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Preface

Algebraic group theory is one of the basic subjects of graduate level algebra. However,
most of graduate programs of algebra do not teach this important theory. This is
because graduate students are expected to have understood the theory before they
entered the graduate programs. But it is often the case that they have not acquired
the basic knowledge of the algebraic group theory. Furthermore, there are a few
appropriate textbooks with which they can learn it by themselves.

The objective of these notes is to provide graduate students with completely self—con-
tained lectures with which they can learn the basic theory of algebra. I explained most
of the proofs of the theorems from commutative algebras to algebraic geometry
(Chapters 1 and 2). These would help them understand the basic concepts of algebraic
groups (Chapter 3) and construct homogeneous spaces of linear algebraic groups
(Chapter 5). Also I attempted to relate a particular theory of this topics to other
subjects of algebra with which graduate students may be familiar.

The original lectures started in 1980 when I was a Humboldt—fellow at the University
of Essen and continued sporadically at Sophia University since then. The manuscript
was completed in 1988, one year after the second visit to the University of Essen as a
Humboldt and DFG-fellow.

I am very grateful to my colleagues who were involved in this project, especially Prof.
Dr. Gerhard Michler, who gave me a chance of giving the lectures at the University of
Essen and invited me again in 1987. Sections 21, 22 and 23 are the result of seminars
with Dr. Klaus Timmerscheidt in 1987. Although only I am the person who is respon-
sible to these notes, I should say that these sections are the joint work with him.

I am also grateful to Prof. Dr. Charles W. Curtis, who kindly g'a,ve me his informal
lecture notes on linear algebraic groups which were very useful for preparing Chapter
1. Finally I should like to thank Sophia University for granting me the study leave
twice and Frau Sabine Weber for her beautiful and careful typing.

Sophia University, November 1989 and March 1991 Hideki Sawada
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CHAPTER II

BASIC CONCEPTS OF ALGEBRAIC GROUPS

In this chapter we define algebraic groups and explain the related basic concepts such
as subgroups, morphisms of algebraic groups, connectedness, abelian varieties and
linearization of affine algebraic groups.
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14. Definition of Algebraic Groups

(14.1) Definition. An algebraic group (G,7;) over K is a variety over K which.

has a group structure, and the operations
m:GxG—G
(X7Y) — Xy
and 7:G— G
1

X — X~

are morphisms of varieties.

(14.2) Example. Let n be a positive integer. GL(n,K) 1is an affine algebraic group
with coordinate ring K[M(n,K)], where M(n,K) is the set of all nxn matrices

with coefficients in K and A : M(nK) — K (we are considering GL(n,K) as

Z — det z

a principal open set in M(n,K) defined by A ).

Proof. Let Xij € M(M(n,K),K) be a map which takes each matrix z € M(n,K) to
its (i,j)th coefficient, where 1 <1i,j<n . Then (M(nK),A) € £ (K) where A is the
K-subalgebra of M(M(n,K),K) generated by {Xij | 1<i,j<n} (see Example 1.2).

Now let A be a map of M(n,K) into K such that
A:M@nXK) —K
z — det z

then A e A .

Since M(n,K), = {z € M(n,X) | A(z) # 0} = GL(n,K) , (GL(n,K), A,) is an affine
variety over K according to Proposition 2.8. Let G = GL(nKX), fi = Xjj IG

(1<i,j<n) and
6:G— K ,
z — geis
then A, = K[fs;, 6§ | 1 <1,j < n]. Since
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n
X6 = fo ) =
m*(6) = 6@ §, m*(f5;) —]; fik ® fkj ,
T*(8) = AlG and 7*(fy) = (-1)i4 {det(A;:)}6, where det(Aji): G — K
x — det(Aji(x)
and Aji(x) is the (ji)th minorof x€ G (1<ij<¢n), m:Gx G— G and

(x,y) — Xy

7:G— G - are morphisms. Hence (GL(n,K),A ) is an affine algebraic group.

x — x-1

Q.E.D.

Exercise 49. Show that GL(n,K) is irreducible and dim GL(n,K) = n?.

(14.3) Remark. Let (G,¢’ G) be an algebraic group over K . If dim G = 0, then

G is a finite group and also a topological group. If dim G > 0, then G is an
infinite group but not a topological group.

Proof. It is clear that G 1is finite if dim G = 0. Since G has a discrete topology,
the Zariski topology on G x G is also the product topology of G . Hence G is a
topological group.

Assume that dim G >0 and G is also a topological group. We show the contra-
diction that G 1is a Hausdorff space. Let a,b € G such that a # b . Since {a} is
closed in G , there exists an open neighbourhood W of b which does not contain
a . Since Wb+t is an open neighbourhood of 1 and the map

GxG—G

(x,7) — xyt
is continuous, there exists an open set O of G which contains 1 and
Q0-tc Wbt. Let pe O, then (pO)Nn O # @ and there exist x,y € O such that
px =y . Hence p=yx1e Wbt for any pe O. Thus O c Wbt and Obc
ObcW. Since Obn (Ob)®=¢ and Ob and (Ob)® are open neighbourhoods of
b and a, respectively, G becomes a Hausdorff space. Q.E.D.

(14.4) Definition. A subgroup of an algebraic group (G,¢,) always means just a

non-empty subset of G closed under the group operations.

(14.5) Definition. Let (G, ) and (H,¢# ) be algebraic groups over K . A map

¢: G~ H is said to be a morphism of algebraic groups if
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(i) ¢ is & morphism of varieties and
(i) ¢ is a group homomorphism.
For example, det : GL(n,K) — GL(1,K) is a morphism of algebraic groups.

x — det x

(14.6) Lemma. Let (G,¢ G) be an algebraic group over K and u € G, then the

following maps are morphisms of varieties.

(i) G— G ,
X — Xu
i) G— G,
x — ux

(i) G— G  and

x — uIxu

iv) G—G

x — x “lux

Proof. (i) and (ii). Since the map p: G — G x G is a morphism of varieties from
x — (x,u)

[3
G

the commutative diagram

G u,

4

7\
N4

w

X

G— G x G— G is a morphism.
x — (x,u) — xu

(iii)  is clear from (i) and (ii).

(iv) Since the map p:G— G x G is a morphism of varieties from the
y — (y,uy™)
following commutative diagram:
GxG
T Ta
E
\ //Gal o
G-G -+ G -+ Gx G — G is a morphism. Q.E.D.

x4 x1lax1ly— (x‘iu,x)—*x‘i ux
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(14.7) Corollary. Every irreducible algebraic group G is smooth.

Proof. Let {U;|i=1,2,..,m} be an affine open covering of G . Since Uys are
irreducible, G has certainly a non-singular point a from Theorem 7.18. Let xq € G

and u=alxy,then ¢p:G— G is an isomorphism of varieties which takes a
x — Xxu .

to -xo .. Hence x, 1is also non-singular, and G is smooth. Q.E.D.

(14.8) Lemma. Let (G,’;) be an algebraic group over K and H a closed sub-
group of G. Let +¢:H - G be an inclusion map. Then (H,SH) (sée Examples

10.11) is an algebraic group and ¢ is a morphism of algebraic groups.

Proof. ~Let {U;i|i=12,.,m} be an affine open covering of (G,¢’ ), then
{UinH |i=12,.,m} isan affine open covering of (H,¢ ) (see Proposition 10.4).

Since  {UsnH) cU; and fo (s, )€ o (UinH) =K[U;nH for any

UiNH
fe (Us) = K[Us] , where i=12,.,m, ¢ is a morphism of varieties from Propo-
sition 10.7. Since

HxHcGxG-2G and Hc G5 G

are morphisms of varieties (see Exercise 42.1 on p.118),
HxH—H and H—H

(x,y) — xy x — x

are also morphisms from Exercise 40 on p.113. Hence (H, o)"}{) is an algebraic group.

Q.E.D.

(14.9) Examples of algebraic groups (see e.g. Humphreys [2, p.52]).

(i)  The special linear group: SL (n+1,K) = 7 (K [GL (n+1,K)] (A-1))

GL(n+1,K)
where A : GL (n+1,K) — K
g — det g.
(i) (X, K[X]) is an affine algebraic group by addition.

m: K x K— K and 7: K —K
(a,f) — a+p o — —a.

(i) Let (G,¢,) and (H,o,) be algebraic groups over K, then (GxH,o, )

(see Theorem 10.8 and Example 10.11) is also an algebraic group over K by
the usual direct product of groups.
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(14.10) Proposition.  Let (G,eﬁf’G) be an algebraic group over K and H a

subgroup of G . Then

(i) if H contains a non-empty open subset of G, then H is open,

(i) if H is open, then H is closed,

(iii) if H is closed and [G:H] is finite, then H is open,

(iv) H, the closure of H , is a subgroup of G,

(v) N,(S8)={x€ G| xtSx =8} is closed for any closed subset S of G, and

(vi) Cy4(S)={xeG|xtsx=s for VseS} is closed for any subset S of G .

Proof. (i) Let O be a non—empty open subset of G contained in H . Since

OcCH, wehave H = Vg xO . From Lemma 14.6 xO is a homeomorphic image of

O and hence xO is open. Thus H is also open.

(i) Since H 1is open, UxH  1is also open from the same argument of (i). Since
x€EG—H

H=G-(UxH ), H is closed.
x€G—H

(iii) also follows from the similar argument as above.

(iv) Since HcH, Hx=HcHN(Hx) for any xe H. Thus we have
H ¢ Hn (Hx) ¢ Hx , because Hx is closed from Lemma 14.6. Hence HH c H . Now
le¢ yeH,then yHc H. Since yH = yH from Lemma 14.6, we have yH c H,
ie, HHCH.

Since the inversion is a homeomorphism, we have H-t = H-1. Hence H is a subgroup
of G.

(v) Since No(S)={xeG[xtSxcS}n{xeG|xSxtcS} and

{xeG|x1SxcS} =n {xeG|x1lsxeS}, we only have to show that
8€S

{x € G| xtsx €S} is closed for any fixed s € S. Let ¢,: G- G be a map which
takes x€ G to x1sx€ G, then ¢, is a morphism from Lemma 14.6. Since
o1 (S) ={x€G | xtsxeS} and S isclosed, {x € G | x1sx € S} is closed as

expected.

(vi) is clear from (v), because a point is closed in a variety. Q.E.D.
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15. Connectedness and Irreducible Components of Algebraic Groups

In this section we study irreducible components of algebraic groups and show an alge-
braic group is irreducible if and only if it is connected, i.e., it is not a union of any
pair of non—empty disjoint closed subsets S; and S .

(15.1) Theorem. Let (G,e’,) be an algebraic group over K . Then

(i) the irreducible components of G are disjoint; ,

(ii) let GO be the irreducible component of G which contains 1, then G® isa
closed normal subgroup of G of finite index and the irreducible components of
G are the cosets of G°;

(iii) G° is open and closed in G ; .

(iv) G is connected if and only if G is irreducible;

(v)  any closed subgroup of G of finite index contains G° .

Proof. (i) Assume that there exist two irreducible components Z; and Z, of G
such that Z;NZs# ® . Let z € Z; N Zy, then for any x € G we have x € (xz! Zy)
N (xz Z) . Thus every element of G is contained in two different irreducible compo-

nents, because xz'1Z; and xz'!Z, are homeomorphic images of irreducible compo-
nents (see Lemma 14.6).

Now let X,Xj,...,.Xn be the irreducible components of G , then we have X;C X, U
... U Xg , because every element of X; is also contained in another irreducible compo-
nent different from X;. Thus we have X;c Xj for some i > 1, a contradiction.
Hence the irreducible components of G are disjoint. '

(ii) From Lemma 14.6 xG° is an irreducible component for any x € GO . Since
(xG NG 3x, we have xG®=G® from (i). Hence G°G'= G’. Similarly
(GY)-1= {x1]|x€ G’ is also an irreducible component containing 1, because

7:G— G is a homeomorphism. Thus we have G®= (G%!. Hence G° is a
x — x°1

closed subgroup of G .

Let x be any element of G . Since x°t G®x is a homeomorphic image of the con-
jugation by x, xtG"x is an irreducible component of G containing 1. Hence
x1G%x =GO for any x€ G,ie, G° isnormalin G .
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Now let Xi=G%, X,,..,X, be the irreducible compAonents of G, then for any
x; € Xij we have x;€X;n(x;GY . Thus Xj=xG® (1<ig n) . Hence irredu-
cible components are the cosets of G° and GY is of finite index.

(iii)  is clear from (ii) and Proposition 14.10.
(iv)  follows from (iii).

(v) Let H be a closed subgroup of finite index. Since each coset of H in G is
also closed, G° is contained in one of the cosets of H . Hence H 1 G°.
Q.E.D.

Exercise 50. Let (G,<”,) be an algebraic group over K . Show that

(1) T(G); ¥ T(GY; as K-spaces;
(i) dim G = dim, T(G); .

(15.2) Lemma. Let (G,@"G) be an algebraic group over K and U,V be dense

open subsets of G . Then
G=0UV.

Proof. Since 7: G — G is a homeomorphism, V- is open and dense. Let
x — xt

x € G, and assume that Un (xV1) =0 . Then U c G=xV-!. Since xV-! is open,
G —xV-t is closed and U ¢ G —xV-t. Hence xV-1= § , a contradiction. Thus there
exists uw€e UnNn(xV1) and we have u=xvl for some v eV, which shows
x = uv € UV . Therefore ‘

G=TUV. ~ QE.D.

(15.3) Proposition. Let H be a subgroup of an algebraic group (G,’) over K

(see Definition 14.4). If .H is a constructible set, then H is closed.

Proof. First we assume that H is irreducible (see Proposition 14.10). Since
H=CiUCU..UCn where C, are locally closed sets, we have H=CiuCyu..

UCn . Since H is irreducible, H = C; for some i. From Lemma 15.2 we have
H=CiCi. Thus Hc H and H is closed.
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In general H 1is a finite union of cosets of (H)°. Since H/Hn(H)® » H(H)!/(H)?,
H n (H)? is also of finite index in H . Thus we have

H =x; (Hn(H)°)U..Uxa (0 (H)°),

and also H=x;(Hn HU..Ux, (Hn (H).

From Theorem 15.1.v we have (H)°c H n (H)?. Thus we have (H)°=H n (H)°,
because H n (H)? c (H)° and (H)® is closed. Since H n (H)° is constructible and

H n (H)® is irreducible, Hn (H)® is closed. Hence (H)?= H n (H)°. Since
HOo>H>J(H), H is a union of finite number of closed cosets of (H)°. Hence
H=H,ie, H is closed. Q.E.D.

