{-1}(\mathrm{O}) & \longrightarrow \Gamma^{\prime} \\
\mathrm{g} & \longrightarrow(\mathrm{~g} \cdot \mathrm{x}, \mathrm{f}(\mathrm{~g}))
\end{aligned}
$$

is a surjective morphism (Exercise 40 on p.113). Hence we can also embed $K\left(\Gamma^{\prime}\right)$ into $\mathrm{K}\left(\varphi_{\mathrm{x}}{ }^{-1}(\mathrm{O})\right)=\mathrm{K}(\mathrm{G})$. Thus we have

$$
K(O)=K(X) \subset K\left(\Gamma^{\prime}\right) \subset K(G)
$$

Since the map $\begin{gathered}\varphi_{\mathrm{x}}: \mathrm{G} \longrightarrow \mathrm{X} \\ \mathrm{g} \longrightarrow \mathrm{g} \cdot \mathrm{x}\end{gathered}$ is a separable morphism from Proposition 23.5, $\mathrm{K}(\mathrm{G})$ is separable over $K(X)$. From Corollary $6.19 K\left(\Gamma^{\prime}\right)$ is also separable over $K(O)$. Since λ is bijective, we have $\mathrm{r}=\operatorname{dim} \Gamma^{\prime}-\operatorname{dim} O=0$ from Theorem 13.14.ii. Therefore, from Theorem 13.14.iii we have $\left[\mathrm{K}\left(\Gamma^{\prime}\right): \mathrm{K}(\mathrm{O})\right]=1$, because λ is bijective. Hence $K\left(\Gamma^{\prime}\right)=K(O)$. From the Zariski's Main Theorem λ becomes an isomorphism of varieties.
Q.E.D.

Thus we have constructed the quotient $(G / H, \mathscr{\mathscr { C }}$) or (X, x) of G by H. Notice that
(i) $\quad \varphi: \underset{\mathrm{gH}}{\mathrm{G} / \mathrm{H} \longrightarrow \mathrm{X} \cdot \mathrm{X}}$ is an isomorphism of varieties which makes the following diagram commutative

(ii) for any open subset U of G / H we have $\varphi_{\mathrm{x}}{ }^{-1}(\varphi(\mathrm{U}))=\nu^{-1}(\mathrm{U})$, and the following correspondence is a bijective K -algebra homomorphism

$$
\begin{aligned}
\mathscr{C}_{\mathrm{G}}\left(\nu^{-1}(\mathrm{U})\right)^{\mathrm{H}} & \longrightarrow \mathscr{\mathscr { O }}(\mathrm{U}) \\
\mathrm{f} & \longrightarrow[\hat{\mathrm{f}}: \mathrm{gH} \rightarrow \mathrm{f}(\mathrm{~g})]
\end{aligned}
$$

where

$$
\mathscr{\mathscr { G }}_{\mathrm{G}}\left(\nu^{-1}(\mathrm{U})\right)^{\mathrm{H}}=\left\{\mathrm{f} \in \mathscr{\mathscr { G }}_{\mathrm{G}}\left(\nu^{-1}(\mathrm{U})\right) \mid \mathrm{f}(\mathrm{gh})=\mathrm{f}(\mathrm{~g}) \text { for any } \mathrm{g} \in \nu^{-1}(\mathrm{U}) \text { and } \mathrm{h} \in \mathrm{H}\right\}
$$ and

$$
\mathscr{\mathscr { L }}(\mathrm{U})=\left\{\mathrm{f}: \mathrm{U} \rightarrow \mathrm{~K} \mid \text { fo }\left.\nu\right|_{\nu^{-1}(\mathrm{U})} \in \mathscr{\mathscr { G }}_{\mathrm{G}}\left(\nu^{-1}(\mathrm{U})\right)\right\} ;
$$

(iii) (G/H, $\mathscr{\mathscr { G }}$) is a quasi-projective variety of dimension $\operatorname{dim} \mathrm{G}-\operatorname{dim} \mathrm{H}$ (see Proposition 23.5 and its proof);
(iv) $\quad \nu_{0}: \mathrm{G}^{0} \longrightarrow\left\{\mathrm{gH} \mid \mathrm{g} \in \mathrm{G}^{0}\right\}(\mathrm{C} / \mathrm{G} / \mathrm{H})$ is a separable morphism where G^{0} is the connected component of G containing 1 (see Proposition 23.5);
(v) $\quad \nu: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}$ is a separable morphism if G is connected.
(23.8) Lemma. Let ($G, K[G]$) be a linear algebraic group over K and ($H, K[H]$) be a closed subgroup of G. Let X be a G-variety over K. Assume that $H=G_{x}$ and $X=G \cdot x$ for some $x \in X$ and the map

$$
\begin{aligned}
\left.\varphi_{\mathrm{x}}\right|_{\mathrm{G}^{0}}: \mathrm{G}^{0} & \longrightarrow \mathrm{G}^{0} \cdot \mathrm{x} \\
\mathrm{~g} & \longrightarrow \mathrm{~g} \cdot \mathrm{x}
\end{aligned}
$$

is separable where $\varphi_{\mathrm{x}}: \mathrm{G} \longrightarrow \mathrm{X}$ and G^{0} is the connected component of G con-

$$
\mathrm{g} \longrightarrow \mathrm{~g} \cdot \mathrm{x}
$$

taining 1 . Then the map

$$
\begin{aligned}
\varphi: \mathrm{G} / \mathrm{H} & \longrightarrow \mathrm{X} \\
\mathrm{gH} & \longrightarrow \mathrm{~g} \cdot \mathrm{x}
\end{aligned}
$$

is an isomorphism of varieties.

Proof. From the definition of the quotient $\mathrm{G} / \mathrm{H} \varphi$ is a bijective G-morphism. Let

$$
G=\bigcup_{i=1}^{t} G^{0} g_{i} \quad \text { (disjoint union of open subsets) }
$$

then $X=G \cdot x=\bigcup_{i=1}^{t} G^{0} g_{i} x=G^{0} \cdot x \cup G^{0} g_{i_{2}} \cdot x \cup \ldots \cup G^{0} g_{i_{s}} \cdot x$ (disjoint union of $G^{0}-$ orbits in $\mathrm{X}, \mathrm{s} \leq \mathrm{t}) . \mathrm{G}^{0} \mathrm{~g}_{\mathrm{i}_{1}} \cdot \mathrm{x}\left(=\mathrm{G}^{0} \cdot \mathrm{x}\right), \ldots, \mathrm{G}^{0} \mathrm{~g}_{\mathrm{i}_{\mathrm{s}}} \cdot \mathrm{x}$ are the irreducible components of X and each $G^{0} g_{i_{j}}$ is open and closed in $X(1 \leq j \leq s)$. Since φ is bijective, we also have

$$
G / H=G^{0} H \cup G^{0} g_{i_{2}} H \cup \ldots \cup G^{0} g_{i_{s}} H \quad \text { (disjoint union). }
$$

From Proposition 10.7. it is enough to prove that

$$
\begin{aligned}
\varphi^{0}: \mathrm{G}^{0} \mathrm{gH} & \longrightarrow \mathrm{G}^{0} \mathrm{~g} \cdot \mathrm{x} \quad\left(\mathrm{t} \in \mathrm{G}^{0}\right) \\
\mathrm{tgH} & \longrightarrow \mathrm{tgx}
\end{aligned}
$$

is an isomorphism of varieties for any $g \in G$. Notice that

$$
\left\{t \in \mathrm{G}^{0} \mid \operatorname{tgx}=\mathrm{gx}\right\}=\mathrm{G}^{0} \cap \mathrm{gHg}^{-1}
$$

We shall show that φ_{1} and φ_{2} in the following commutative diagrams

are isomorphisms of varieties.