(15.4) Theorem. Let (G,o}”G), (H, eﬁ"}{) be algebraic groups over K and

¢: G-+ H be a morphism of algebraic groups. Then
(i)  Ker ¢ is a closed normal subgroup;

(ii)  ¢(G) is a closed subgroup of H ;

(i) W(G%) = W(G);

(iv) dim G = dim Ker ¢ + dim ¢(G) .

Proof. (i) Since {1} is closed in H, Ker ¢ = ¢t ({1}) is closed.

(ii) From Theorem 8.6 and the proof of Proposition 10.7 ¢(G) n Oy is comstruc-
tible in each (Oj, K[O1]) where {O1 |1 =1,2,..,t} is a finite affine open covering
of H. Hence ¢(G) is constructible in H . Therefore, ¢(G) is closed from Propo-
sition 15.3.

(iii) Since @(G% is irreducible from Lemma 5.6, we have ¢(G%) c ¢(G)°. Since
©(G% is of finite index and closed in (G), we also have ¢(G°) 2 ¢(G)° from
Theorem 15.1.v. Hence ¢(G%) = ¢(G)°.

(iv) Since ¢(G%) = ¢(G)°, ¢ly Is a dominant morphism of G% into ¢(G)°
(see Lemma 14.8 and Exercise 40 on p.113). Let ¢; = ¢| o : G° - ¢(G)° and U ¢4

be an open subset of G° which satisfies the conditions of Theorem 13.14. Let u e U .
Since u Ker ¢, = ¢, (p,(u)) , we have

dim Ker g, = dim G® — dim ¢(G)°

from Theorem 13.14. Hence
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dim G = dim Ker ¢, + dim ¢(G) .
Since (Ker ¢;)° = (Ker ¢)° and dim Ker ¢ = dim(Ker ¢)° , we have
dim G = dim Ker ¢ + dim ¢(G) . Q.E.D.

Next we shall show a proposition which is useful to construct connected algebraic
groups.

(15.5) Proposition. Let (G, Gr) be an algebraic group over K and I be an index

set. Let {fj: Xj- G}ieI be a family of morphisms of irreducible varieties (Xi, o’ )
1
over K into (G, ) such that Y;=1f(X;)351 forall ieI. Wrte (U Yj)

i€l
for the smallest closed subgroup of G containing lEJI Y; , i.e., the intersection of all
i
closed subgroup of G containing leJI Y; . Then
i
(i) y(gI Y;) is connected;
1
(if)  there exists a finite sequence b = {b(1),...,b(1)} in I such that ¥ 121 Y;) =
Yg(l) b(l),where ej==2+1 forall 1<j<1.

Proof. It is enough to prove the proposition with the enlarged index set which in-

cludes all the morphisms
X;— G

x — fi(x)1.
We denote by Y, the subset Ya(1) Ya(2)..Yany of G for a finite sequence
a = {a(1),...,a(n)} of elements from I. Let f; be a map of Xja(1) *..x Xa(n) into
G such that

fa . Xa( 1) X...% Xa(n) — G
(x1,%2y-+ « yxn) — facn (x1)fac2) (x2)--fa(n) (xn) ,

then f, is a morphism of varieties and the image of f, is the subset Ya(1):Ya(o)..
Yany of G and irreducible from Lemma 5.6 and Exercise 44 on p.118.

Since dim Y, < dim G , we can choose ag = {ao(1),...,a0(no)} such that dim ?ao is
maximal. It is clear that ?ao is maximal among the subsets Yp = Yp(1)...Yb(1) ,

where b = {b(1),...,b(1)} is a finite sequence in I (see Exercise 48 on p.140).
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Now let ¢ = {c(1),...,¢(s)} and d = {d(1),...,d(t)} be any two sequences in I, then
we write (c,d) for the sequence {c(1),...,c(s), d(1),...,d(t)} . Since Yy C Y(c,d) for

any y € Yq,wehave YeycY, . .Thus YeYqacCY, ... Similarly we have

(c,d) (c,d)
Y. YqcC ?(C, 2
because xYq C ?(c, 8 for any x € Y.
(i)  From the above argument we have Tao Y4 cC v(ao, a) for any sequence d .
Since 1€ Yy, Vao C ?(30’ a) - Hence ?ao =Y a0,d) p) —Y'ao Yq D Yq for any sequence

d . Thus we have

20 je1 & 20

From the assumption of the enlarged index set which contains all morphisms

Xi— G

x — fyx)1 ’
there exists a sequence do in I such that Y, =Y-1. Hence Y i=Y-t=

0 ag ag ag
Y d C Yao . Thus ?ao is a closed irreducible subgroup of G containing U Yj. It is
1€1
clear that
Y = (U Yj).
20 s i€1

(i) Let {O;j|j=1,.,m} be a finite affine open covering of (G,e’;), then

fao(Xao(l) X...x Xao(no)-) no;= Y, n Oj is constructible in each (Oj, K[O;]) from

Theorem 8.6 and the proof of Proposition 10.7. Hence Yao is constructible in G . Let

YaO = C; U...U C; be the union of locally closed sets Cj,Ch,...,Cr . Since ?ao =Cy U
..UC; and Y_ao is irreducible, we have Yao = Cq for some 1< q<r. Since Cq
is an open and dense subset of an algebraic group ?ao , ?ao = Cq:Cq from Lemma
15.2. Thus we have

Yao = Cq'Cq C Yao Yao = Y(ao’ao) C Yao N

Hence if we take b = (ao,a0) , we have % (U Yi) = Yp . Q.E.D.
i€l

(15.6) Corollary. Let (G, ) be an algebraic group over K and {Hi},; De

closed connected subgroups. Then the subgroup of G generated by {Hi}i(—:I is closed
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and connected.

Proof. Take {Hjc G}, (see Lemma 14.8). Q.E.D.

(15.7) Example. Let G = SL(n,K), then G is a closed subgroup of GL(n,K) (see
Example 14.9). Let '

) j
1 .
1 0 - 0
PR PR 1 ....... q ..... i
xij(a) = 0 e 0
1 |

be an element of G, where 1<i#j<{n and a€ K. Thenforeach 1<i#j<n

we have

(1) xij(@) x4(0) = xij(a+pf) for any o,f€ K;

(ii) let Uj; = <xjj(a) | @ € K> be the subgroup of G generated by {xij(a) |
a € K}, then Ujy; is a closed subgroup of G ;

(i) let xjj: K — Uyj be a group homomorphism of the additive group K
a — xij(a)

into Uj; which takes each o€ K to xjj(e) € Ujj, then xj; is a morphism
of affine varieties of (K, K[X]) into (Usj;, K[Uj]) .
Since each Ujj is a morphic image of the irreducible affine variety (K, K[X]) , Ujj’s
are irreducible. Hence G = <Uj; | 1 <i+# j< n> is irreducible from Corollary 15.6.
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16. A Remark on Rigidity Lemma and Abelian Varieties

In this section we show that a connected algebraic group whose underlying variety is
complete is abelian.

(16.1) Rigidity Lemma. Let X be an irreducible complete variety over K, and Y
and 7 be any varieties over K . Assume that Y is irreducible. Let f: XxY - Z be

a morphism of varieties such that |f (Xx{yo})| =1 for some y,€ Y . Then there
exists a morphism of varieties g of Y into Z such that f= gory, where
79 : XxY =Y is the projection.

Proof (see Mumford [1, p.43]). Let x, be any fixed point of X and g be a map of
Y into Z such that

g:Y— 12
y — f(xoy) .

It is clear that g is a morphism of varieties, because
g: Y — Xxy L7
' y — (Xo ’AY) — f(XOsY) .
We shall show that f = gom, .

Let {z¢} = {(X=x{yo}) and U be an affine open set of Z which contains z,. Let
F =2-U, then {1 (F) is closed in XxY . Since X is complete, m is a closed
map (see Definition 12.1) and mo(ft (F)) is closed in Y . Since {f(Xx{yo}) = {zo}
and zo ¢ F, we have yo ¢ mo(f1(F)). Hence V = Y-my(ft(F)) 3 yo is a non—
empty open subset of Y .

Now let y e V. Since y ¢ m(ft(F)), (xy)¢ft1(F) for any x € X. Hence
f(Xx{y}) c U for any y € V. Since Xx{y} is a closed subvariety of XxY and is
also the product variety of complete varieties X and {y} (see Exercise 42.2 on p.
118), Xx{y} is complete (see Proposition 12.2). Since Xx{y} 1is irreducible, we



- 177 -

have [f(Xx{y})| =1 from Corollary 12.3. Hence for any x€ X and yeV we
have f(x,y) = f(xo0,y) = goms(x,y)

'Since  {(x,y) € XxY | f(x,y) = gomy(x,y)} is closed from Remark 10.10 and XxY is
irreducible, {(x,y) € XxY | f(x,y) = goma(x,y)} 2 XxV = XxY . Therefore, f= gom
on XxY . Q.E.D.

(16.2) Corollary. (i) Let X be an irreducible complete algebraic group over K and
Y be an algebraic group over K . If f is a morphism of varieties of X into Y
such that

f1)=1,
then f is a group homomorphism.
(ii)  Any irreducible complete algebraic group is commutative.

Proof. (i) Let ¢ be a map of XxX into Y which takes (x,y)€ XxX to
f(xy)({(x) {(y))1 € Y . It is clear that ¢ is a morphism of varieties, because
XX — X —Y

(x,y) — xy — f(xy)

and XxX - YxY ~+Y
' (x,y) = (£(x), £(y)) = (f(x)f ()1

are morphisms. Since  @(Xx{1}) = {1} and ({1} x X) = {1}, there exist

morphisms of varieties gi;: X =Y (i =1,2) as follows.

XxX

o/ |\ ,

X p X (commutative diagram)

o |/

Y .
Hence ¢(x,y) = ¢(x,y’) for any (x,y), (x’,y’) € XxX . Therefore, ¢(x,y) =1 on
XxX , which implies f(xy) = f(x) {(y) for any x,y € X.

(ii) From (i) 7:X — X is a group homomorphism. Hence (xy)1=x1y,i.e,
x — x1 '

xy = yx for any x,y € X. Q.E.D.

(16.3) Definition. We call an irreducible complete algebraic group over K an abelian
variety.
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17. Operations of Algebraic Groups on Varieties

In this section we study morphic operations of algebraic groups on varieties and show
the existence of closed orbits.

(17.1) Definition. Let (G,ef) be an algebraic group over K and (X,¢%) bea

prevariety over K . We say that G operates on X morphically if there is a
morphism of prevarieties ¢ : GxX -+ X such that
gr(gax) = (g1 g2)x forany gug2€ G and x € X;
lx=x forall xeX,
where we write ¢(g,x) = g:x for brevity. We call X a G-prevariety over K. A
(prevariety) morphism f:X-Y of two G-prevarietes is said to be a G-morphism if
f(gx) = gf(x) forany g€ G and x€ X.

( 17;2) Remark. Let X be a G—prevariety over K .
(i) Let ge G and Ty be a map of X into itself such that
Tg: X — X

X — g'x

then Tg is a morphism of prevarieties.
(i) Let x € X and ¢x beamapof G into X such that
(px . G — X y

g — g'x

then ¢y is a morphism of prevarieties.
Exercise 51. Prove the above Remarks.
(17.3) Proposition. Let X be a G—prevariety over K and Y and Z be subsets of

X . Assume that Z is closed. Then
(i)  the set of transporters Tran, (Y,Z) = {g € G | &Y c Z} isclosedin G;

(ii) for each x € X, the isotropy group Gx = {g € G | gx =x} of x is closed,

in particular the centralizer C,(X)= N Gy of X in G is closed;
x€X
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(iii) if G is connected, G stabilizes each irreducible component of X . Hence G
acts trivially on any finite set. ' '

'Proof (see Humphreys [2, Proposition 8.2]). (i) Since ¢x: G — X  is a morphism
g — g'x

of prevarieties from Remark 17.2, ¢4t (Z) is closed for any x € X . Hence
Tran, (Y,Z2) = n oyt (2)
yeY
is closed.

(i) ~ Since Gx = Trang ({x}, {x}), Gx is closed. Hence C,(X) = n Gx is also
x€X

closed.

(i) Let- Xo be an irreducible component of ~X. Since X, is closed,
H = Tran, (X, Xo) is a closed subset of G from (i). Let g€ G, Tg is a homeo-

morphism from Remark 17.2, gX, is also an irreducible component of X . Hence
gXo = Xy for any g€ H. Therefore, H is a closed subgroup of G . Since G
operates on the set of irreducible components of X , which is finite, H is of finite
indexin G . Hence H = G from Theorem 15.1. Q.E.D.

(17.4) Proposition. Let X be a G-variety over K, then the fixed point set
{xeX | gx=2x} of ge G is closed, in particular,
X¢={xeX|gx=x forall ge G}

is closed.

Proof. Let ge G and f be a map of X into XxX such that
f:X—XxX

x — (x,g%)

then f is a morphism of varieties.

X=X

1\

X £ X3 gx (commutative diagram)

NV
X3x
Since A(X) is closed in XxX (see Definition 10.9), {1 (A(X)) = {x € X | gx = x}
is closed. Hence
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X¢=n {xeX| gx=x}
geG

is also closed Q.E.D.

(17.5) Proposition. Let G be a connected algebraic group over K and X be a G-
variety. Let Y be a G—orbit of X . Then

(i) Y is irreducible;

(ii) Y is locally closed, i.e, Y isopenin Y ;

(iii) dim (Y-Y) < dim Y ;

(iv) Y-Y is G-stable, ie.,, g(Y-Y)C Y-Y forany ge G.

Proof (see Springer [1, Lemma 4.3.1]). (i) and (ii) Let x € X and Y = G-x. Since

¢x : G — X is a morphism of varieties, ¢x:G-— Y is also a morphism of
g — gx g — g'X

varieties from Exercise 40 on p.113. It is clear that Y is irreducible from Proposition
5.4 and Lemma 5.6. From Theorem 13.14 Y has a non-empty open set Uy such
that U C 9x(G) = Y . Therefore,

Y=U gUo
geG

is open in Y , because G also operates on Y morphically.

(iii) Since Y-Y is a proper closed subset of Y, we have dim (Y-Y) < dimY
from Exercise 48 on p.140.

(iv) Since gY =Y and gY =gY =Y forany ge€ G, we have g(Y-Y)C Y-Y.
Q.E.D.

(17.6) Definition. Let G be a connected algebraic group over K and X be a G-
variety. Let Y be a G-orbit of X . We define dim Y to be the dimension of Y as
open subvariety of Y . Therefore dim Y = dim_ Y.

(17.7) Corollary. Let G and X be as in Proposition 17.5. Then the orbits of mini-

mal dimension are closed.

Proof. Let Y be an orbit of minimal dimension. Since dim (Y-Y) < dim Y =
dim Y and Y-Y is the union of other G-orbits from -(iv), Y-Y = ¢ . Hence Y is
closed. Q.E.D.
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Independently of Proposition 17.5 we get the following proposition.