Since φ_{gH} and φ_{gx} are separable, this is an application of the Lemma in case G is connected. Hence it is enough to prove the Lemma in case G is connected.

Now we assume that. G is connected. Since $K(G)$ is separable over $K(X)$ and

$$
K(X) \subset \quad K(G / H) \subset \quad K(G),
$$

$K(G / H)$ is separable over $K(X)$. Since $K(G / H)$ is algebraic over $K(X)$ from Theorem 13.14.ii, $K(G / H)$ is separably algebraic over $K(X)$ and we have $K(G / H)=K(X)$ from Theorem 13.14.iii. Hence from Zariski's Main Theorem φ is an isomorphism of varieties.
Q.E.D.
(23.9) Proposition. Let $\left(\mathrm{G}_{\mathrm{i}}, \mathrm{K}\left[\mathrm{G}_{\mathrm{i}}\right]\right)$ be a linear algebraic group over K and $\left(\mathrm{H}_{\mathrm{i}}, \mathrm{K}\left[\mathrm{H}_{\mathrm{i}}\right]\right)$ be a closed subgroup of $\mathrm{G}_{\mathrm{i}}(\mathrm{i}=1,2)$, then the map

$$
\begin{gathered}
\varphi: \mathrm{G}_{1} \times \mathrm{G}_{2} / \mathrm{H}_{1} \times \mathrm{H}_{2} \longrightarrow \mathrm{G}_{1} / \mathrm{H}_{1} \times \mathrm{G}_{2} / \mathrm{H}_{2} \\
\left(\mathrm{~g}_{1}, \mathrm{~g}_{2}\right) \mathrm{H}_{1} \times \mathrm{H}_{2} \longrightarrow\left(\mathrm{~g}_{1} \mathrm{H}_{1}, \mathrm{~g}_{2} \mathrm{H}_{2}\right)
\end{gathered}
$$

is an isomorphism of varieties (see Examples 14.9.iii).

Proof. From Exercise 43 on p. 118 the map
$\left(G_{1} \times G_{2}\right) \times\left(\mathrm{G}_{1} / \mathrm{H}_{1} \times \mathrm{G}_{2} / \mathrm{H}_{2}\right) \rightarrow\left(\mathrm{G}_{1} \times \mathrm{G}_{1} / \mathrm{H}_{1}\right) \times\left(\mathrm{G}_{2} \times \mathrm{G}_{2} / \mathrm{H}_{2}\right) \rightarrow \mathrm{G}_{1} / \mathrm{H}_{1} \times \mathrm{G}_{2} / \mathrm{H}_{2}$ $\left(\left(g_{1}, g_{2}\right),\left(g_{1}{ }^{\prime} H_{1}, g_{2}{ }^{\prime} H_{2}\right)\right) \rightarrow\left(\left(g_{1}, g_{1}{ }^{\prime} H_{1}\right),\left(g_{2}, g_{2}{ }^{\prime} H_{2}\right)\right) \rightarrow\left(g_{1} g_{1} H_{1}, g_{2} g_{2}{ }^{\prime} H_{2}\right)$ Hence $\mathrm{G}_{1} / \mathrm{H}_{1} \times \mathrm{G}_{2} / \mathrm{H}_{2}$ is a homogeneous $\mathrm{G}_{1} \times \mathrm{G}_{2}$-variety.

Let $x=\left(H_{1}, H_{2}\right) \in G_{1} / H_{2} \times G_{2} / H_{2}$, then

$$
\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right)_{\mathrm{x}}=\mathrm{H}_{1} \times \mathrm{H}_{2} \text { and } \mathrm{G}_{1} / \mathrm{H}_{1} \times \mathrm{G}_{2} / \mathrm{H}_{2}=\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right) \cdot \mathrm{x}
$$

Let $\mathrm{G}_{\mathrm{i}}{ }^{0}$ be the connected component of G_{i} containing $1(\mathrm{i}=1,2)$, then $\mathrm{G}_{1}{ }^{0} \times \mathrm{G}_{2}{ }^{0}$ is also the connected component of $G_{1} \times G_{2}$ containing (1,1). Let

$$
\begin{aligned}
\varphi_{\mathrm{x}}: \mathrm{G}_{1}^{0} \times \mathrm{G}_{2}{ }^{0} & \longrightarrow\left(\mathrm{G}_{1}{ }^{0} \times \mathrm{G}_{2}{ }^{0}\right) \mathrm{x} \quad\left(\mathrm{C} \mathrm{G}_{1} / \mathrm{H}_{1} \times \mathrm{G}_{2} / \mathrm{H}_{2}\right) \\
\left(\mathrm{g}_{1}, \mathrm{~g}_{2}\right) & \longrightarrow\left(\mathrm{g}_{1} \mathrm{H}_{1}, \mathrm{~g}_{2} \mathrm{H}_{2}\right)
\end{aligned}
$$

then $\left(\mathrm{d} \varphi_{\mathrm{x}}\right)_{(1,1)}$ is surjective from Lemma 20.3 and Proposition 23.5. From Theorem $21.9 \varphi_{\mathrm{x}}$ is a separable morphism. Thus from Lemma 23.8φ is an isomorphism of .varieties.
Q.E.D.
(23.10) Theorem. Let G be a linear algebraic group over K and H be a closed normal subgroup of G. Then there exists a rational representation

$$
\varphi: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{~V})
$$

such that $\operatorname{Ker} \varphi=\mathrm{H}$ and $\operatorname{Ker} \mathrm{d} \varphi=\mathscr{H}$ where \mathscr{A} is the Lie algebra of H .

Proof (see Humphreys [2, Theorem 11.5]). Let $\varphi: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{V})$ be a finite dimensional rational representation of G and L be a one dimensional subspace of V as in Corollary 23.3, that is,
and

$$
\begin{gathered}
\mathrm{H}=\{\mathrm{g} \in \mathrm{G} \mid \varphi(\mathrm{g}) \mathrm{L}=\mathrm{L}\} \\
\mathscr{H}=\{\gamma \in \mathscr{g} \mid(\mathrm{d} \varphi)(\gamma) \mathrm{L} \mathrm{C} \mathrm{~L}\}
\end{gathered}
$$

where g is the Lie algebra of G. Let λ be a rational linear character of H, i.e., λ is a group homomorphism of H into $K^{\times}=K-\{0\}$ and $\lambda \in K[H]$, and Λ be the set of rational linear characters of H. Let

$$
\mathrm{V}_{\lambda}=\{\mathrm{v} \in \mathrm{~V} \mid \mathrm{hv}=\lambda(\mathrm{h}) \mathrm{v} \text { for all } \mathrm{h} \in \mathrm{H}\}
$$

then

$$
\mathrm{gV}_{\lambda} \subset \mathrm{V}_{\lambda \mathrm{g}}
$$

for any $g \in G$ where

$$
\begin{aligned}
\lambda^{\mathrm{g}}: \mathrm{H} & \longrightarrow \mathrm{~K}^{\mathrm{x}} \\
\mathrm{~h} & \longrightarrow \lambda\left(\mathrm{~g}^{-1} \mathrm{hg}\right) .
\end{aligned}
$$

We assume that $V_{\lambda_{0}} \supset \mathrm{~L}$ for some $\lambda_{0} \in \Lambda$. Let V, be the sum of all nonzero V_{λ} $(\lambda \in \Lambda)$, then V^{\prime} is a KG-submodule of V and the direct sum of the nonzero $V_{\lambda^{\prime}, s}$, because the set Λ is linearly independent over K (see e.g. Lang [1, Theorem 4.1 on p.319]). From Lemma 20.5 without loosing generality we can assume that $\mathrm{V}=\mathrm{V}^{\prime}$.

Now let

$$
\begin{aligned}
\operatorname{Ad}: \mathrm{GL}(\mathrm{~V}) & \longrightarrow \mathrm{GL}(\mathscr{g}(\mathrm{~V})) \\
\mathrm{x} & \longrightarrow\left[\mathrm{Ad}_{\mathrm{x}}: \mathrm{f} \rightarrow \mathrm{xfx}^{-1}\right]
\end{aligned}
$$

be the adjoint representation of $\mathrm{GL}(\mathrm{V})$ (see Proposition 20.4), then

$$
\mathrm{Ad} \circ \varphi: \mathrm{G} \xrightarrow{\varphi} \mathrm{GL}(\mathrm{~V}) \xrightarrow{\mathrm{Ad}} \mathrm{GL}(g)(\mathrm{V}))
$$

is a rational representation of G into $\mathrm{GL}(g)(\mathrm{V}))$. Let

$$
\mathrm{W}=\{\mathrm{f} \in \mathscr{g}(\mathrm{~V}) \mid \mathrm{f}(\mathrm{hv})=\mathrm{hf}(\mathrm{v}) \text { for any } \mathrm{h} \in \mathrm{H} \text { and } \mathrm{v} \in \mathrm{~V}\}
$$

then Ado $\varphi(\mathrm{g}) \mathrm{W} \subset \mathrm{W}$ for each $\mathrm{g} \in \mathrm{G}$, because H is normal in G. Thus we have got a rational representation ψ of G into $G L(W)$ defined by

$$
\begin{aligned}
\psi: \mathrm{G} & \longrightarrow \mathrm{GL}(\mathrm{~W}) \\
\mathrm{g} & \left.\longrightarrow \operatorname{Ado} \varphi(\mathrm{~g})\right|_{\mathrm{W}}
\end{aligned}
$$

,We shall show that Ker $\psi=\mathrm{H}$. Since

$$
\psi(\mathrm{h})=\left.\operatorname{Ad} \circ \varphi(\mathrm{h})\right|_{\mathrm{W}}: \mathrm{f} \longrightarrow \varphi(\mathrm{~h}) \mathrm{f} \varphi(\mathrm{~h})^{-1}=\mathrm{f}
$$

(h $\in H, f \in W$), we have Ker $\psi \supset H$. Conversely let g be an element of G such that $\psi(\mathrm{g}) \mathrm{f}=\mathrm{f}$ for all $\mathrm{f} \in \mathrm{W}$. Let f_{1} be a map of V into V such that
and

$$
f_{1}(v)=v \quad \text { if } v \in V_{\lambda_{0}}
$$

$$
f_{1}(v)=0 \quad \text { if } \quad v \in V_{\lambda}\left(\lambda \in \Lambda-\left\{\lambda_{0}\right\}\right)
$$

Since $h V_{\lambda} \subset V_{\lambda h}=V_{\lambda}$ for any $h \in H$, where $\lambda \in \Lambda, f_{1}$ is contained in W. Thus we have

$$
\psi(\mathrm{g}) \mathrm{f}_{1}=\mathrm{f}_{1}
$$

which implies

$$
\mathrm{gf}_{1}\left(\mathrm{~g}^{-1} \mathrm{v}\right)=\mathrm{v} \text { for any } \mathrm{v} \in \mathrm{~V}_{\lambda_{0}}
$$

Therefore $f_{1}\left(g^{-1} v\right)=g^{-1} v \in V_{\lambda_{0}}$ and $g^{-1} V_{\lambda_{0}}=V_{\lambda_{0}}$, i.e.,

$$
\mathrm{V}_{\lambda_{0}}=\mathrm{g} \mathrm{~V}_{\lambda_{0}}
$$

Let $\varphi_{0}: \mathrm{V}_{\lambda_{0}} \rightarrow \mathrm{~V}_{\lambda_{0}}$ be a K-linear map such that

$$
\begin{aligned}
\varphi_{0}: \mathrm{V}_{\lambda_{0}} & \longrightarrow \mathrm{~V}_{\lambda_{0}} \\
\mathrm{v} & \longrightarrow \mathrm{gv}
\end{aligned}
$$

Let α be any element of $\operatorname{End}_{K}\left(V_{\lambda_{0}}\right)$, then we can define a K-linear map f_{α} of V into itself by

$$
\mathrm{f}_{\alpha}(\mathrm{v})=\alpha(\mathrm{v}) \quad \text { if } \mathrm{v} \in \mathrm{~V}_{\lambda_{0}}
$$

and

$$
\mathrm{f}_{\alpha}(\mathrm{v})=0 \quad \text { if } \mathrm{v} \in \mathrm{~V}_{\lambda} \text { where } \lambda \in \Lambda-\left\{\lambda_{0}\right\}
$$

Since $f_{\alpha}(h v)=h f_{\alpha}(v)$ for any $h \in H$ and $v \in V$, we have $f_{\alpha} \in W$. Hence $\psi(\mathrm{g}) \mathrm{f}_{\alpha}=\mathrm{f}_{\alpha}$ for any $\alpha \in \operatorname{End}_{\mathrm{K}}\left(\mathrm{V}_{\lambda_{0}}\right)$, which implies $\mathrm{gf}_{\alpha}\left(\mathrm{g}^{-1} \mathrm{v}\right)=\mathrm{g} \alpha\left(\mathrm{g}^{-1} \mathrm{v}\right)=\alpha(\mathrm{v})$ for any $v \in V_{\lambda_{0}}$. Thus we have $\varphi_{0} \circ \alpha=\alpha \circ \varphi_{0}$ for any $\alpha \in \operatorname{End}_{K}\left(V_{\lambda_{0}}\right)$, i.e., φ_{0} is an element of the centre of End $_{K}\left(V_{\lambda_{0}}\right)$. Hence
i.e.,

$$
\varphi_{0}(\mathrm{~L})=\mathrm{L}
$$

because φ_{0} is a scalar multiplication. Therefore, $\mathrm{g} \in \mathrm{H}$, i.e.,
$\operatorname{Ker} \psi=H$.
Finally we shall show that $\operatorname{Ker} \mathrm{d} \dot{\psi}=\mathscr{B}$. Notice that from Lemma 20.5 we have

$$
\mathrm{d} \psi(\gamma)=\left.\mathrm{d}(\operatorname{Ad} \circ \varphi) \gamma\right|_{\mathrm{W}}
$$

for any $\gamma \in g$. Assume that $\mathrm{d} \psi(\gamma)=0$ for some $\gamma \in g$, then

$$
\left.\mathrm{d}(\operatorname{Ad} \circ \varphi) \gamma\right|_{\mathrm{W}}=0
$$