'(17.8) Proposition. Let G be an algebraic group over K and X be a G-variety,
then any G-orbit Y of X is locally closed.

Proof. Let Y = Gy for some yeY. Since ¢y: G— X is a morphism of
g — gy

varieties, ¢y : G — Y  is also a morphism of varieties from Exercise 40 on p.113.
gE—E8Y ,

From Theorem 8.6 and the proof of Proposition 10.7 ¢y (G) n O1 is constructible in

each (Oj, K[O1]) where {O; | 1= 1,2,...,t} is a finite affine open covering of Y .

Hence Y is constructible in Y and a union of finite irreducible sets. From Exercise 29

on p.88 Y contains an open dense subset of Y . Since Y =G-y, Y isopenin Y.

Q.E.D.

(17.9) Definition. Let (G,«%) be an algebraic group over K and X be a G-

variety. We call X a homogeneous space of G if X has only one G-orbit.

(17.10) Remark. A homogeneous irreducible G—variety is smooth.

Proof. Let X be a given homogeneous irreducible G—variety. From Theorem 7.18

any affine open set O of X contains a simple point a in it. Since Tg: X — X
x — gx

is an isomorphism of varieties, ga is also a simple point for any g € G (see Exercise
39 on p.112). Hence X is smooth.

(17.11) Lemma. Let (X,o4) and (Y,o%) be irreducible varieties over K and

9:X =Y be a dominant morphism, i.e., ¢ is a morphism of varieties and
©(X) = Y . Then there exist affine open sets U in X and O in Y and a positive
integer r such that ¢(U)c O and ¢|, can be factorized a=mo ¢ with

¥ : U - K'™xO surjective finite morphism and w; : K*™xO - O the projection.

oly: UL K=0 24 0
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Proof (see Steinberg [2, p.58]). Let O be an affine open set in Y , then there exists
an affine open set U in X such that ¢(U) c O .

ply: U—0
is also a dominant morphism of varieties. Hence we can assume that X and Y are
affine varieties (see Corollary 10.5).

Since ¢ is dominant, ¢* : K[Y] - K[X] is injective (see Lemma 8.3). We shall write
K[Y] =B and K[X]= A . Thus B can be considered as K—subalgebra of A . Let
Q(B) be the quotient field of B, then Q(B)[A], the Q(B)-algebra generated by
A, is also finitely generated over Q(B) . By Noether Normalization Theorem there
exist algebraically independent elements xi,xs,...,xy (over Q(B) ) in Q(B)[A] such
that Q(B)[A] is integral over Q(B)[xi,...,X;] . Since B is a K—subalgebra of A , we
can take xj,..,xy in A . In the equations expressing the integrality over
Q(B)[x1,...,x;] for a finite generating set of Q(B)[A], the coefficients are polynomials
in xy,...,xy with coefficients in Q(B) . Let b€ B be a common denominator for all
these coefficients. Then Ap, the ring of fractions of A by {b™ | neN} (see
Lemma 2.7), is integral over By[xy,...,Xr] , because By[xy,...,x;] contains all such co-
efficients and the finite generating set of Q(B)[A] is integral over By[xy,..x:] (see
Proposition 6.5).

From the following commutative diagram

x®y € By @ K[X1y.00,%s]

S S N

(x,y) € BpxK[X1,y...,X:] —— Bp[x1,..05%] ,
(x,¥) — Xy

Bp[x1,...,xr] is isomorphic to By ®y K[xy,...,xr] as K-algebras. Hence we have the
following sequence of algebraic homomorphisms.

By, — w*(B)q:*(b) ® K([xg...,x5] C Ago*(b) .

a/bn — ¢*(a)/p*(b)" ® 1
Thus we have got the desired sequence of morphisms

¥ r T2
| : X — K™Yy —= Yy
xgo*(b) p*(b)

(see Lemma, 2.4).

Finally we shall show the surjectivity of ¢ . Since ¢ is a closed map, i.e., ¢ maps a
closed set to a closed set (see Proposition 8.4), ¢(X¢*(b)) is closed in K'Yy, . Since
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K [ )] = llygx ) | fe K[Kmeva))

and K ['ﬁb(X‘o*(b))] o "/}*(K[KrXYb])

fl'l,[)(X )-——» foq)

p*(b)
as K-algebras, we have dim ¢(X¢*(b)) = dim(K"xYyp) . Hence ¢(X¢*(b)) = K"xYy,
from Proposition 7.2. Q.E.D.

(17.12) Lemma. Let (G,e%) be an algebraic group over K and (X,ef) and

(Y, ") be homogeneous spaces of G (see Definition 17.9). Let f:X =Y be a G-
morphism, then f is an open map.

Proof (see Steinberg [2, p.58]). It is enough to show that the map ¢x: G — X is

g — gx

open for any fixed x € X , because we have the following commutative diagram.

X —f v gf(x)

NS

G3g

t
Now let GO be the connected component of G containing 1, then G = _U1 GO g5
1=

t
(disjoint union of open subsets) and X = G-x = Y Gogix = Gogilox U..U Gog, -x
1= S
(disjoint union of GoO-—orbits in X, s <t ). Since G‘)gil-x,...,GOgi x are homeo-
S

morphic, they are all closed from Corollary 17.7. Hence they are open and closed. Thus
it is enough to prove that ¢x|GO: G0 -+ G° x is an open map.

From now on we assume that G and X are irreducible. Let S be an open set in
G and H Dbe the isotropy group of x, ie., H={ge G| gx=x}, then

wx 1 (S'x) = SH, ¢x(SH) = ¢x(S) and SH= U Sh isopenin G.Let U and
heH

O etc. be as in Lemma 17.11 such that gy|, : U -2 K™%0 2240 .

Since G = U gU, it is enough to show that ¢x(SH ngU) is open for any g in
geG

order to see x is an open map. Since
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ox 0 Ty . gU - U L K™%0 2, 0
gU

and (gt SH) N U = (mo9)t {((gt SH) n U)x}
= ¢ [Y(U) n 7t {((g7 SH) n U)x}]

<p\xng_1(SH Nngl) = vx((g1 SH) n U) = ((gt SH) n U)x is open in X from Corolla-

ry to Proposition 8.4. Hence g((g SH) n U)x = (SH n gU)x = ¢x(SH n gU) is open
foreach ge G . Q.E.D.
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18. Rational Representations of Algebraic Groups

Now we define rational representations of algebraic groups and explain some related
notions such as induced representations. We also prove that affine algebraic groups are
faithfully (i.e. injectively) represented into some general linear groups.

Let G be a group. The group ring RGV over a commutative ring R (with unity ele-
ment 1) is the free R—module with basis {g | g € G} and with multiplication defined

¥ [2 axx} [2 ﬂyy]= 2 ax Py xy .

x€G yeEG x, YEG
Notice that almost all ay’s and fy’s are zero. It is clear that RG is an associative
ring with unity element 1 € G . When R is a field, RG is of course an algebra over R.

Let M be an n—dimensional vector space over K . Assume that {m;mo,....ms} isa
K-basis of M , then with respect to this basis M has an affine variety structure
which makes the follwing K-isomorphism ¢ an isomorphism of varieties.
P M——— K"
ximi+. . .Axpmp = (X1,X 2 ,..4Xn)
It can be easily shown that the variety structure of M does not depend on a given
K-basis {my,...,mp} of M. |

(18.1) Definition. Let (G,e”,) be an algebraic group over K . A rational represen-

tation of G over K of degree n is a morphism of algebraic groups

p: G — GL(n,K) for some n .
A finite dimensional KG-module M is said to be rational if for some K-basis
{mjy...,mp} of M the map

p:G— GL(n,K
g — (rii(8))
is a rational representation where

g(my,...,my) = (mjy,...,my) "pn(g), £12(8)s-» P1n(g)
p21(g), p22(8)s-+» P2n(g)

L Pn1(g)ye+++-+eres Pn(g)
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Clearly, the rationality of M does not depend on its given basis {mj,...,mp} .

(18.2) Proposition. Let G, M and p be as in Definition 18.1.

(1)

A group homomorphism p: G — GL(n,K) is a rational representation over
g — (rij(g))

K if and only if all the functions {pi;} belongto & (G).

Let N be a KG-submodule of M, then N and M/N are rational KG-

modules. - |

Let M; and M, be rational KG-modules, then the direct sum M;+ M,

and the tensor product M;j ® M, is also a rational KG—-module. We define

g(men) = gm ® gn , where g€ G, m e M; and n € M;.
Let M be a rational KG-module, then M* = Hom (M,K) is a rational KG-

module by the following G—operation

GxM* — M*
(g, f) — [gf:m=1fglm)] (m€M).

Further EndK(M) is also a rational KG—module by the following G—operation

GxEndK(M) - EndK(M)
(g, f) —— [g'f : m=gf(glm)] (me€M).
Let M be a rational KG-module, then the map
p: GxM — M

(g,m)— gm

is a morphism of varieties.

Proof. (i) Let M(n,K) be the set of all. nxn matrices with coefficients in K and
A :M(n;K)~»K , then K[GL(nK)] = K[M(n,K)], (see Example 14.2). From the

Z -+ det 3z

definition of morphisms of varieties all pi’s belong to @E(G) if p is a rational

representation.

Now assume that {pyj} ¢ ¢(G) . From Proposition 10.7 it is enough to prove that

bop € o (G) where

Since

§: GL(n,K) — K

4 — det z 1 Z *
{ps} ¢ G(G), Dope of(G). Since 7 G-— G  is a morphism,

g — gt

Aopor € o}‘é(G) . Hence Aopor = fop € oYé(G) , because Aopor(g) = A(p(g™)) =
(det(p(g)))t = &p(g)) for any g€ G .
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(i) Let {myms..,mn} be a K-basis of M such that N =Km;e..0 Kmg

<mn) . Sin
) - Snes e | * }

0 | pa(g)

where p; and p; are the matrix representations afforded by N and M/N respec-

p(g) = [

tively, p; and p, are rational from (i).

(iii) Clearly, M+M,; is rational from (i). Let M;= Km;e..6 Km; and
M, = Kn; ... Kng where dimK M;=r1 and dimK M; =s. Then {mj®n; |

1<i<r, 1<j<s} form a K-basis of M; Oy M;. Let p and v be the matrix
representations afforded by M; and M, respectively. Since

g(mi ® nj) = gm; @ gn;

= [1=21 P (g)m1] ® [1; Vkj (g)nk] = gl 1; p1; (8) v (g)(mieny)

and p; 0 € o}‘é(G) , M, ® M, is a rational KG—module.

(iv)  Exercise.

n
(v) Let {mj,...mp} be a K-basisof M. Let m = .21 ;® m; be an element of
i=

n
M where am,...,an® € K and gm; =k§J1 Pri(g)my (i = 1,2,...,n) , then
n n n n
o= 2 an [ X g @m] = 2 [ X am g (0)m.
i=1 k=1 k=1 ‘i=1
Since  Xiop € of,, (GxM) for any k=12,.n, where Xk(m) = ox® and

Xxop(g,m) =‘?‘J ai® pi(g), @: GxM — M is a morphism of varieties from
=1 (g,m)— gm

Proposition 10.7. Q.E.D.
Exercise 52. Prove Proposition 18.2.iv.
(18.3) Definition. Let G be an algebraic group over K and M be a KG-module.

We call M a locally finite rational KG-module, for brevity, a locally finite KG—
module if KGm is a finite dimensional rational KG—module for any m € M .
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We shall show that oﬁfé(G) becomes a loéally finite KG—-module by right translation

(see Corollary 18.6) if G is affine. We first define left and right translations.

Let G bea group and let
M(G,K)={f | G~ K ,amap of G into K}
(see §1). |

Let x,y € G and let
Ry : M(G,K) — M(G,K)
and Ly : M(G,K) — M(G,K)
be maps of M(G,K) into itself defined by
Rx(f)(z) = f(zx)
and Ly(f)(z) = {(yz) , where fe M(GK) and z€ G.

Then we call Ry right translation by x and Ly left translation by y . It is easy to
check the following properties of right and left translations:
For any x,y € G and any fy,f; € M(G,K) .
RyLy = LyRx, Rxy = RxRy and Lyxy = LyLy.
Rx(fif2) = Rx(f1)Rx(f2)
and Ly(fifs) = Ly(fi)Ly(fs) .

(18.4) Lemma. Let (G,of) be an algebraic group over K . Then
(i)  Rx(%(G)) € (G) and Ly(o(G)) ¢ o(G) for any xy € G ;
(i)  &4(G) is aleft KG-module with the following operation

KGx 94(G) — (G)

(2 agg, f)— 3 aggxf,
gEeG g €G

where g#f := Rg(f) ;
(ili)  <4(G) is also a right KG-module with the following operation

o}‘é(G) x KG — ojf(’;(G)

(f, Dagg) — X agfag,
gEG g €G

where fag := Lg(f);
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(iv) finally, for any x and y € G, the maps

Re: (G) — o4,(G)

f — x#f

and Ly: %(G) _— @yé(G)
' f — fAy
are K—algebra automorphisms.

Proof. (i) Let {U;j]|i=12,..,m} be an affine open covering of G . Let
m: GxG — G , then we have fom € o .(GxG) for any fe o%(G). Assume

(x,y) — xy

that (zx) € UixU; and

1
fomlU =1§1 fi ® £’y € K[U3] ® K[Uj] ,

ixUj
1 .
then Rx(f)(z) = f(zx) = fom(z,x) = (kgl P (x) fy)(z) for any z € Uj . Since

Rx(f)lUi € K[Uj] forany 1<i<m,
Rx(f) € of(G) for any fe #(G) .

(i), (iii) and (iv) Exercise. Q.E.D.

.....

Exercise 53. Prove Lemma 18.4.ii, iii and iv.

Henceforth left or right KG—module ofG(G) always means the left or right module
defined in Lemma 18.4.

(18.5) Proposition. Let (G,K[G]) be an affine algebraic group over K .
(i) Let M be a finie dimensional left KG—submodule of K[G] , then M is rational.
(ii) Let N be a finite dimensional right KG-submodule of K[G], then N is rational.

Proof. Let {mjmy,...,my} be a K-basisof M.Let g€ G and

g*(mbm?a'--)mn) = (ml)“-amn) [ p11(g), p12(8)s-r P1n(g)
p21(8); p22(8);---» P20(8)

[ Pn1(g)se+ -+ ey Pun(g)
It is enough to prove that each pi; € K[G].
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Now let {mj,...,ms} U {w oJac g Dea K-basis of K[G] , then

m*(m;) = 2 mj ® fj; +2

a€ A
for some fj;, I, € K[G] where m: GxG — G . Thusforany g€ G and x€G

(x,y) — xy
we have
(g#mi)(x) = (Rg(mi))(x) = mj(xg) = m*(mi)(x,g)

= 2 fii(g) mj(x) + Z (X)

Since {mi,..,ma} U{w_ } . . is a K-basis of K[G], pji=1;;€K[G] for any
1<ij<n. Q.E.D.
n

Remark to Proposition 18.5. m*(m;) = 2 m; ® p;; forany 1<i<n.
j=1

(18.6) Corollary. Let (G,K[G]) be an affine algebraic group over K . Then the left
(respectively right) KG-module K[G] is locally finite.