Hence $\operatorname{ad}(\mathrm{d} \varphi(\gamma))(\mathrm{f})=[\mathrm{d} \varphi(\gamma), \mathrm{f}]=\mathrm{d} \varphi(\gamma) \circ \mathrm{f}-\mathrm{f} \circ \mathrm{d} \varphi(\gamma)=0$ for any $\mathrm{f} \in \mathrm{W}$. Thus

$$
\mathrm{d} \varphi(\gamma) \circ \mathrm{f}_{\alpha}=\mathrm{f}_{\alpha} \circ \mathrm{d} \varphi(\gamma)
$$

for any $\alpha \in \operatorname{End}_{K}\left(V_{\lambda_{0}}\right)$, which implies
and

$$
\mathrm{d} \varphi(\gamma) \mathrm{V}_{\lambda_{0}} \subset \mathrm{~V}_{\lambda_{0}}
$$

$$
\left.\mathrm{d} \varphi(\gamma)\right|_{\mathrm{V}_{\lambda_{0}}} \circ \alpha=\left.\alpha \circ \mathrm{d} \varphi(\gamma)\right|_{\mathrm{V}_{\lambda_{0}}}
$$

for any $\quad \alpha \in \operatorname{End}_{\mathrm{K}}\left(\mathrm{V}_{\lambda_{0}}\right)$. Hence $\mathrm{d} \varphi(\gamma) \mid \mathrm{V}_{\lambda_{0}}$ is a scalar multiplication and we have

$$
\mathrm{d} \varphi(\gamma) \mathrm{L} \subset \mathrm{~L}, \text { i.e. } \gamma \in \mathscr{Z}
$$

Therefore, Ker $\mathrm{d} \psi \mathrm{c} \mathscr{\mathscr { B }}$. Since $\operatorname{dim} \mathrm{G}=\operatorname{dim} \mathrm{H}+\operatorname{dim} \psi(\mathrm{G})$,

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{K}} \mathscr{J}=\operatorname{dim}_{\mathrm{K}} \mathscr{H}+\operatorname{dim}_{\mathrm{K}} \mathrm{~T}(\psi(\mathrm{G}))_{1} \\
\operatorname{dim}_{\mathrm{K}} \mathscr{G}=\operatorname{dim}_{\mathrm{K}} \text { ker } \mathrm{d} \psi+\operatorname{dim}_{\mathrm{K}} \operatorname{Im} \mathrm{~d} \psi \\
\operatorname{dim}_{\mathrm{K}}^{\mathscr{B}} \leq \operatorname{dim}_{\mathrm{K}} \operatorname{Ker} \mathrm{~d} \psi
\end{gathered}
$$

and
we have
Hence $\operatorname{Ker} \mathrm{d} \psi=\mathscr{H}$ and ψ is a desired rational representation of G .
Q.E.D.
(23.11) Theorem. Let G be a linear algebraic group over K and H be a closed normal subgroup of G. Then
(i) the quotient variety G / H is affine;
(ii) the factor group G / H is a linear algebraic group with respect to the variety structure of the quotient of G by H.

Proof. (i) Let φ and V be as in Theorem 23.10, i.e.,

$$
\varphi: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{~V})
$$

is a rational representation such that

$$
\operatorname{Ker} \varphi=\mathrm{H} \text { and Ker } \mathrm{d} \varphi=\mathscr{B}
$$

where \mathscr{H} is the Lie algebra of H . Let $\mathrm{X}=\varphi(\mathrm{G})$, then X is closed in $\mathrm{GL}(\mathrm{V})$ and G operates on X morphically as follows

$$
\begin{aligned}
& \mathrm{Gx} \mathrm{X} \longrightarrow \mathrm{X} \\
& (\mathrm{~g}, \mathrm{x}) \longrightarrow \varphi(\mathrm{g}) \mathrm{x} .
\end{aligned}
$$

Let $\mathrm{x}=1$ and $\varphi_{\mathrm{x}}: \mathrm{G} \longrightarrow \mathrm{X}$, then we have

$$
\mathrm{g} \longrightarrow \mathrm{~g} \cdot \mathrm{x}
$$

$$
\varphi: \mathrm{G} \xrightarrow{\varphi_{\mathrm{x}}} \mathrm{X} \stackrel{\iota}{\mathrm{c}}^{\iota} \mathrm{GL}(\mathrm{~V})
$$

$$
\mathrm{g} \longrightarrow \varphi(\mathrm{~g}) \rightarrow \varphi(\mathrm{g})
$$

Since $\operatorname{dim} \mathrm{X}=\operatorname{dim} \mathrm{G}-\operatorname{dim} \mathrm{H}$ and $\operatorname{Ker} \mathrm{d} \varphi=\operatorname{Ker} \mathrm{d} \varphi_{\mathrm{x}}=\mathscr{F}$,

$$
\mathrm{d} \varphi_{\mathrm{x}}: g \longrightarrow \mathrm{~T}(\mathrm{X})_{\mathrm{x}}
$$

is surjective where g is the Lie algebra of G. Hence from Theorem 21.9

$$
\begin{aligned}
\varphi_{\mathrm{x}} \mid \mathrm{G}^{0}: \mathrm{G}^{0} & \longrightarrow \mathrm{G}^{0} \cdot \mathrm{x} \\
\mathrm{~g} & \longrightarrow \mathrm{~g} \cdot \mathrm{x}
\end{aligned}
$$

is separable, where G^{0} is the connected component of G containing 1. Therefore G / H is isomorphic to X as variety from Lemma 23.8, and G / H has turned out to be an affine variety.
(ii) Since H is normal in $G, G / H$ is also a right G-variety. Hence $G \times G / H \rightarrow G / H$ $(\mathrm{g}, \mathrm{g}$ ' H$) \rightarrow \mathrm{g}{ }^{\prime} \mathrm{Hg}$ is a morphism of varieties and G/H becomes a left G-variety by the following operation

$$
\begin{aligned}
& \mathrm{G} \times \mathrm{G} / \mathrm{H} \longrightarrow \mathrm{G} / \mathrm{H} \\
& \left(\mathrm{~g}, \mathrm{~g}{ }^{\prime} \mathrm{H}\right) \longrightarrow \mathrm{g}^{\prime} \mathrm{g}^{-1} \mathrm{H} .
\end{aligned}
$$

Thus the map $G \times(G \times G / H) \longrightarrow G \times G / H \longrightarrow G / H$

$$
\left(g_{1},\left(g_{2}, g H\right)\right) \longrightarrow\left(g_{1}, \mathrm{gg}_{2}^{-1} \mathrm{H}\right) \longrightarrow \mathrm{g}_{1} \mathrm{gg}_{2}^{-1} \mathrm{H}
$$

is a morphism of varieties and the group $G \times G$ operates on G / H morphically from the left. From Proposition 23.9 there exist a morphism of varieties $\varphi: G / H \times G / H \rightarrow G / H$ which makes the following diagram commutative:

Hence the group operations are morphic with respect to the variety structure of G / H. Q.E.D.