Proof. Let fe K[G]. Since m*(f) € K[G] & K[G], we have

1
m*(f) = 2 f; @ P; for some fj, P’; € K[G] .
i=1
Hence (g#)(x) = Rg(f)(x) = f(xg) = m*(f)(x,g)
1
[2 Pi(g 1] for any gx e G.
1=
1
Thus (KG)#f 2 Kf;
i=1
and (KG)#f is finite dimensional. Q.E.D.

Now we show that an affine algebraic group is isomorphic to a closed subgroup of a

general linear group.
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(18.7) Theorem. Let (G,K[G]) be an affine algebraic group over K , then there
exists a morphism of affine algebraic groups p of G into GL(n,K), for some n,
such that p(G) is closed in GL(n,K) and p is an isomorphism of affine varieties of
G onto p(G) .

Proof. Let {ayas,..,an} -be a set of generators of K[G] as K-algebra. Let M be a
finite dimensional left KG-submodule of K[G] containing {ay,as,...,an} (see Corol-
lary 18.6). Let {mj,my,...,m,} be a K-basis of M, then with respect to this basis we

can define a rational representation p: G — GL(n,K) such that
g — (rij(g))

g#(mjy,...,mp) = (mg,...,mn)[ p11(g), p12(8)+-++» Pin(g) )
p21(g), p22(8)s- -+ p2n(e)
[ pat@)eeviveey pone) |

for any g€ G . From Proposition 2.5 it is enough to show that p* is surjective in
order to prove p: G = p(G) 1is an isomorphism of affine varieties. Since

n
m*(m;) =2 m; ® pj; forany 1<i<n
j=1
from Remark to Proposition 18.5, m*(m;)(1,8) = mj(g) = '§1 pji(g) mj(1) for all
J:

n
g€ G. Since p;; € Im p* forall 1<ij<n, we have m; = _21 m;(1) p;i € Im p*
J:

for any 1<i<n. Hence Im p*> M 2 {ay,...,an}, which implies Im p* > K[G] .
Thus we have proved that Im p* = K[G] . Q.E.D.

Because of this fact we also call affine algebraic groups linear algebraic groups.

Now we shall define induced modules of algebraic groups.

(18.8) Definition. Let (G,<%,) be an algebraic group over K -and M be a vector

space over K . We define Mép (G;M) to be the K—space of all maps f of G into
M such that f(G) spans a finite dimensional K-subspace N of M (we write
N = K<f(G)> ) and f: G - N is a morphism of varieties.

Exercise 54. Justify Definition 18.8, i.e., Map (G,M) is a K-subspace of {f | f isa
map of G into M} . The K-space operations of {f | f is a map of G into M} are:
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(fi+1f2) (8) = fu(g) + fa(g)

(cf) () = cf(g) ,
where f;, f2 and f are mapsof G into M and ge G and ceK.

Exercise 55. Let G and M be as in Definition 18.8. Let f be a map of G into
M such that f(G) is contained in some finite dimensional K—subspace L of M and
f: G~ L is a morphism of varieties. Then f e Map (G,M) .

(18.9) Proposition. Let (G, ¢ ) be an algebraic group over K and M be a vector

space over K . Then
(i) Map (G,M) is a left KG-module by the following operation
G x Map (G,M) — Map (G,M),

(gf) ———— gxf
where (g#f)(x) = f(xg) forany x € G.
() If M=K, then Map (GK)= %(G).

(i)  of(G) ® M is a left KG-module by the following operation

G x ((G) e, M) — & (G) o, M,
(g f8m) — (g#f)® m
and the map p: (G)e, M — Map (GM),
f®m — p(f®m)

where p(fem)(g) = f(g)m (g € G) , is a KG-isomorphism.
(iv) Map (G,M) is a locally finite KG-module if of(G) is locally finite as left

module.

Proof. (i) Let fe Map (G,M) and N = K<{(G)>. Since K<(g#f)(G)> =N
and g*f:G— G 2N isa morphism, we have g#fe€ Map (G,M) . It is clear

x — xg

that 1#f = f and (g go)#f = g1#(ge#f) for any fe Map (G,M) and g1, 82€ G .
(i)  is clear from the definition.

(i) Since (G) isa (KG,K)-bimodule, % (G) ®, M becomes a KG-module by

the given operation. Since the map
P %(G) x M — Map (G,M),
(f,m) — ¢ (f;m)
where (f,m)(g) = f(g)m (g € G) is K-bilinear, p is a well-defined K-linear map.
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Since

p(g(fem)) = p((g#f) ® m) : x — f(xg)m
and g#p (fem) : x — p(fem)(xg) = f(xg)m ,
'where gx € G and fem € of(G) & M, p is a KG-homomorphism.

Now let {fi |i€I} and {m; | jeJ} be K-basis of efé(G) and M respectively,
then {fijem;|iel and jeJ} is a K-basis of eﬁ‘é(G) ® M. Assume that
o( i?j cij fi ® mj)(x) = 0 for any x € G, where {cj;} ¢ K and almost all ci’s are
zero. Since p( i?j ci; f; ® mj)(x) = ii,}j ¢ fi(x)my =J§} (? cij fi(x))m; = 0 for any

x€G,Ycy;fi(x) =0 forany x€ G and jeJ.
1

Hence all cjj’s are zero and p is injective. Let h € Map (G,M) and {mj,...,mp}
be a K-basis of N = K<h(G)> . Since

h: G- N=Km;e.eKmy,
is a morphism of varieties, each Xjoh € eﬁ‘(’}(G) where X; € K[N] (i =1,2,..,n).

Since
n
o (2 (xek) o m) ) = )
i=1
for any x € G, p is surjective.

(iv) Since of(G) e, M ¥ Map (G,M) , it is enough to prove that o (G) e, M is

1
locally finite. Let _21 fi® m; € of(G) e, M. Since
i=

1 1
KG [2 fi®mi]C2 KG f; ® m;
i=1 i=1

1
and each KG f; ® m; is finite dimensional and rational, KG( '21 fi @ m;) is also
i=

finite dimensional and rational from Proposition 18.2. Q.E.D.

(18.10) Definition. Let (G,¢#,) be an algebraic group over K and H be a closed

subgroup of G . Let V be a left KH-module, then we define the induced KG-module
V¥ induced from V to be the KG-module

1
VS = {feMap (G,V) | f(hg) = hi(g) forall he H and geG}.




- 194 -

(18.11) Remark.
(i) Let G,H and V be as in Definition 18.10. Let {1} be the trivial subgroup of
G, then '

vgl} = Map (G,V) .

In particular {1} = #(G),
where K is considered as the one—dimensional trivial module of {1} .
If Map (G,V) is locally finite, e.g., G is affine, then Vf[ is locally finite.

(i) A Mackey’s Lemma (see Mackey [1]). Let G be a group and H be a subgroup
of G . Let L be a left kH-module where k is afield. We write L for the set of
all maps f: G- L such that f(hg) = hi(g) forany h e H and ge G . Then
a) L becomes a left kG-module by the following operation

(f: + £2)(g) = fi(g) + fa(g) (fbf2€L, g€ G),

(cf)(g) = cf(g) (feLl, geG, cek),
(g9)(x) = f(xe) (fel, gxeG).
b) Let G =U Hg; (disjoint union) and L = e kl; (direct sum). Let f;; be
jET i€l
the map of G into L such that fij(hgi) = 6 hli, then fij; € L for any
(i,j) € IxJ .

c) Let L®=kG e L,then L% has ak-basis {gj*t el | (i,j) € IJ} .

d) The map ¢: L¢ 5 I which takes each gitel; to fy, where (i,j) € IxJ,
is an injective kG—homomorphism.

Proof of (ii). (a), (b) and (c) are clear.

(d) Since {gjtel;} forms a k-basis of L® and fij’s are linearly independent, ¢
is an injective k-linear map. We show that (g(gj ® 1)) = g#i(g;tel;) for any
g€G and (i,j) € IxJ. Since f(hg) = hf(g) for all feL, where he H and
g € G, it is enough to show that
Yg(g;™ @ 11))(gx) = g#u(g; @ li)(gx) for any ke J.
Assume that ggjt = gs1h for some he H and s € J, then
«g(g;t ®11))(gx) = bk hls .

If gkg = h’gy for some h’ € H and t € J, then

- grigit @ Li)(ew) = £y (gkg) = &e bl .
Assume j=1t,ie, & hli=Nh1; (gg=Nhg;) . Since gigl=hlg,=h"g,
s=k and h="h’. Conversely if s =k, then j=t and h =h’. Hence we have
shown that ¢+ is a kG-homomorphism. Q.E.D.
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(18.12) Proposition. Let (G,ef) be an algebraic group over K and H be a closed

subgroup of G . Let V be a KH-module.
(i) Let € Vf'{ —+V  , then ¢, is a KH-homomorphism.
f — 1(1)
(ii) For any locally finite rational KG-module M and KH-homomorphism ¢ of
M into V, there exists a unique KG-homomorphism {: M- VS which

\

makes the following diagram commutative.

M—2 Vv
31 "; o /V
v}{

Proof. (i) e,(h#f) = f(h) = hi(1) = he (f) forany he H and fe V).

(ii) Let m € M, we define @(m) to be the map of G into V such that

p(m): G—V
g — (gm) .
Since KGm is finite dimensional and G — KGm is a morphism of varieties from
g§ — gm

Remark 17.2.ii and Proposition 18.2.v
p(m) : G — KGm & ¢(KGm)

g — gm
is a morphism of varieties. Hence @(m) € Map(G,V) . Clearly ®(m)(hg) = ¢(hgm) =
hy(gm) = hp(m)(g) for any h € H and g€ G . Therefore, p(m) € Vﬁ . Since

x#(p(m))(g) = P(m)(gx) = p(gxm) = P(xm)(g)
for any x,g€ G and me M, ¢ is a KG-homomorphism. Finally, let f: M - Vﬁ

be a KG-homomorphism such that ¢of = ¢ . Since {f(m)}(1) = ¢(m) for any

meM and  {f(m)}(g) = ge{f(m)}(1) = {gm)(1) = (gm) , we have f={.
Q.E.D.

Corollary to Proposition 18.12 (Frobenius Reciprocity). Let M be a locally finite
rational KG-module, then
@
Hom, (M,V) ¥ HomKG(l\'\/’I,VH)
p—— ¢

N . I
as K-spaces where ¢ and ¢ are as in (ii).
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(18.13) Proposition (Transitivity of Induction). Let. (G,e%) be an algebraic group

over K and HCL be closed subgroups of G . Let V be a KH-module. Assume
that the induced module Vi is locally finite, then

I\G G
(VH)L N VH .

Proof. Let 612Vﬁ——*v , 52:V;———»V . and eaz(Vﬁ)g——aVﬁ . Then
£ — £(1) £ — £(1) f — f(1)

there exists a KL-homomorphism 1 : Vf{ - Vf’{ and a KG-homomorphism % : V(}i -

(Vi‘[)g which make the following diagram commutative from Proposition 18.12.
v
5, X
3
G " N\ L
Vi \ » Vi
N
LN
(Vy)

Notice that (P(f))(g) :L — V for any fe Vi and geG. We write
1 — f(lg)

P(f) =1 . Nowlet pe (V;)g . We define 1 to be the map of G into V such that

(g) = (u(g))(1) forany ge G .

Since BiG— V25V

g — p(g) — (r(g))
and  p(hg) = (u(hg))(1) = (hxu(g))(1) = (u(g))(h) = h(u(g)(1)) = h(u(g)) for any
heH and ge G, we have ﬁeVi . Since

ig):L—V
1 — p(le)
and  p(lg) = (u(lg))(1) = (1#(u(g)))(1) = (u(g))(1) for any leL and geG, we
have fi: i . Hence 7 is surjective. Injectivity of ¥ is clear. Q.E.D.

(18.14) Lemma. Let (G,ef) be an algebraic group over K and M and N be
locally finite rational KG-modules, then M ® N becomes a locally finite rational

KG-module under the following operation.
GxM ®K N—M® K N

(g,%mi ®ni)——-*2i3gmi ® gn; .
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Proof. Clearly, M ® N is a' KG—module by the above operation. Let ¥ m; ® nj €
. 1
M ® N. Since
KG Y m; ® n; € ¥ KG(m; @ n;)
1 1
and KG(m; ® nj) is finite dimensional and rational for any i, KG Y mj®n; is
1

also finite dimensional and rational (see Proposition 18.2) Q.E.D.

(18.15) Proposition (Tensor Identity). Let (G, eﬁ‘a) be an algebraic group over K

and H be a closed subgroup of G . Let V be a KH-module and W be a locally
finite rational KG-module. Then

vée W£(V® w)é
H K = K /x

few — [p (few):g — i(g) ® gw]
as KG—-modules. KG or KH-module structure of Vi ®K W or V ®K W is as de-

fined in Proposition 18.2.iii.

Proof (see Cline, Parshall & Scott [1]). We first show that the map

$ : Map (G,V) e, W — Map (G,V @, W)
fow — [& (few) : g -1(g) @ gw]
is a KG-isomorphism. Let {vi|i €I} be a K-basis of V. Since V= Kv;
iel
(direct sum) and Map(G,Kv;) ¢ Map(G,V) ,

Map(G,V) = Map(G, @ Kv;) =@ Map(GKvj) .
i€l i€l

Hence we have
Map(G,V) , W = (¢ Map(G,Kvi)) & W =8 (mi @ lw)(Map(G,V) °, W),
i€l i€l
where 7; : Map(G,V) -» Map(G,Kv;) is the projection. Notice that
Map(G,Kvi) e W2 (73 @ 1,)(Map(G,V) e, W)
= Map(G,Kv;) ®, W
feew — few
as K—spaces.

Similarly since Vo, W =2 Kv;e W, we have

i€l
Map(G,V e, W) =e Map(G,Kvie, W).
i€l

K

Thus it is reasonable to check that
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(I)IMap(G,Kvi) & W + Map(G,Kvs) & W — Map(G,Kvi ® W)

fow — [&(fow):g- f(g) @ gw]
is a K-isomorphism. Let
¢ : Map(G,K) e, W — Map(G, W)
fow — [p(fow) :g - f(g)gw] .