24. Fixed Point Theorem and Borel subgroups

We shall prove the Fixed Point Theorem, i.e., a connected solvable linear algebraic group operating on a complete variety has a fixed point, and define Borel subgroups and parabolic subgroups.

We also show the Lie-Kolchin Theorem as a corollary to the Fixed Point Theorem.
(24.1) Definition. Let G be an abstract group and x, y be arbitrary elements of G. We shall write $[x, y]$ for the commutator of x and y, i.e.,

$$
[x, y]=x y x^{-1} y^{-1}
$$

(24.2) Definition. Let H, K be subgroups of an abstract group G. We use [H,K] to denote the subgroup of G generated by the set $\{[\mathrm{h}, \mathrm{k}] \mid \mathrm{h} \in \mathrm{H}$ and $\mathrm{k} \in \mathrm{K}\}$. We call [G,G] the commutator subgroup of G and inductively we shall define

$$
G^{\prime}=[G, G], G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right], \ldots, G^{(i)}=\left[G^{(i-1)}, G^{(i-1)}\right](i>1) .
$$

(24.3) Definition. An abstract group G is said to be solvable if $G^{(n)}=\{1\}$ for some $n>0$.

From the definition of solvable groups it is clear that subgroups and homomorphic images of a solvable group are solvable. The following proposition is well-known.
(24.4) Proposition. Let G be an abstract group.
(i) If G has a normal solvable subgroup N such that G / N is solvable, then G is also solvable.
(ii) If A, B are solvable subgroups of G and A normalizes B , then AB is a solvable subgroup of G.
(24.5) Proposition. Let ($G, \mathscr{\mathscr { C }}_{G}$) be an algebraic group over K and A, B be closed subgroups of G .
(i) If A normalizes B , then AB is a closed subgroup of G .
(ii) If A is connected, then $[\mathrm{A}, \mathrm{B}]$ is a closed and connected subgroup of G .

Proof. (i) Since A normalizes $B, A B$ is a subgroup of G. Since $A B$ is the image of $\mathrm{A} \times \mathrm{B}$ under the following morphism

$$
\begin{gathered}
A \times B \subset G \times G \longrightarrow G \\
(x, y) \rightarrow(x, y) \rightarrow x y
\end{gathered}
$$

AB is constructible from Theorem 8.6. Thus from Proposition 15.3 AB is closed.
(ii) Let $\varphi_{y}: A \rightarrow G$ be the map defined by $\varphi_{y}(x)=[x, y]$, where $y \in B$. Since A is connected and $\varphi_{y}(1)=1$, from Proposition $15.5[\mathrm{~A}, \mathrm{~B}]$ is closed and connected.
Q.E.D.
(24.6) Lemma. Let ($G, \mathscr{\mathscr { G }}_{G}$) be an algebraic group over K and X, Y be homogeneous G -varieties. Assume that Y is complete and there exists a bijective G-morphism φ of X onto Y , then X is also complete.

Proof. We shall show that the projection

$$
\mathrm{P}_{2}: \mathrm{X} \times \mathrm{Z} \longrightarrow \mathrm{Z}
$$

is a closed map for any affine variety Z. Since Y is complete, it is enough to prove that

$$
\begin{aligned}
& \varphi \times 1: X \times Z \longrightarrow X \times Z \\
& (\mathrm{x}, \mathrm{z}) \rightarrow(\varphi(\mathrm{x}), \mathrm{z})
\end{aligned}
$$

is a closed map.

From Theorem 2.3 we can embed Z into a certain affine n-space ($K^{n}, K\left[X_{1}, X_{2}, \ldots\right.$ $\left.\ldots, \mathrm{X}_{\mathrm{n}}\right]$) as a closed subset. Since $\mathrm{X} \times \mathrm{Z}$ and $\mathrm{Y} \times \mathrm{Z}$ are closed subvarieties of $\mathrm{X} \times \mathrm{K}^{\mathrm{n}}$ and $Y \times K^{n}$ respectively (see Exercises 42 on $p .118$), it is sufficient to prove that $\varphi \times 1$ is a closed map only in case $\mathrm{Z}=\mathrm{K}^{\mathrm{n}}$.

Notice that by componentwise addition K^{n} is an additive linear algebraic group. Thus $\mathrm{X} \times \mathrm{K}^{\mathrm{n}}$ and $\mathrm{Y} \times \mathrm{K}^{\mathrm{n}}$ are homogeneous $\mathrm{G} \times \mathrm{K}^{\mathrm{n}}$-varieties. From Lemma $17.12 \quad \varphi \times 1$ is an open map. Since $\varphi \times 1$ is bijective, $\varphi \times 1$ is a homeomorphism. Hence $\varphi \times 1$ is a closed map and X is complete.
Q.E.D.

Fixed Point Theorem (A. Borel). Let (G, K[G]) be a connected solvable linear algebraic group over K. Let X be a G-variety. If X is complete, then G has a fixed point in X .

Proof. We follow the induction on $\operatorname{dim} G$. Assume that $\operatorname{dim} G=0$, then $G=\{1\}$ and the assertion holds.

If $\operatorname{dim} G>0$, then $G^{\prime}=[G, G]$ is a closed connected solvable subgroup of G of dimension less than $\operatorname{dim} G$ (see Proposition 24.5 and Exercise 48 on p.140). By induction the set Y of fixed points of G ' in X is non-empty. Since Y is closed from Proposition 17.4, Y is complete from Proposition 12.2. Since G ' is normal in G, we have

$$
\mathrm{gY} \subset \mathrm{Y} \text { for any } \mathrm{g} \in \mathrm{G}
$$

Hence it is enough to find a G-fixed point in Y. Since G^{\prime} c G_{y}, G_{y} is normal in G for any $y \in Y$. Thus from Theorem $23.11 G / G_{y}$ is an affine variety. We can choose $y \in Y$ such that $G \cdot y$ is closed (see Corollary 17.7). Hence $G \cdot y$ is complete from Proposition 12.2. Thus we have got a canonical morphism of the affine variety $\mathrm{G} / \mathrm{G}_{\mathrm{y}}$ onto $\mathrm{G} \cdot \mathrm{y}$. From Lemma $24.6 \mathrm{G} / \mathrm{G}_{\mathrm{y}}$ is complete. Therefore $\mathrm{G}=\mathrm{G}_{\mathrm{y}}$
from Proposition 12.2 and y is one of the fixed points which we want.
Q.E.D.
(24.7) Lemma. Let ($\mathrm{G}, \mathscr{\mathscr { G }}_{\mathrm{G}}$) be an algebraic group over K and V be an n-dimensional rational left KG-module ($\mathrm{n}>0$), i.e.,

$$
\begin{aligned}
\varphi: G & \longrightarrow G L(V) \\
g & \longrightarrow[\varphi(g): v \rightarrow g v] \quad(v \in V)
\end{aligned}
$$

is a rational representation. Then
(i) For any $0<d \leq n, G$ operates on $P\left(\Lambda^{d} V\right)$ morphically as follows

$$
\begin{aligned}
\mathrm{G} \times \mathrm{P}\left(\wedge^{\mathrm{d}} \mathrm{~V}\right) & \longrightarrow \mathrm{P}\left(\Lambda^{\mathrm{d}} \mathrm{~V}\right) \\
\left(\mathrm{g}, \pi\left(\mathrm{v}_{1} \Lambda \ldots \wedge \mathrm{v}_{\mathrm{d}}\right)\right) & \longrightarrow \pi\left(\mathrm{gv}_{1} \Lambda \ldots \wedge \mathrm{gv}_{\mathrm{d}}\right)
\end{aligned}
$$