Since Map(G,K) = o(G) and

o1 oj‘(’;(G) @ W — Map(G,W)
fow — [pi(few).g - f(g)w]
is a KG-isomorphism (see Proposition 18.9.iii) and the map
w2 : Map(G,W) — Map(G,W)
T— [@a(7) : g - g(8)]
is a K—isomorphism with inverse ¢@o1: 7— [g- g1 7(g)], @ = pop; is a K- iso-
morphism. Hence & is a K-isomorphism. Let few € Map(G,V) ®, W, then

B(g(few))(x)= (g+fegw)(x) = (g+i)(x) @ xgw = f(xg) ® xgw = (g I(fow))(x)
for any g, x € G. Thus & is a KG-isomorphism.

Next we show that @(Vﬁ o, W)= (Ve W)i . Assume that fe w e Vf{ ®, W, then

(few)(hg) = f(hg) ® hgw = hi(g) @ hgw = h¥(few)(g)
for any h e H and g€ G, which implies &(V; e W) c (Ve W);.

Let 7€ (Ve W)i and {wj | je J} bea K-basis of W, then we have

7(g) = 2 Ti(g) ® gw;j ,

j€J
where 7i(g) € V. (j € J) . Suppose that there exists

2 fj ® wj € Map (G,V) ®, W such that @(2 ew)=r,

Jj€eJ jel
then 7(g) = 2 7i(g) ® gwj = 2 fi(g) @ gw; -
j€eJ j€EJ
Therefore f;(g) = 7j(g) forany jeJ and g€ G.

Thus it is enough to prove that each fj € Vﬁ . Since

r(hg) = 2 7j(hg) @ hgwj = hr(g) = Z hri(g) @ hgw; ,
JEJ JEJ
we have fj(hg) = hfj(g) for any he H and g€ G . Hence fj € V}G{r and
’= qSlVG e W
K K
is a KG-isomorphism. Q.E.D.
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CHAPTER IV

COALGEBRAS AND LIE ALGEBRAS OF LINEAR ALGEBRAIC GROUPS

In this chapter we shall introduce the idea of Lie algebra ¢ of a given linear algebraic
group G relating it to the coalgebra of G and define the adjoint representation of
G into GL( f) . As references to coalgebras and the related topics and Lie algebras

we give:

J. A. Green, Locally finite representations. Journal of Algebra, Vol.41, 137-171 (1976)
and Humphreys [1].
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19. Coalgebras and Lie algebras of linear algebraic groups
In this section k denotes an arbitrary field.

(19.1) Definition. A triple (R,pe) , where R 1is a vector space over k, and
rR-RexR, eR-k are k-linear maps, is called a k—coalgebra if p and e

satisfy the following two conditions.

(i) (1eu)op = (uel)op and
(i) (e®l)op = 1 = (1®e)op , where 1 is the identity map on R .

R —£— ReyR R —£ —Re R
pl lwﬂ pl \ lem
RexR #TMH RexRexR ReR 5 R

(commutative diagrams)

(19.2) Example. Let (G,K[G]) be a linear algebraic group over K . Put R = K[G],
u=m* (the comorphism of the multiplication m:GxG-G ) and e = p* (the co-
morphism of p:G = G ), then the triple (R,u,e) is a K—coalgebra, because

x =1 ,
¢ ——6xG 3 (x,yz)
m] IIXm
0x6 L GxGxG 3 (x,¥,2)
(xYaz) "'—(X7Y)z)
G —— 6x63 (P(x) ,X)
and m{ \ (p,l)] are commutative.

GxG«—M 3 x

(xap(x)) _— X

Exercise 56. Verify the above example, Example 19.2.

(19.3) Proposition. Let (R,ue) be a k—coalgebra, then the dual space A = Homy(R,k)
of R becomes a k-algebra with the product of of elements a8 € A defined by
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af = (af) oy,:R—E—»R@kRﬂi—»k .
This multiplication is associative with the unity element e € A .

'Exercise 57. Prove Proposition 19.3.

(19.4) Definition. A vector space ¢ over a field k , with a bilinear bracket product

[,].{x):y{:fzy]
is said to be a Lie algebra over k if the following axioms are satisfied.
(i) [xx]=0 forall xe€ g
(i) [x, [y.2l] + [y, [zx]] + [z, [x,y]] = 0 (Jacobi identity) for all x,y,z € ¢.

From (i) we have
(i) [xy] =-yx] forall xye€ #. When the characteristic of k is not 2, (i) and
(i) are equivalent.

We review the following definitions:

(i) A k-linear map ¢ of a Lie algebra ¢ over k into another Lie algebra g’
over k is called a homomorphism if

o(lxy]) = [e(x), (y)] forall xy € ¢.

(i) A k-subspace J of a Lie algebra ¢ over k is called an ideal of ¢ if
[x,y] €7 forany x€ g and yeJ .

(ili) A k-subspace ¥ of a Lie algebra ¢ over k is called a Lie subalgebra of ¢ if

[x,y] € € whenever x,y € ¥.

(19.5) Example. Let A be an associative algebra over k . Define a bracket product

as follows

[,]:AxA— A ,
(a,b) » ab —ba

then with this bracket product A becomes a Lie algebra over k.

(19.6) Definition. Let « be a vector space over k with a bilinear product

ax a— &
(x,y) — xy

(e.g. « is an associative algebra or a Lie algebra over k ). A k-linear map D of «
into itself is said to be a derivation of < if it satisfies
D(xy) = xD(y) + D(x)y forall x,y € «.
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(19.7) Lemma. (i) Let < be a vector space over k with a bilinear product

2x @~ < andlet Endk ()= {f|{ is a k-linear endomorphism of & into itself}.
(x,¥) = xy
‘Then the set of derivations,

Derg (2) = {D € Endx (<) | D(xy) = xD(y) + D(x)y for all x,y € 2},
forms a Lie algebra over k with the bracket product

[,]:Derx (&) x Derx (2) — Derx (<) ,
(D1, D2) — Dy Dy — D3 Dy

ie., Derx (<) is a Lie subalgebra of Endy (<) (see Example 19.5).

(ii) Let ¢ bea Lie algebra over k. Let ad x be a map of ¢ into itself such that
ad x takes each y € g to [x,y] € ¢, where x € #- Then ad x is a derivation of ¢
for each x € 7 and the map

ad : g— Dery (f)

x — ad x

is a Lie algebra homomorphism.
Exercise 58. Prove the above lemma.
Now we define the Lie algebra of a given linear algebraic group.

(19.8) Definition. Let (G, K[G]) be a linear algebraic group over K . Let
#(G) = {D € Der, (K[G]) | DoLg = LgoD for any g€ G},

then .#(G) is a Lie subalgebra of Der, (K[G]) and we call #(G) the Lie algebra of G.

Now let X € Hom, (K[G], K) , where (G, K[G]) is a linear algebraic group over K

as usual, then we define the right convolution #X by X as a K-linear map of K[G]
into itself such that

19.9 (f*X)(g) =X (Lg(f)) forany fe K[G] and g€ G .
One can easily check that (19.9) is well-defined, because for any f € K[G] we have

1
f#*X= ZX(f’i)fi,
i=1

1
where m*(f) = 2 f; @ f’; € K[G] @ K[G] .
i=1
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(19.10) Lemma. Let (G, K[G]) be a linear algebraic group over K . Let 7€ T(G);
(c Hom, (K[G], K)) , then

#1€ Z(Q) .

Proof. Since {(fi f2) #*7} (8) = 7(Lg (f1f2)) = 7 (Lg (f1) Lg (f2)) =
Lg (f1) (1)-v(Lg (f2)) + ALg (f))-Lg (f2) (1) for any f;, f2 € K[G] and g€ G, where
7€ T(G); , we have

(£ £2) 7 =11 (f2 #9) + (f1 %9) fa,
which implies 7 € Der, (K[G]) for'any 7€ T(G);.

Now let ghe G, 7€ T(G); and f € K[G], then
{Ln o (+m} () (8) = {Ln (f *m)} (8) = (f #7) (hg) = 7 (Lng (1))

and {(#7) o Ln} (f) (g) = {(*7) (In (1))} (g) = (Ln (f) *7) (8)
= 7 (Lg (Ln (£))) = 7 (Lng (£) -
Thus we have #7 € £(G) forall 7€ T(G),. Q.E.D.

The next theorem gives us a reason why ¢ = T(G); can be considered as the Lie
algebra of G .

(19.11) Theorem. Let (G, K[G]) be a linear algebraic group over K . Put
# = T(G)1. Let © be a map of End, (K[G]) into Hom, (K[G], K) which takes each

D € End, (K[G]) to 7, € Hom, (X[G], K)
such that 1, () = {D(D)} (1) forall fe K[G] .

Then e is a well-defined K-linear map, and

(1) e (#X) =X for any X € Hom (K[G], K) ;
(2) e ((#X) (#Y)) = XY for any X,Y € Hom, (K[G], K) , where

XY = (XoY)om*
(see Example 19.2 and Proposition 19.3);
(3) let 7 be a K-linear map of Hom  (K[G], K) to End, (K[G]) such that
n: Hom, (K[G], K) — End, (K[G]) ,
X — #X
then 7(¢) ¢ Z(G), o(#(G)) g and

@l ye)° (0l ,)=1, amd
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(n | )°(e|°gl((;))=1j(@);
(4) from (2) and (3) we have
Z(G) = {#7| 76;} 7 and
© ([#71, #72]) = 7112~ 721 forany 7, 12 € Z
(5) from (4) ¢ is a Lie subalgebra of Hom  (K[G], K) , the bracket product of which
is
[,]: Hom, (K[G], K) x Hom, (K[G], K) — Hom, (K[G], K)
(71, 72) — 7172 - 72 M
(see Example 19.2 and Proposition 19.3), and e : #(G) ¥ ¢ is a Lie algebra iso-
morphism, i.e., a bijective Lie algebra homomorphism.

Proof. (1) Let X € Hom  (K[G], ) , then

{e(#X)} (f) = (f#X) (1) = X(f) for any fe€ K[G].
Thus e(#X) = X for any X € Hom  (K[G], K) .

(2) Let X,Y € Hom, (K[G], K) , then
{o((+X) (+Y))} (

(%) {ZY 096 @)=

for any f € K[G], where

f) = {(+X) (+¥)} (1) (1)

Y(£5) fla«x] (1) = 2, Y(£3) X(£)

1

m*(f) = Z f; o £; € K[G] @ K[G] .
i=1

Since

1
(XY) (f) = {(X ® Y)om*} (f) = (X @ Y) [ 2 fi @ f’i] = 2 X(f;) Y(f3) ,

we have proved (2).

(8) It is clear that 7 is a well-defined K-linear map and also p(¢) C £(G) (see
Lemma 19.10). Now let fy, f; € K[G], then

7, (fifs) = {D (fifa)} (1) = {fi D (f) + D (1) f2} (1)
= f; (1)-D (f2) (1) + D(f) (1)-£2 (1)
=1f1 (1) 7, (f2) + 7, (f1) f2 (1)
for any D € £(G) , which implies
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o(£(G)) ¢ 4.

From (1) we have
(GIJ(G))"("]lf):l
Conversely, let D € £(G) , then

{(noe) (D)} (B) (8) = {n (1)} (1) (8) = (£x7;) (g) = 7, (Lg (D)

=D (Lg (1)) (1) = Lg (D (f)) (1) = D (1) (g)
for all f e K[G] and g€ G . Hence

(nee) (D) =D, i.e., (7 If) o (1 e =1

P

(4) and (5) - straightforward. Q.E.D.

(19.12) Corollary. Let G, ¢ and #(G) be as in the theorem, then
dim  #(G) = dim; ¢ = dim G

(see Exercise 50 on p.171).

(19.13) Example. The Lie algebra of (G, K[G]) = (GL (n,K), K[fs;, 6§ | 1 < 1,j < n]).

We follow the same notation as in Example 14.2. We write ¢ for T (GL (n,K)). Let
¢ beamapof ¢ into &/(nK), the set of all nxn matrices over K , such that
v g — g/(nK) ,
y— (v (fij))
then ¢ is a well-defined Lie algebra isomorphism, where ¢/(n,K) is considered as a
Lie algebra with the bracket product as in Example 19.5.

Proof. It is easy to check that ¢ is a well-defined K-linear map. Since ~(Af) =
A1) = 0 = A(1) 16 + y(A) §1), «6) is determined by {fi; | 1 <i,j < n} for any

7€ g. Thus ¢ is injective. Since dim, ¢ = n?, ¢ is bijective.

Now let 7, 7 € £, then
v rEy) = {(re7) o m*} (fy)

= (7187) [ ]; fik ® fkj]
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= 2 fix) ¥ (Es) -
k=1

Hence o([1, v]) = @(vy — 77 = (v7 =717 ()
('7’)’ (fu)) — (77 (fu))

[2’711( fkj] [2 ’flk)'Y(ka]

k=1
= o(7) ¢(7) = o(7) e(7)

= [(7), ©(7)]
for any 71, 7 € g. Q.E.D.

The next proposition with Theorem 18.7 will show us that the Lie algebra of a given
linear algebraic group is essentially a Lie subalgebra of f/(n,K) (see Example 19.13).

(19.14) Proposition. Let ¢:G - H be a morphism of linear algebraic groups of G
into H over K.Let g =T(G); and & = T(H); be Lie algebras of G and H
respectively. Then

() @ : Hom, (K[G], K) — Hom, (K[H], K) is a K-algebra map, and
X —— Xoyp*

(i) dp:g — H# isa homomorphism of Lie algebras, where ¢* is the co-
7 — 7oyt

morphism of ¢ .

A
Proof. (i) It is clear that d¢ isa well-defined K-linear map. Let e be the co-

morphism of p:G — G , then we have
x — 1

eog* : K[H] £ K[G] =+ K-1 ( ¢ K[G])
f— fop—— (fop)(1)-1

Hence eoy* is the comorphism of p: H — H, because (1) = 1. Thus dtp (e) = (p’)*.

x — 1

Now let X, Y € Hom (K[G], K) , then

/7
45 (XY) = (XY) o ¢* = (XeY) o m* o ¢* ,
where m:GxG + G is the multiplication of G . On the other hand
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49 (%) 89 (V) = (Xop*) (Your)
= {(Xey*) @ (Yoy*)} o m*
= (X8Y) o (¢* ® ¢*) o m*,
where m”:HxH - H is the multiplication of H . Since the following diagram

(x, y) € GxG-24G
pxip 1«#
(o(x), (y)) € H<H—~H

is commutative, we have m* o ¢* = (¢* ® ¢*) o m’* | which implies
AN A A
dy (XY) = dp (X) do (Y)

for any X, Y € Hom (K[G], K) .

(ii) is clear from (i). Q.E.D.

(19.15) Proposition. Let G and H be linear algebraic groups over K . Let

¢:G » H be a morphism of linear algebraic groups such that ¢ is an isomorphism of
affine varieties of G onto (G) (see Theorem 15.4). Then

(i) de: &~ 7% is injective, where g and /¥ are Lie algebras of G and H re-
spectively.
(i) dp(g) ={7e T(H): | 7((p(G)) = 0} .

Proof. (i) Since ¢ is an isomorphism of affine varieties of G onto ¢(G),

o* : K[H] - K[G]

is surjective. Hence
de: g — H
¥ ot
is injective.

(ii) Since Ker ¢* = J(¢(G)) , we have
dp () € {7 € () | 7(I(AG)) = 0} .
Let X € T(H); such that X (Ker ¢*) = 0, then we can define a map
% ¢ K[G] — K[H]/Ker ¢* = K
e*(f) — f + Ker p* — X(f)
where f € K[H], which is well-defined and belongs to ¢. Since dg (7,) = 7 ° o* = X,

we have X € dp (¢) - Q.E.D.
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20. Adjoint representations of linear algebraic groups

Let G be a linear algebraic group over K . Let
I,:G— G

g — xgxl
be an inner automorphism of G defined by x € G . Then Iy is a morphism of linear
algebraic groups (see Lemma 14.6). Write Ad x for d(Ix):¢ - ¢, where ¢ is the
Lie algebra of G . Then Ad x € GL( f) for any x € G, and we call the group
homomorphism
Ad:G — GL(g)

x — Ad x

the adjoint representation of G .

(20.1) Example. (We follow the same notation as in Example 14.2 and 19.13). Let
G = GL(n,X) and &/(n,K) be the Lie algebra of G under the identification
T(G)1 ¢ #/(n,K)
7 — (r(£1j))
(see Example 19.13). Then Ad x(7) = x1x™ forany 7€ #/(nK) and x€ G .

Proof. Let x = (xij) € G and x! = (23;) € G . Then

(00" ) @) = 8 e = 2 (X xwvd) m

= 2 Xik Ykl Z1j = 2 xik 21j fi1 (¥) »
k,1 k,1

where y = (yij) € G . Hence

(* () = Do xiw o fut

k,1
and {Ad x(7)} (f53) = 7 o (Io)* (f3;)
= 7 [ 2 Xik Z1j fkl) = 2 xik (fia) 25
k,1 k,

for any v € T(G); . Thus we have shown that
{Ad x(7)} (i) = x(~(fy)) x°
forany x € G and 7€ T(G):. Q.E.D.
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Remark to Example 20.1. Following the same notation as in Example 19.13. Let
G = GL(n,K), ¢= T(GL(n,K)); and x € G . Then we have got the following com-

mutative diagram:
Ad x

e 7

12 14
f/(n,K) I f[ (n,K)

Lie algebra homomorphism: (mjj) — x(mjj)x"1

(20.2) Proposition. (i) Let (U,A) and (V,B) € £(K) and (u,v)€ UxV . Let

ty: U— UxV and 4 :V — UxV be two injective morphisms as in the proof of
x — (x,v) y — (u,y)

Proposition 4.8 and
Q: T(UxV)(u’v) 8 T(U)y + T(V)y

n— (nom™*, nomy*)
be also as in Proposition 4.8, where m;: UxV -+ U and m: UxV 2V are the pro-
jections. Then for any (71, 72) € T(U)y + T(V)y we have
w(ng o u* + m20 1*) = (01, n9)

and (10 o + m2 0 19*) (fog) = ni(f) g(v) + £(u) n2(g) ,
where f€ A and geB.

We often identify (71, 72) € T(U)u + T(V)y with 7y 0 ¢* + 730 13* € 'I‘(UxV)(u v

(i) Let G be a linear algebraic group over K with the operations m: GxG — G
(x, Y) Xy

and 7:G — G  and the Lie algebra g= T(G); . Then

x — x1

(dm) 3y (71 72) = 71+ 72 for any (71 12) € g+ 2
and (dr)1 (7) = —y forany 7€ g.

Proof. (i) (mou* + maoes*)(feg) = miou* (fog) + moua*(feg) = m (8(v)4) + m2 (£(u)-g)
= m(f) g(v) + f(u) na(g) -

(i) Let fe K[G] and assume that
m*(f) = 2, f;eg; € K[G] ® K[G] .
i

Then for any (71, 72) €# + ¢ we have
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{(dm), 1 (7 1)} (O = (3 1) (@*D) = (m, 79) Dt &)
- 2 ) (1) + D (1) g (see (1)

= 41 (Ri(f)) + (f#72)(1) (see the proof of Lemma 18.4 and (19.9))
= n(f) + 7o(f) .

Now let (1GJ) ‘be a morphism of G into GxG which takes x € G to (xx™),
then m o (1 G,T) is also a morphisni of G into G the differential of which at 1 isr
zero. Thus we have d(m o (1,,7))1= (dm)(l’l) 0d(1,7)1=0.Let 7€ g, then for
each fog € K[G] @ K[G]
d(1,,7)1 (7) (feg) = 1o (15,7)* (feg) = 1(1*(f) 7(g))
= 1.*(f) (1) 7(™(g)) + f1X(D) ™(e)(1) -

Since (7, (dr)1 (7)) (feg) = (1) g(1) + £(1) (dr)1 (7) (g) from (i), we have
d(14,m)1 (7) = (7 (A1 (7)) -

Hence for all 7€ ¢ we have
d(m o(1g,m)1 (1) = (dm), ;) © d(1g,7)1 (1)
= (dm); 3y (1 (A7) (M=7+@(n=0,
which implies (d7); (7) = —y for any 7€ ¢. Q.E.D.

(20.3) Lemma. (i) (see Exercise 11 on p.24). Let (U,A), (U’,A’), (V,B) and
(V',B") € £ (K) and £:U — U?, gV — V’ be morphisms, then fxg: UxV — U’xV’

u — u’ v — v? (u,v)= (ur,v?)

is also a morphism with the comorphism
(fxg)* = f*eg* : A’eB’ — A®B
a'®b' — f* (a')8g*(b?)
and the differential
d(fxg)(u’v) = (dfy, dgy) : T(U)y + T(V)y — T(U’)u, + T(V’)v,
(7,6 — (dfu(y), dgv(9))

(i) Let (U,A), (V,B) and (W,C)e 4(K) and &W-TU, 7W-V  be
morphisms, then

X: W— UxV
w — (& (w), 7(w))

is also a morphism (see Proposition 3.3) with the comorphism
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x*: AeB— C
a®b — {*(a) 7%(b)

and the differential
(dx)w : T(W)y — T(U)E(W) + T(V‘)n(w)"'
vy — ((d&)w(7), (dn)w(rh)

Proof. (ii) Let 7€ T(W)y , then
(dx)w(7) (a8b) = 7 0 x* (agb) = +(£*(a) 7¥(b))
for all a®b € AeB . Thus
(dx)w (7) (asb) = {€¥(a) (W)} {r(7*(b))} + {7(£*(2))} n*(b) (w)
= {(d&)w (7) (a)} b(n(w)) + a(&(w)) {(dn)w (M(B)} = ((d&)w (1), (d)w (7)) (ab)
for all a®b € AeB . Q.E.D.

(20.4) Proposition. We follow the same notation as in Example 20.1. Let
G = GL(n,K) and 4/(n,K) be the Lie algebra of G unter the identification

T(G)1 ¢ ¢/(n,K).
o )

— ((fi5)

Then

(i) LG — GL(g¢) is a morphism of affine varieties, where g= #(n,K) and

x — 1y
L g 7 The differential of 1 at 11is
7 — X7 ) .
lig— &(g), where 1:9— ¢
: 7% — %6

7 —ly

and p/(g) = End, ().

(i) ©nG-— GL(¢) is a morphism of affine varieties, where r1x: g— ¢ . The
x —iry 7 — 7x
differential of r at 1 is 1:g— o/(g), where 1:5— 4 .
» T — By

7Ty

(iii) Ad:G — GIL( f) is a morphism of linear algebraic groups whose differential at

x — Ad x
lis ad,i.e., d(Ad); =ad where
(ad X) (Y) = XY -YX forany X, Y € ¢

Proof. (i) It is clear that 1 is a well-defined map of G into GL(g) . Let Es; be
the element ¢ with 1in the (s,t) position and zeros elsewhere. Let x be an nxn
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matrix over K , then

the (i,j)th component of x Eg = { 0 if j# ¢

Xis if j =t.

Thus the matrix of lx, where x € G, with respect to the basis {Est} of 7 is as
follows.

The {(i,j), (s;t)}th component of the matrix of 1 = {g g j f

~18 -

ct+ ot

Hence the comorphism 1* of 1 is given by the following formula
* : K[GL( ¢)] - K[G]

% _fo i it
and P (£ ) = { fig if j=t,

which implies 1 is a morphism.

Further we have
0 if jFt
(@): (1) () = 7 (0 () = { 3y 127 forany ve g,

which implies (dl); () = i7
(i)  (Exercise).
(iii) Since
(1G,T) 1

Ad:G—"— Gx G -5 GL(g)x GL(g) = GL(y) ,

x — (5, x ) — (1,1 ) —1 o1

we have

d(Ad); = d(m o (Ixr) o (1, 7)1 = dm(1 1y d(lxr)(l,l) o d(1,, 7)1

7 7

Hence from (i), (ii), Proposition 20.2 and Lemma 20.3 we have

d(Ad)i1 (7)) = dm(l 1) ° (lxr)(l 1) )

75
= dm (l I )
1
A (Z ,,?) Ty
=1 -I, forany 7€ ¢#.

-

Thus {d(Ad); ()} (v") = 77 =7y forany 7, 7 € g,ie,
d(Ad); (7) = ad v forany 7€ .

Q.E.D.

Exercise 59. Prove Proposition 20.4.ii.
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(20.5) Lemma. Let H be a closed subgroup of a linear algebraic group G over K
and ¢ be a rational representation of G into GL(V), where V is a finite dimen-
‘sional vector space over K. Let W be a ¢(H)-invariant subspace of V, i,
() (W) ¢ W forall he H. Then

(i) @o:H- GL(W), defined by @o(h) = ¢(h) |, (h € H), is a rational represen-

tation of H over K.

iil) Let & and be the Lie algebras of H and G respectively, then we can
7
embed # into ¢ by div where ¢H C G is the inclusion map of H into G,

and
dp(7) (W) ¢ W

and de(7) |y, = deo(7)

for any 7€ o, where dp:g - @/(V) and dpo: ¥ -4/(W) be the differentials
of z and # into the Lie algebras of linear transformations of V and W,
ie, #(V)=End (V) and #(W) = End, (W) respectively.

Proof. Let {vi,..., Vs, Vss1p.-,Vt} be a K-basis of V such that {vy,...,vs} forms a
K-basis of W . We identify GL(V) with GL(t,K) and GL(W) with GL(s5,K)
with respect to these basis. Let (yp(h)ij) be a txt matrix such that

(,0:8 — GL(V)

I;l[ — [¢(h)vj — ilel p(h)sj vi]

and (yo (h)i;) be an sxs matrix such that
@o : H— GL(W) )

h— [o(h)|vi= B po(h)ij vi] ,
then we have
B/ e : N

. *

) =

*

(i) It is clear that ¢ is a- group homomorphism. Since ¢ is a rational Tepresen-

tation, all the maps
pij:G — K
g — ¢(8)ij

t
where w(g):vi — X vlg)i Vi
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belong to K[G] (1 <i,j<t) from Proposition 18.2. Hence we have (¢);j € K[H] for
any 1 <1i,j<s, which shows that ¢, is a rational representation.

(ii) Since the inclusion map #H € G has the surjective comorphism ¢*:K[G] - K[H],
di'c% ¢
7 — {ﬂ(‘r):f = (] )]
is an injective Lie algebra homomorphism, where fe€ K[G]. Let <€ o, then we
have

(a0 @) @) = (7 (voi* ()

PR
a0y |
_ : — ,

because  (pou)* (fij) = wo* (P35) for 1<i,j<s, where K[GL(V)] = K][fs, ¢ |
1<i,j<t] and K[GL(W)] = K[, & | 1<1,j<s] according to the notation in
Example 14.2. Hence

dg (dd7)) (W) c W

and de (d(7)) |y = dpo(7)
for any y€ #%. Q.E.D.

(20.6) Theorem. Let G be a linear algebrai-c group over K with the Lie algebra
. Let Adx =d(Iy) for x€ G. Then

(i) Ad:G— GI( #) is a morphism of linear algebraic groups, and

x — Ad x

(ii)) d(Ad); = ad :{ : {{1({) va [Xy])’ where X,Y € ¢ and f/(da) = End (f)

Proof. (i) Let ¢ be an embedding of G into GL(n,K) for some n asin Theorem
18.7. Since ¢:G ¥ ¢(G) 1is an isomorphism of affine varieties, ¢*:K[GL(n,K)] - K[G]

is surjective and dg: ¢ - f/ (n,K) is injective.
7 = y09*

From Proposition 20.4 we have
d(Ad®); = ad®",
where Ad®" : GL(n,K) — GL( ¢/(n,K)) .

x — Ad, ST
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In case of G = GL(n,K) we write Ad®Y and ad®* for Ad and ad , respectively.

Now 1 a1, :GL(n,K) — GL T op)=d(I, )odp=
ow let g € G an o(e) GL(n, })(: E(S;’;Kza(g)-i’ then dA(Iso(g)o_(p) d(Iso(g)) ody
d(I , ) odp where 1 . : ¢(G) — ¢(G) . Thus for each g € G we have
v(e) w(e) x— p(g)x plg)

) o delz) = d(1, ) (del ) € dulz)

Hence d ¢) isan Ad®Y(p(G))~invariant space of #/(n,K) . From Lemma 20.5
Ad : ¢(G) — GL(dyp( #))

AdL | (dp(g)) = 4T

v(g) o(g)

w(g) — A%t v(g) Idgo(f)

is a morphism of linear algebraic groups, because

Ad ple) gy 5) = dlyq) = Adygyy

#)

(i) Since d(Ad*Y) (de(7)) | ) = d(Ad) (de(7)) for each 7€ ¢ from Lemma

20.5, we have
d(Ad) (dp(n) = ad™ (dp(1) g,y = 2d(dp(7)

for any 7€ 7 Q.E.D.

(20.7) Proposition. Let (G,K[G]) be a linear algebraic group over K with Lie
algebra ¢, and V be a finite dimensional left KG-submodule of K[G] (see Propo-
sition 18.5). Let ¢ be the rational representation of .G into GL(V) afforded by V
and its K-basis {vy, va,...,vn} , i.€.,

_ ( Qoll(g)7 (P12(g)’”'7 (pln(g) ]
021(8)5- - vv - vneeey P2n(g)
g#(ViyeeyVn) = (V1ye0yVn) : : ,
L oni(8)s- - eveeeeery @nn(g) |

where ¢35 € K[G] for any 1<1i,j<n . Then
dg(7) = #v forany 7€ g,
where (v#7) (g) = 1(Lg(v)) (veV and ge G) (see (19.9)).