where $v_{1} \Lambda \ldots \wedge v_{d} \in \Lambda^{d} V-\{0\}$ and $\pi\left(v_{1} \wedge \ldots \Lambda v_{d}\right)=K\left(v_{1} \wedge \ldots \wedge v_{d}\right) \in P\left(\Lambda^{d} V\right)$ (see Lemma 23.1 and Lemma 23.4).
(ii) Let $0<\mathrm{d} \leq \mathrm{n}$ and $g_{\mathrm{d}}(\mathrm{V})$ be the Grassman variety of all d-dimensional subspaces of V , then the set

$$
\left\{\Lambda^{\mathrm{d}} \mathrm{D} \mid \mathrm{D} \in g_{\mathrm{d}}(\mathrm{~V})\right\}
$$

is closed in $P\left(\Lambda^{d} V\right)$ and $g\left\{\Lambda^{d} D \mid D \in g_{d}(V)\right\} \subset\left\{\Lambda^{d} D \mid D \in g_{d}(V)\right\}$ for any $g \in G$, i.e., $\mathscr{g}_{d}(V)$ is a projective variety on which G operates morphically as follows.

$$
\begin{aligned}
\mathrm{G} \times g_{\mathrm{d}}(\mathrm{~V}) & \longrightarrow g_{\mathrm{d}}(\mathrm{~V}) \\
(\mathrm{g}, \mathrm{D}) & \longrightarrow \mathrm{g} \cdot \mathrm{D}
\end{aligned}
$$

(iii) Let $\mathscr{F}(\mathrm{V})$ be the flag variety defined by V , i.e., the set of all sequences of K-subspaces $\left\{0, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$ of V such that

$$
0 \varsubsetneqq \mathrm{~V}_{1} \varsubsetneqq \mathrm{~V}_{2} \varsubsetneqq \ldots \varsubsetneqq \mathrm{~V}_{\mathrm{n}}=\mathrm{V},
$$

then G operates on $\mathscr{F}(\mathrm{V})$ morphically as follows.

$$
\begin{aligned}
\mathrm{G} \times \mathscr{F}(\mathrm{V}) & \longrightarrow \mathscr{F}(\mathrm{V}) \\
\left(\mathrm{g},\left\{0, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}\right) & \longrightarrow\left\{0, \mathrm{gV}_{1}, \mathrm{gV}_{2}, \ldots, \mathrm{gV}_{\mathrm{n}}\right\}
\end{aligned}
$$

Proof. (i) is from Lemma 23.1 and Lemma 23.4.
(ii) is from Proposition 11.10.
(iii) is from Proposition 11.13.
Q.E.D.

As an application of the Fixed Point Theorem we can prove the Lie-Kolchin Theorem.

Lie-Kolchin Theorem. Let (G, K[G]) be a connected solvable linear algebraic group over K , then any non-zero finite dimensional rational KG -module V has a onedimensional KG-submodule.

Proof. Let $\mathscr{F}(\mathrm{V})$ be the flag variety defined by V . Since G operates on $\mathscr{F}(\mathrm{V})$ morphically (see Lemma 24.7.iii) and $\mathscr{F}(\mathrm{V})$ is a projective variety from Proposition 11.13, by the Fixed Point Theorem G has a fixed point in $\mathscr{F}(\mathrm{V})$, i.e., there exists a sequence of K-subspaces $\left\{0, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$ of V such that
and

$$
\begin{gathered}
0 \underset{F}{G} \mathrm{~V}_{1} \varsubsetneqq \mathrm{~V}_{2} \nsubseteq \ldots \mathrm{~V}_{\mathrm{n}}=\mathrm{V} \\
\left\{0, \mathrm{gV}_{1}, \ldots, \mathrm{gV}_{\mathrm{n}}\right\}=\left\{0, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}
\end{gathered}
$$

for any $g \in G$. Thus V_{1} is the desired $K G-$ submodule.
Q.E.D.

Now we define Borel subgroups.
(24.8) Definition. Let (G, \mathscr{C}_{G}) be an algebraic group over K. We call a maximal element in the set of all closed connected solvable subgroup of G a Borel subgroup.

Remark to Definition 24.8. (i) Let B be a closed connected solvable subgroup of G of the largest dimension, then B is a Borel subgroup.
(ii) Let G^{0} be the connected component of G which contains 1 , then Borel subgroups of G and G^{0} coincide with each other.
(24.9) Theorem. Let ($G, K[G]$) be a connected linear algebraic group over K and S be a Borel subgroup of G of the largest possible dimension, then
(i) the quotient G / S is a projective variety, and
(ii) all other Borel subgroups are conjugate to S .

Proof. (i) Let V be a finite dimensional rational left KG -module with one dimensional subspace L (C V) such that

$$
S=\{g \in G \mid g L=L\}
$$

(see Corollary 23.3). We shall write ρ for the rational representation of G defined by this G-module V. Applying the proof of Lie-Kolchin Theorem to the S-module V / L, there exists a sequence of K -subspaces

$$
\mathrm{f}=\left\{0 \varsubsetneqq \mathrm{~L} \varsubsetneqq \mathrm{~V}_{2} \underset{\neq}{ } \nsubseteq \mathrm{V}_{\mathrm{n}}=\mathrm{V}\right\}
$$

of V such that

$$
S=\{g \in G \mid g f=f\}
$$

where $\mathrm{n}=\operatorname{dim}_{\mathrm{K}} \mathrm{V}$.

Hence we have got a canonical bijective G-morphism of G/S onto the quasi-projective variety

$$
\mathrm{G} \cdot \mathrm{f}(\mathrm{C} \overline{\mathrm{G} \cdot \mathrm{f}} \subset \mathscr{F}(\mathrm{~V}))
$$

Since Ker $\rho \subset \mathrm{S}$ and S is solvable, the stabilizer of any fixed point of $\mathscr{F}(\mathrm{V})$ is closed and solvable. Hence the orbit G•f has the smallest possible dimension

$$
\operatorname{dim} G \cdot f=\operatorname{dim} G-\operatorname{dim} S
$$

from Theorem 13.14.ii.

Therefore G•f is closed from Corollary 17.7. Since G•f is complete from Propositior $12.2, \mathrm{G} / \mathrm{S}$ is complete from Lemma 24.6. Since G / S is a complete quasi-projective variety, G / S is a complete open subvariety of certain projective variety X. Hence ' G / S is closed in X from Proposition 12.2. Thus G / S is projective.
(ii) Let B be a Borel subgroup of G, then B is operating on G / S morphically as follows,

$$
\begin{aligned}
\mathrm{B} \times \mathrm{G} / \mathrm{S} & \longrightarrow \mathrm{G} / \mathrm{S} \\
(\mathrm{~b}, \mathrm{xS}) & \longrightarrow \mathrm{bxS} .
\end{aligned}
$$

Since G/S is complete, from the Fixed Point Theorem, B fixes $x S$ for some $x \in G$. Since $B x S=x S$, we have

$$
x^{-1} B x \subset S
$$

From the definition of Borel subgroups we have $\mathrm{x}^{-1} \mathrm{Bx}=\mathrm{S}$.
(24.10) Definition. Let (G, K[G]) be a linear algebraic group over K. We call a closed subgroup P of G parabolic if G / P is projective.
(24.11) Proposition. Let ($G, K[G]$) be a linear algebraic group over K and G^{0} is the connected component of G which contains 1 . Then
(i) a closed subgroup P of G is parabolic if and only if G / P is complete;
(ii) a closed subgroup P of G is parabolic in G if and only if $G^{0} \cap P$ is parabolic in G^{0}.