Proof. Let m: GxG — G , then from the Remark to Proposition 18.5 we have

(x,y) Xy
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forany 1<i < n. Hence we have
n
ity = 2 i) v -
i=1

Since de(y) = 700* : fij = 1(eps;)
for any 1<1i,j<n where K[GL(V)] = KI[fs;, 6| 1<1i,j<n] asin Example 14.2, we
have

do(y) = #v for any 7€ 7
Q.E.D.

(20.8) Proposition. Let (Gj, K[Gi]) (i =1,2) be linear algebraic groups over K
with Lie algebras Fi- Let

¢i : Gy — GL(V;) (i =1,2)
be finite dimensional rational representations of Gj . Then

(i)  The Lie algebra of GixGz is g1+ g2 where
g1t gr={m 1) | m€ g1, i=12}
and [(7, 72), (s )] = ([y 1], [y 227])

(ii) ©1 + P2 : G1><G2 — GL(V1 + V2) is a rational
(g1,82 — [p1+p2 (g1,82):vi+ve = pi(g)vitea(ga)vy)

representation of Gy x Gy and
d(ps + @2) (71 72) (vi + va) = (dey) (71) vi + (d2) (72) va ,
where vie Vi (i=1,2).

(iii) @1 ® g GxGy —— GL(V; @ V,) is a rational representation of Gy x G and
(81,82 — ¢1(81)%92(g2)

d(p®p2) (11, 72) (vi@ va) = {(dep1) (71) vi} ® va + vi e {(dp2) (72) v2} -

Proof. (i) Let mi:Gy;x Ga— Gi be the projection of Gyx Gy onto Gj
(i = 1,2) , then we have the K-isomorphism ¢ of 'I‘(Gleg)(1 1) onto g4 -i-fz

which takes each 7y € T(GxGy) to (yom*, 7yomy*) (see Proposition 20.2). Since

(1,1)
o(lv, YD) = n ¥1o 7 [1, ¥] 0 m¥)
= ([yome*, Yor*], [yoms*, Yoms*])
= [(ror*, yoms*), (yori*, Yoms¥)]
= [p(7), (7))
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for any 1,7 € T(G1xG2)(1’1) , ¢ is a Lie algebra isomorphism.

(ii) Since @1+ @2: Gyx Gy — GL(Vy + V) is the direct sum of rational re-
presentations
p;i o m: Gix Gy— Gy — GL(VI) (1 = 172) )
w1 + p; is also a rational representation of Gj x G . Since
o1+ p2: Gy x Gy — GL(Vy) x GL(V3) ¢ GL(Vy + V3)
(g1,82) — (p1(81), p2(g2))
we have

de
d(ps + ¢2) 71— (V) + #(Va)C V14 V).
{7 72) — ((de 1) (71), (dy2) (72))
From Lemma 20.5 we have d(¢1 + ¢2) (71, 72) (v1 + v2) = (de1) (7)vy + (d@2)(72)ve

(iii) Since @1 ® wa: Gy x Gy — GL(V; ® V,) is the tensor product of rational re-
presentations
piom: Gy x Gy o Gy o GL(Vy) (=12),
1 ® 7 is a rational representation of Gy x Gy . Notice that
d(p1 @ ¢2) (711, 72) = d(1 @ 92) (714,0) + d(ip1 ® 2) (0, 72)

and

d(p1® @2) (71,0) = d(1 @ @2) o dus (71) ,
where 4 : Gy — GxG2 . Hence it is enough to show that
g — (g,1)
d((1 @ @2) 0 u1) (m) (Vi@ v2) = {doi (1) vi} @ va.
Since

(p1® @) 0 11 : Gy — GL(Vy @ Vy)
g— [p1 (g) © Ly, :V1® V22 gy @ vy

m
where 1V2 is the identity map of Vo, V8 Vy = _21 Vi@ Kw; is a direct sum of
J:

Gr-subspaces Vi ® Kw; where {wi, wa,...,wn} is a K-basis of V3. Since the map

Vie Kw; ¥ Vy is a KGy-isomorphism for any 1 < j< m , we have
vOwij — v

(1@ 3) 0 13 : Gy — GL(Vy) x...x GL(V,) CGL[2V1®KWJ~),
g — (§01(g)1 fol(g)f e )¢l(g)) j=

Hence d(((pl ® (pg) o 1,1) (’)/) (V1 ® Vz) = d(p1(7) vVi®vs. . Q.E.D.
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CHAPTER V

HOMOGENEQUS SPACES

We construct the quotient G/H where (H,K[H]) is a closed subgroup of a linear
algebraic group (G,K[G]) . We first explain separable morphisms and Zariski’s Main
Theorem and finally show the conjugacy of Borel subgroups.

Let (G, <) be an algebraic group over K and (H, %) be a closed subgroup of G.

Let G/H be the set of all left cosets H in G . Let

vG — G/H
g — gH

be the natural map. We define a topology on G/H as follows: a subset U of G/H
is open if and only if »! (U) is openin G .

It is clear that this topology is well-defined and v is an open map. Now let U be an
open subset of G/H . We define ¢/(U) to be the set of all maps f of U into K
such that

sy € % (7 (0),
ie., #(U) = {£U + K | tor |y € % (7 (O}

fov |,

then o/ is a sheaf of funcﬁons over K and v is a morphism of ringed spaces
(G,¢~,) onto (G/H, ).
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21. Separable morphisms

Let (X‘,o/“)’() be a prevariety over K and x be any fixed point of X . Let 4 be

the unique maximal ideal of the local ring o% (see Proposition 13.3). In §13 we de-
fined the tangent space T(X)x of X at x to be
Hom (Mx]/(A£x)?, K)
and have shown that
T(U)x & T(X)x
as K-linear spaces for any affine open set U of X containing x .

Now let ¢:X ~Y be a morphism of prevarieties (X,e%) into (Y,of) over K. Let

y = ¢(x) , then there exist affine open sets U (C X) and V (C Y) such that
p(U)cV, Usx and Vay.

Let U — V | then ¢, is a morphism of affine varieties and we have
u — ¢(u)

(po*) ™ (V%)) = 7 (¥) -
Thus we have got a K-algebra homomorphism % of &’y into ¢’x such that
: K
(2 K[V]jv(y) - [U]JU(X) )
a/s —— po*(a)/po*(s)
where a,5 € K[V] and s ¢ J(y) .
Let #y={afs|ae J(y) and s¢ J(y)} and
Hx={afs | ae Jy(x) and s¢ (%)}
be the maximal ideals of ¢’y and o’x respectively, then we have
Y Mx) = Ky .
Since Y(My) C Hx and P(AyD) C Hx®, we can define a K-linear map P of
My] Ky into M x| M x® as follows.
Ve My My — Mx| K x*
m+ Hy:— Pm) + A
Thus we can define a K-linear map dgy of T(X)x into T(Y)y induced by ¥ as

follows.
dgx : Hom (A x/ H*, K) — Hom, (Ay] #4% K)

~N
y— 709
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(2L.1) Definition. Let. (X, ;) and (Y, o) be prevarieties over K and ¢:X-Y

be a morphism of prevarieties, then we call the map
dpx : T(X)x — T(Y)y
7 — 70
the differential of © at x where x € X and % is as before.

(21.2) Remark. Let ¢:X-Y be a morphism of prevarieties (X, o) into (Y, %)

over K.Let x€ X and y= ¢(x) and U and V be affine open sets of X and
Y respectively such that U3 x, V3y and ¢(U)cV.Let p2U—V . Then

u — p(u)

we have the following commutative diagram.

T(U)x Ql Hom, (J,(x)/7 ;(x)?, X) §2 Hom, (A x/# x>, K) =T(X)x
7 — [p1(n):a +7,(x)? = 7(a)] = [paopi(7):a/1 + A x* - 9(a)]
l (dpo)x l d px
paopi(1) o P:b /1 +M% 5 y(bopo)]
1)y S Homg (7,(0)/7, ()% K) 8 Hon (A /Ay, K) = T(V)y
79p0*=[p 1" (1090%) tb+ 7 (x) 27 (bopo) ] [p2’0p1® (709 0 *) 2 b /1+ Ay 47 (boy,) ]

Top0* [
,02
y

From the above diagram we have the following proposition.

(21.3) Proposition. Let (X,¢%), (Y,¢%) and (Z, o) be prevarieties cver K and
©:X =Y and ¥:Y - Z be morphisms. then we have the following commutative diagram:

do

—Px L T(Y) o(x)

d(ww\ /bs«’(X)

T gop(x)
forany xe X .

Proof. See Proposition 4.7. Q.E.D.
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(21.4) Example. Let V be an n+1 — dimensional vector space over K and

{vo, V1,..., ¥n} be a K-basis of V. Let X; be a map of V into K which takes
covo+cyvi+..+Chvy to ¢, for 0<i<n,

then the pair (V, K[Xy, Xi,..., Xn]) is an affine variety over K (see Example 1.2).

Now let 4; be a map of K[V] into K such that
6t
%i (f) = 5 (vo) for any feK[V],
then the set {70, V1,-..,n} forms a K-basis of T(V)VO and 5(Xj) =.6; for any

0<i,j<n (see Example 4.5). Let P(V) be the projective space defined by V (see
§11) and P;(V) = {K(covo +...+ cnva) | ¢j # 0} .

Let 7:V—={0}=P(V)
be a map of V - {0} into P(V) which takes each v eV —{0} to KveP(V).
Then 7 is a morphism of the open subvariety V — {0} of V onto P(V), because

foreach 0<j<n

J

is a morphism of affine varieties where Vx is the principal open subset of V

]
defined by Xj € K[V] . Further we have

Ker (d7). = K7, .

Vo

Proof of the last statement: Ker (d7) = Ko .

Vo

Since on is an affine open subset of V and 7r(VX0) CPy(V),

(dn),, = (dm), : T(V, ), — T(Pu(V))y,,

where mo =7 [ : on 5 Po(V) . Let ¢: on C V be the inclusion map, then
Xo
(de),

 T(Vy )y, — T(V),,

Vo
¥ — o *

0

is bijective where (* is the comorphism of ¢, i.e.,
o K[V] ¢ K[V], .
o Yo

a— —

1
We shall write <3 for the element in T(on)vo such that 7; = 7y o ©* where

0<i<n. Thus

T(V

Xo)vo =Ky © Kyy ©..8 K’ .
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Since Ty on — P (V)
v —— Kv
and T K H-ol- % %] — K [Xo,. Xl
f—-—f om
we have 7rg* (%] =§—3 forany 1<i<n.

Thus
(dm))vO (Co Y’ + ¢1 97 +...4+ Cn 'yn’) = (Co Y’ + ¢4 Y1 +...4 Cn ’yn’) o m* =

if and only if
(co 70’ + c171 +... € W) G%] =c¢;=0 forany 1<i<n.

Hence Ker (dvr)Vo = Ko . Q.E.D.

(21.5) Definition. Let (X,¢4) and (Y,ef) be irreducible varieties over K. We

call a dominant morphism ¢:X - Y sgeparable if K(X) is separable over K(Y)
(see Definition 6.17).

(21.6) Remark. Let ¢: X - Y be a dominant morphism of irreducible varieties X
into Y.

(i) Since K(X) is finitely generated over K(Y), ¢ is spearable if and only if
K(X) is separably generated over K(Y) (see Corollary 6.19).

(i) Ifdim X = dim Y, then [K(X):K(Y)] < o. If ¢ is separable and dim X = dim Y,
then K(X) is separably algebraic over K(Y) (see Exercise 22 on p.49).

(21.7) Definition. Let E 2 L 3 k be a sequence of fields. We define a k-linear deri-
vation D of L into E to be a k-linear map of L into E such that
D(xy) = xD(y) + yD(x) for any x,y € L
(c.f. Proposition 6.21). We write Dery (L,E) for the set of all k-linear derivations of
L into E. Dery (L,E) becomes a vector space over E by the following operations
(D; + Dy) (x) = Dy(x) + Da(x) (D4, Dy € Derg (L,E) and x € L)
(aD) (x) = aD (x) (D € Dery (LLE), a€E and x€L).
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(21.8) Lemma. Let X be an irreducible variety over K , then for any extension
field E of K(X), we have
dim X = dim, Der, (K(X), E) .

Proof. Since K is perfect, K(X) is separable over K (see.Corollary 6.20) Since
K(X) is finitely generated over K, K(X) is separably generated over K (see
Corollary 6.19). Hence there exists a transcendence base {ti, ta,...,tr} of K(X) over
K such that K(X) is separably algebraic over K(tj, ta,..., tr) .

E
U
K(X)-2isE
U di
K(ty, . . . ,tc)

Let d; be a map of K(ty,...,tr) into E such that
d'( tl s tr ]= 6 ( tl K tr ]
1 tl,...,tr B—t—i tl,o--,tr !
where g(ty,...,tr), f(t1,...,tr) € K[tg,...,ts] and £(ty,...,tr) # 0, then dj is a K-linear
derivation of K(tj,...,tr) into E and di(tj;) = &; for any 1 <i,j<r . From Propo-

sition 6.21 we can extend d;i to a derivation D;j of K(X) into E . It is clear that
{Di | 1 <i<r} are linearly independent over E .

Now let D be any fixed element of Der  (K(X), E). Let e;=D(t;) and

Dy=D - ,i’:l e; Di, then Do € Der, (K(X), E) and Dy (K(ty.,tr) = 0. Since
i=

K(X) is separably algebraic and finitely generated over K(t1,.eeotr),
K(X) = {K(ty...,tr)}[¢] for some a€ K(X). Le¢ F(T) be a monic minimal
polynomial of « over K(ty,...,tr), then we have

Do(F(a)) = {Do(a)} F’(e) = 0,
where F’(T) is the derivative of F(T). Since o is separably algebraic over
K(t1,t2,...,tr) , we have Dg(a) = 0 . Thus ’

n

Dy=20,i.e, D=281Di.

i=1

Hence dim, Der, (K(X), E) =1 =dim X . Q.E.D.

(21.9) Theorem. Let (X, ) and (Y,o) be irreducible varieties over K and

v:X Y be a dominant morphism. Then there exists a simple point x € X such
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that (x) is also simple in Y . For such a pair of simple points x and go(jc) if
(d‘P)x : T(X)x - T(Y)‘o(x)

is surjective, then ¢ is separable.