Proof. (i) Since projective varieties are complete (see Theorem 12.4), G/P is complete if P is parabolic. Assume that G / P is complete. Since G/P is a quasiprojective variety, G / P is open in certain projective variety X. Thus from Proposition 12.2.ii G / P is also closed in X , because G / P is the image of the embedding G / P c X. Hence G / P is projective, i.e., P is parabolic.
(ii) We first assume that P is parabolic, i.e., G / P is complete. Let

$$
\mathrm{G}=\mathrm{G}^{0} \cup \mathrm{~g}_{2} \mathrm{G}^{0} \cup \ldots \cup \mathrm{~g}_{\mathrm{t}} \mathrm{G}^{0}
$$

be a disjoint union of left cosets of G^{0} in G, then we have the following G^{0}-orbits decomposition of G/P :

$$
G / P=G^{0} P / P \cup g_{j_{1}} G^{0} P / P \cup \ldots \cup g_{j_{s}} G^{0} P / P
$$

where $\left\{\mathrm{g}_{\mathrm{j}_{1}}, \ldots, \mathrm{~g}_{\mathrm{j}_{\mathrm{s}}}\right\} \subset\left\{\mathrm{g}_{2}, \ldots, \mathrm{t}_{\mathrm{t}}\right\}$. Since the canonical map

$$
\begin{aligned}
\nu: G & \longrightarrow G / P \\
g & \longrightarrow \mathrm{gP}
\end{aligned}
$$

is an open map, $G^{0} P / P$ is open and closed in G / P. Hence $G^{0} P / P$ is complete from Proposition 12.2. Since the map

$$
\begin{aligned}
\varphi: G^{0} / G^{0} \cap P & \longrightarrow G^{0} P / P \quad\left(g \in G^{0}\right) \\
g G^{0} \cap P & \longrightarrow g P
\end{aligned}
$$

is a bijective G^{0}-morphism, $G^{0} / G^{0} \cap P$ is complete from Lemma 24.6. Hence $G^{0} \cap P$ is parabolic in G^{0}.

Conversely suppose that $G^{0} / G^{0} \cap P$ is complete. Since φ is surjective, $G^{0} P / P$ is a complete closed subvariety of G / P. Thus

$$
G / P=G^{0} P / P \quad \cup g_{j_{1}} G^{0} P / P \quad \cup \ldots \cup g_{j_{s}} G^{0} P / P
$$

is a disjoint union of complete closed subvarieties. Hence. G/P is also complete.
Q.E.D.
(24.12) Proposition. Let ($\mathrm{G}, \mathrm{K}[\mathrm{G}]$) be a connected linear algebraic group over K , then
(i) a closed subgroup P of G is parabolic if and only if P contains a Borel subgroup of G;
(ii) a closed connected subgroup H of G is a Borel subgroup if and only if H is solvable and G/H is projective.

Proof. (i) Assume that G / P is projective. Let B be a Borel subgroup of G. Since B is connected and solvable, B fixed a point in G/P from the Fixed Point Theorem, i.e., there exists a left coset $x P$ in G / P such that

$$
B x P=x P \quad(x \in G)
$$

Hence P contains a Borel subgroup $\mathrm{x}^{-1} \mathrm{Bx}$.

Conversely let H be a closed subgroup of G which contains a Borel subgroup B of G. Since the morphism

$$
\begin{aligned}
\mathrm{G} / \mathrm{B} & \longrightarrow \mathrm{G} / \mathrm{H} \quad(\mathrm{~g} \in \mathrm{G}) \\
\mathrm{gB} & \longrightarrow \mathrm{gH}
\end{aligned}
$$

is surjective and G/B is projective from Theorem 24.9, G/H is complete, i.e., H is parabolic from Proposition 12.2 and Proposition 24.11.
(ii) is clear from (i).
Q.E.D.

Bibliography

A. Borel

1. Linear algebraic groups. New York, W.A. Benjamin (1969).
2. Linear algebraic groups. 2nd enl. ed. New York, Springer (1991).
N. Bourbaki
3. Groupes et algèbres de Lie, Chapter IV, V, VI. Paris, Hermann (1968).

E. Cline, B. Parshall, L. Scott

1. Induced modules and affine quotients. Math. Ann. $\underline{230}$ (1977) 1-14.

M. Demazure, P. Gabriel

1. Introduction to algebraic geometry and algebraic groups. Amsterdam, NorthHolland (1980).

J. Fogarty

1. Invariant theory. New York, W.A. Benjamin (1969).
R. Hartshorne
2. Algebraic geometry. Corr. 3rd printing. New York, Springer (1983).

G.P. Hochschild

1. Introduction to affine algebraic groups. San Francisco, Holden-Day (1971).
2. Basic theory of algebraic groups and Lie algebras. New York, Springer (1981).

J.E. Humphreys

1. Introduction to Lie algebras and representation theory. 2nd printing, revised. New York, Springer (1978).
2. Linear algebraic groups. Corr. 2nd printing. New York, Springer (1981).
N. Jacobson
3. Lectures in abstract algebra III. New York, Springer (1980).

J.C. Jantzen

1. Representations of algebraic groups. Boston, Academic Press (1987).

S. Lang

1. Algebra. 2nd edition. Reading (Mass.), Addison-Wesley (1984).

'G.W. Mackey

1. On induced representations of groups. Amer. J. Math. $\underline{73}$ (1951) 576-592.
D. Mumford
2. Abelian varieties. London, Oxford Univ. Press (1988).
3. Introduction to algebraic geometry. Preliminary version of first 3 chapters. Cambridge, Harvard Univ. Math. Dept.
D. Mumford, J. Fogarty
4. Geometric invariant theory. 2nd enlarged edition. Berlin, Springer (1982).

M. Nagata

1. Local rings. New York, John Wiley \& Sons (1962).

T.A. Springer

1. Linear algebraic groups. Boston, Birkhäuser (1983).

R. Steinberg

1. Lectures on Chevalley groups. New Haven, Yale Univ. (1967).
2. Conjugacy classes in algebraic groups. Lect. Notes in Math. 366. Berlin, Springer (1974).
S. Zariski, P. Samuel
3. Commutative algebra, Vol. I. 2nd printing. New York, Springer (1979).

Index of Teminology

Abelian variety	177	Adjoint representation	208
Affine algebraic variety	3	Affine variety	2
Affine n -space	3	Affine open set	107
Algebraic group	165	Algebraically independent	33
Alternating product	129		
Borel subgroup	253		
Closed subset	5	Coalgebra	200
Codimension	73	Commutator (subgroup)	249
Comorphism	4	Complete variety	135
Constructible set	88	Coordinate ring	3
Criterion for linear disjointness	48		
Derivation	201	Differential of a morphism	23, 220
Dimension of an affine variety	66	Dimension of a G-orbit	180
Dimension of a variety	140	Dominant morphism	88, 143
Dual numbers	20		
Evaluation map	3		
Finite morphism	88	Fixed Point Theorem	251
Flag variety	134	Frobenius Reciprocity	195
Function field	140		
G-morphism	178	G-prevariety	178
Grassman variety	132	Group ring	185
Height	82	Hilbert's Basis Theorem	25
Hilbert's Nullstellensatz	44	Homogeneous space	181
Hypersurface	68		
Induced module	193	Integral element	36
Integral ring extension	36	Irreducible component	31
Irreducible element	227	Irreducible ideal	63
Irreducible space	28	Isomorphism of affine varieties	4
Isomorphism of ringed spaces	95		
Jacobi identity	201		
k -linear derivation	222	Krull dimension	76
Left translation	188	Lie algebra	201, 202
Lie-Kolchin Theorem	252	Linear algebraic groups	191
Linearly disjoint	48	Local ring	77
Locally closed	88	Locally finite (rational) module	187
M-adic topology	65	Morphism of affine varieties	4
Morphism of algebraic groups	166	Morphism of prevarieties	111
Morphism of ringed spaces	95	Morphism of varieties	118

Nakayama's Lemma	38	Neighbourhood	96
Nilradical	44	Noether Normalization Theorem	58
Noetherian module	25	Noetherian ring	25
Noetherian space	28	Non-singular point (variety)	87, 142
Norm	69		
Parabolic subgroup	254	Perfect field	47
Prevariety	107	Primary ideal	63
Principal open set	12	Product	19, 118
Projective n -space	122	Projective variety	127
Quasi-compact	106	Quasi-projective variety	127
Quotient of an algebraic			
group	237		
Radical of an ideal	43	Rational KG-module	185
Rational representation	185	Regular function	96
Right convolution	202	Right translation	188
Rigidity Lemma	176	Ringed space	95
Ringed space (G/H, \mathscr{C})	218		
Separable extension	49	Separable morphism	222
Separably algebraic	47	Separably generated	47
Sheaf of functions	95	Simple point	87, 142
Smooth variety 87,	142	Solvable group	249
Subgroup of an algebraic group	166	Subprevariety	108
Subvariety	119	Subvariety of an affine algebraic variety	8
Tangent space 21,	142	Tangent vector	21
Tensor identity	197	Transcendence base	33
Transcendence degree	35	Transitivity of induction	196
Unique factorization domain	227		
Variety	118		
Zariski's Main Theorem	227	Zariski topology	5

Index of Exercioco

Exercise	1	4	Exercise	2	4	Exercise	3	6
Exercise	4	7	Exercise	5	9	Exercise	6	12
Exercise	7	12	Exercise	8	13	Exercise	9	19
Exercise	10	21	Exercise	11	24	Exercise	12	27
Exercise	13	30	Exercise	14	32	Exercise	15	35
Exercise	16	35	Exercise	17	37	Exercise	18	45
Exercise	19	45	Exercise	20	47	Exercise	21	48
Exercise	22	49	Exercise	23	66	Exercise	24	76
Exercise	25	76	Exercise	26	77	Exercise	27	78
Exercise	28	88	Exercise	29	88	Exercise	30	96
Exercise	31	100	Exercise	32	105	Exercise	33	107
Exercise	34	108	Exercise	35	108	Exercise	36	111
Exercise	37	111	Exercise	38	111	Exercise	39	112
Exercise	40	113	Exercise	41	114	Exercise	42	118
Exercise	43	118	Exercise	44	118	Exercise	45	127
Exercise	46	130	Exercise	47	136	Exercise	48	140
Exercise	49	166	Exercise	50	171	Exercise	51	178
Exercise	52	187	Exercise	53	189	Exercise	54	191
Exercise	55	192	Exercise	56	200	Exercise	57	201
Exercise	58	202	Exercise	59	212	Exercise	60	226
Exercise	61	232	Exercise	62	237			

Index of Symbols

M (S,K)	set of maps of S into K	3
$\epsilon_{\text {s }}$	evaluation at s	3
K[V]	coordinate ring of V	3
φ^{*}	comorphism	4
$\mathscr{V}(\mathrm{X})$	set of zeros of X	5
9(S)	ideal vanishing on S	6
$\mathscr{6}(\mathrm{K})$	category of affine varieties over K	7
V_{f}	principal open set	12
$\mathrm{T}(\mathrm{V})_{\mathrm{v}}$	tangent space of V at v	21
$\mathrm{d} \varphi_{\mathrm{u}}$	differential of φ at u	23
D.C.C.	descending chain condition	28
A.C.C.	ascending chain condition	28
\mathbb{N}	set of natural numbers including 0	33
tr. deg $_{k} \mathrm{~L}$	transcendence degree of L over k	35
$\sqrt{1}$	radical of ideal I	43
$\operatorname{Rad} a$	intersection of all prime ideals containing a	45
$\mathscr{C}(\mathrm{K})$	category of finitely generated K-algebras with trivial nilradicals	46

$k^{\frac{1}{p m}}$	field obtained from k by adjoining all p^{m}-th roots of all elements of k	49
$k^{\frac{1}{p \infty}}$	compositum of all $\mathrm{k}^{\frac{1}{\mathrm{pm}}}, \mathrm{m}=1,2, \ldots$	49
$\operatorname{dim} \mathrm{V}$	dimension of V	66
$\mathrm{N}_{\mathrm{E} / \mathrm{F}}(\alpha)$	norm of $\alpha \in \mathrm{E}$ over a field F	69
O_{p}	local ring at p	77
height β	height of β	82
$(\mathrm{X}, \mathscr{\mathscr { O }})$	ringed space	95
0 V	sheaf of functions on $(\mathrm{V}, \mathrm{K}[\mathrm{V}]) \in \mathscr{L}(\mathrm{K})$	96
0 v	local ring at v	99
$\mathbb{P}^{\text {n }}$	projective n -space	122
$\mathrm{P}(\mathrm{V})$	projective space	122
$\mathscr{g}_{\mathrm{d}}(\mathrm{V})$	Grassman variety	132
$\mathscr{F}(\mathrm{V})$	flag variety	134
K (X)	function field	140
\mathscr{O}_{X}	local ring at x	141
G^{0}	irreducible component of G containing 1	170
$\operatorname{Tran}_{G}(Y, Z)$	transporter	178

G_{x}	isotropy group	178
, $\mathrm{C}_{\mathrm{G}}(\mathrm{X})$	centralizer of X in G	178
L_{y}	left translation by y	188
R_{x}	right translation by x	188
$\mathrm{V}_{\mathrm{H}}{ }^{\mathrm{G}}$	induced KG-module induced from V	193
($\mathrm{R}, \mu, \mathrm{e}$)	coalgebra	200
$\mathscr{L}(\mathrm{G})$	Lie algebra of G	202
* X	right convolution by X	202
Ad	adjoint representation of G	208
$\operatorname{Der}_{\mathrm{k}}(\mathrm{L}, \mathrm{E})$	k -linear derivations of L into E	222
$\wedge^{\text {d }} \varphi$	$\mathrm{d}^{\text {th }}$ alternating power of φ	231
[x, y]	commutator of x and y	249
[G,G]	commutator subgroup of G	249