Proof (see Humphreys [2, Theorem 5.5]). Since the set of all simple points of a given
irreducible variety forms a non-empty open set from Theorem 7.18, there exists a pair
of simple points x € X and ¢(x) € Y from the assumption that ¢ is dominant.
Similarly if x € X and ¢(x) € Y are simple, there exist smooth affine open sub-
varieties U and V in X and Y respectively such that x € U, ¢(x) € V and
©(U) ¢ V. Since the closure of ¢(U) in V is the intersection of the closure of ¢(U)
in Y with V,
ply: U=V

is also dominant. Thus it is enough to prove the theorem in case X and Y are
affine and smooth.

Let ¢* : K[Y] = K[X] be the comorphism of ¢, then ¢* is injective (see Lemma
8.3). Hence we can consider K(Y) as a subfield of K(X) by ¢*. We shall assume
that the characteristic of K 1is a positive prime, say p. Let L be a subfield of
K(X) containing K and
D:L - K(X)
be a derivation, i.e.,
D(x+y) = D(x) + D(y) and D(xy) = xD(y) + yD(x)
for any x,y € L . Since KP = K and
D(aP) = aP-D(1) + pD(a)aPt =0
for any a € K, D is always K-linear.

Let n =dim X and d = dim Y. Let § be the restriction map of Der, (K(X), K(X))
into Der, (K(Y), K(X)) , ie,
§ : Der, (K(X), K(X)) — Der, (K(Y), K(X)) .
D= Plx(y)
From Proposition 6.23 K(X) is separable over K(Y) if § is surjective.
K(X) 2~ K(X)

Vo)
K(Y)
Since §is K(X)-linear and dimK(X) Der, (K(X),K(X)) =n and dimK(X)DerK (K(Y),

K(X)) =d from Lemma 21.8, it is enough to show that dimK(X) Ker § = n—d for
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the surjectivity of 6. Since dim Ker § > n—d and Ker § = Der

K(X) K(Y) (K(X)7 K(X))a
we shall show that any n-d+1 K(Y)-linear derivations {Dyx} of K(X) into itself
are linearly dependend over K(X) .

Now let ’x be the local ring of x in K(X) . Let a,s € K[X] and s # 0. Since
Dy (%) = Di(a) = D(s)-§ + sDx (3) ,
we have s® Dy(2) = Dy(a)s — aDy(s) , which implies

Dy(2) = Dy(a)s ;23Dk(§) .

Since K[X] is finitely generated as K-algebra, multiplying non—zero element of K[X]
to Dx we can assume that
Dy (K[X]) ¢ K[X] .
Thus we can assume that
Dx(efx) C ¢x for any 1<k <n-d+1.

From the definition of derivation, we have ‘

Dy(A<") C Mx™! forany 122,
where £y is the maximal ideal of <’y . Since

Di( A" +2z)C K+ Di(z) (z € %),

Dy is continuous on ¢fx by the 4 x—adic topology (see Definition 6.31). Let

V: My My — M x] K £, where y = p(x)
mt A y2 — P (m) + A 2

and Y: Sy — Fx (2,8 € K[Y] and s ¢ T¥)) 5
a/s — p*(a)/v*(s)

then % is injective, because
(d(p)x . HOIIIK (-//{x/‘/;{x2, K) —_— HomK (c/[y/n//{yz, K)

7— 70
1s surjective.

Now let fj,...f; € Ay be a minimal set of generators of o/y—module £y, then
from Lemma 7.15 the set {f; + A y%..., fy + A ?} forms a K-basis for Ay/ A 2.
Since y is simple, we have t = d. Since P is injective, we can extend {y(f;) + A x2...,
¥(fa) + #£x*} to a K-basis  {9Y(f) + A, ¥(fa) + Lx2, fau+ K.,
fo + A<} of Mx] M. We shall identify f; with ¢(f;) (1<i<d).Let R be
a K—subalgebra of ofx generated by {fj,...,fu} . By induction on 1> 1 we can show
that for any 1 we have
&y =R + Jlxl .
Hence R is dense in the  +—adic toooloev on ¢’x.



— 226 —

Since dimK(X) Der, (K(fasgye-, fn), K(X)) ¢ n—d from Lemma 21.8, we have

n—d+1
[ > D) (Klfarifal) = 0,
k=1
where  K[fq:y,...,fu] 1is the K-subalgebra of ofx generated by {fg.1,...,fa} and
K(fa+1,-.,fn) is the quotient field of K[fq.y,...,fn] and {gi} ¢ K(X) and {gx} # {0} .
We can assume that {gx} C ¢/x . Since Dy,s are K(Y)-linear, we have
(B gx D) (R) =0.

Since R 1is dense in o’x and o’x is Hausdorff, we have

(2 gx Dx) (R) = (2 gx Dx) (¢'x) € {0} = {0},
ie., (ZgkDk) (efx) = 0. Hence Y g Dx =0 on K(X) and {Dy} are linearly de-
pendent over K(X) . Q.E.D.

Exercise 60. Let {fj,...,fn} be as in the proof of Theorem 21.9. Show that {fj,...,fx}
are algebraically independent over K .
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22. Zariski’s Main Theorem

Zariski’s Main Theorem. Let (X, o) and (Y, o) be irreducible varieties over K .

Assume that Y is smooth. Let ¢:X + Y be a surjective morphism of X onto Y
such that the comorphism of ¢ induces an isomorphism of K(Y) onto K(X) (see
p.143) and |¢(y)| <o forany y € Y, then ¢ is an isomorphism of varieties.

For the proof of this theorem we need the following propositions.

(22.1) Definition. An element a of a commutative ring R 1is said to be irreducible

if a is not a unit and is not a product of any two non—units of R . We call an inte-
gral domain R is a unique factorization domain if

(i) every non—unit of R is a product of finite irreducible elements, and
(ii) if the factorization in (i) is unique up to order and unit elements.

(22.2) Lemma. Let R be a Noetherian integral domain, then R satisfies the con-
dition (i) in Definition 22.1.

Proof. Let a # 0 be a non—unit element of R . Assume that a = a;a; for some
non—unit elements ajy, a; € R . Since Ra g Ra; and R satisfies the ascending chain

condition (see p.25), a has an irreducible divisor. Thus we have a sequence {by} of
elements in R such that
bo=a and bp-y= by pn,
where pp is irreducible. Since
Rby ¢ Rby € Rbs C...Cc Rby = Rbys =...
for some n , we have
a =P pPz2.. Pnbn
a product of irreducible elements. Q.E.D.

(22.3) Proposition. = A Noetherian integral domain R is a unique factorization
domain if and only if every prime ideal , of height 1in R is principal.
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Proof (see Nagata [1, Theorem 13.1]). Assume that R is a unique factorization
domain. Let 4 be a prime ideal of height 1, that is, , contains no prime ideals
except {0} and itself. Let a be an irreducible element of R contained in . Since
R is a unique factorization domain, Ra is a prime ideal. Hence Ra = 4.

Conversely assume that every prime ideal of height 1 is principal. Let a;...ap = by...by
be factorizations of an element ¢ € R as products of irreducible elements {a;} and
{b;} (see Lemma 22.2). We show the uniqueness by induction on n. When n =1,
¢ is irreducible and the assertion holds. From Lemma 7.14 and the assumption an
irreducible element a in R generates a prime ideal Ra , because any prime ideal of
R which is minimal among prime ideals of R containing Ra is principal. Since
a1...an € Rby and Rb; is prime,
a; € Rby for some i (1 <i< m).We may assume that
a; € Rby,ie., a; = ub; for some unit ue R .

Thus we have uas...ap = bs...by . Hence by induction the uniqueness holds.

Q.E.D.

Let (X, @9}"{) be an irreducible variety over K and x be a simple point of X. Let ¢’y be

the local ring at x with unique maximal ideal . Let r = dim X, then any minimal

set of generators of ¢/yx-module £ x consists of r—elements from Lemma 7.15. Hence
the height of A x =T

from Proposition 7.10 and Theorem 7.17.

From Proposition 22.3 we have the following theorem. For the proof of this theorem
see Nagata [1, Theorem 28.7].

(22.4) Theorem. Let R be a Noetherian local ring with unique maximal ideal
and 1 be the height of . Assume that R is an integral domain and any minimal
set of generators of R-module £ consists of r—element s. Then R is a unique

factorization domain.
Now we shall prove the Zariski’s Main Theorem.

Proof of the Zariski’s Main Theorem. Let y be any fixed point of Y and V be an

affine open neighbourhood of y in Y. Let U C ¢(V) be an affine open subset of

Y such that |
Unel(y)#0.
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Let K[V] = &£(V) and K[U] = &(U), then we have an embedding
¢*:K[V] ¢ K[U]
a —aoyp
and anh isomorphism p*K(V) — K(U)
a/b— 9p*(a)/¢*(b)
(see p.143). Let {fyfy,...,fr} be a set of generators of K[U] over ¢*(K[V]), ie,

K[U] = *(K[V]) [fl)"-7fl‘] .

"Assume that for any fe K[U] there exists g e K[V] such that g(y) #0 and
fe p*(K[V]g) (for the definition of K[V]; see Lemma 2.7)."

Let gi€ K[V] such that gi(y)#0 and fj€ go*(K[V]g.) where 1<i<r. Let
1

g = g1 82...8r , then we have f; € ¢*(K[V]g) and
K[U]go*(g) = g*(K[V]g) [f1,....fr]
=g*(K[Vlg) -
Let V' be the principal open set in V defined by g, i.e,,
V' = Vg,
then go:Uw*(g) -V’ is an isomorphism of varieties from Lemma 2.4 and there exists a

morphism
vV — U
such that o) = 1,,,le, potf(y’) =y’ forall y’ € V’. Since p(¢(V’)) =V,
P (V) 3 Y(V') .
Thus we have the following morphisms between ¢™(V’) and V’:
et (V) — V? and ¢V’ — o1 (V).

Since @ o (o) = (pop) o p = on ¢! (V') and ¢ is injective on a dense open
subset of X from Theorem 13.14, o ¢ = lgo'i(V’) on a dense open subset of

¢(V’) . From Remark 10.10 we have 1o ¢ = 1¢'1(V’) on (V') . Hence for any

y € Y there exists an affine open neighbourhood V’ of y in Y such that ¢ is an
isomorphism of varieties on ¢ (V’) .

Thus it is enough to show that for any f € K[U] there exists g € K[V] such that
gly) # 0 and fe ¢*(K[V]g) .

Let fe K[U], then = g-((%)l for some a,b € K[V] (b #0). Since ¢y is a unique

factorization domain from Theorem 22.4, we may assume that a and b are rela-
tively prime in ¢’y . We have to show that
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b(y) # 0
(then take g = b). Therefore we assume that b(y) = 0, and lead to a contradiction.
Let € &y be an irreducible factor of b such that b = b’ . Let W be an affine

open subset of Y such that
yeEWCV and f,b € o (W).

Let E be an irreducible component of
{xe et (W) ]| ¢*B) (x) = 0}

such that E n ¢™(y) # 0. Since ¢ is surjective, E is non-empty and dim E = dim X-1
(see Exercise 14 on p.32 and Theorem 7.8). Since

p*(a) = £-¢%(b) = £-0*(b’)-0*(0) ,
we have WE)c{we W | a(w)=0 and f(w) = 0}.
Let Z be an irreducible component of {w e W | a(w) = f(w) = 0} containing
¢(E) . Then |, is a morphism of E into Z .

Let £= fo4 n K[W], then 4 is a prime ideal in K[W] and a ¢ ,£. We shall show that
JK[W] (Z) > .

Let ¢ be a prime ideal of K[W] which is contained in ‘7K[W] (Z) and is minimal

among prime ideals containing # K[W] (see Lemma 7.13). Let S = K[W] _JK[W] (y)

then we have S S K[W] c S &. Since
BE[W] ¢ s= (5 AKIW) 0 K[W] ¢ 5o K[W] = 2,
we have /= g C JK[W] (Z) .

Thus we have got a strictly descending sequence of prime ideals
Txpwy (2) 3 £ 310} -
Hence we have a strictly increasing sequence of closed irreducible sets
Z¢ 7 (A EW,

which implies dmZ < dm Y -2.
From Corollary 13.8 we have

dim (<,0|E)'1 (w) > 1 for any w € ¢(E),
contradicting to the fact that |p(w)] < o forany we Y. Q.E.D.
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23. Quotient spaces of linear algebraic groups

We shall construct the quotient space G/H in case (G, K[G]) is a linear algebraic
group over K and (H, K[H]) is its closed subgroup.

(23.1) Lemma. Let (G,o%) be an algebraic group over K and V be a finite

dimensional rational left KG—module, i.e.,
¢: G — GL(V) (veV)
g — [p(g)v ey
is a rational representation.

Let d < dim, V', then

(i) A%V is also a finite dimensional rational left KG-module under the following

operation:

GxMV — AV
(g,viA...Avg) = gviA. .. Agvg .

We write A9 ¢ for this representation of G into GL(AY V) ;

(ii) If G is a linear algebraic group with Lie algebra ¢ , then

d
d(rd ¢) (7) (Vi AA va) = Z vi AA (de) () Vi AA Ve,
i=1
where v € 7 and viA..Avg€eANV.
Proof. (i) Since the map g : Vx..x V— AV is K-multilinear and alter-

(viyeersvd) = gviA . Agvg
nating, g(vq A...A vq) = gvi A...A gva is a well-defined left operation of G on AV .

viAh ... Avg
/‘ Y AV
(Viyoyva) € Vx...x V l (commutative diagram)
g
\ ¥ pay

gviAh ... Agvg
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Let {my,...,mp} be a K-basis of V , then
{Inil A.A mid I i1 < ig <...<id}
forms a K-basis of A V (see Proposition 11.9). Let

g(my,...,mp) = (my,...,mn) [ 011(g), P12(g)---» w1n(g) ] ,
tpzl(g),, wzn(g)

©on1(8)y- + -+ - eeery Pnn(g)
where p;j € % (G) forany 1<ij<n. Since

n 4, (6) mi) A A[E«p (¢) mi)

and only products and sums of {epi | 1< i g n, 1<j<d} appear as coefficients of
the linear combination of {mil AA | i1 <iz2 <...< ig}  which expresses

g(mj A...A mq) = gmy A.. Agmd—[ 29

g(my A...A-mqg) , AYV is also a rational KG-module.

(i) Let 24 be the K—subspace of Td (V) =V e...0 V generated by all elements of
d

the form
X18.8x3€Ve.eV ‘
where xj = x; for some i#j. Clearly <q is a KG-submodule of T9 (V) (see
Proposition 18.2). Hence
dy:G— GL(TY(V)/2aq) |

g — [vi ®..8 vqa + @q- 8% ¢(g)(vi®..8 va) + 2d]
where

dp:G— G x...x G — GL(T¢ (V))

g — (8 Qé-}g)—-* w(Q ®-(-i-® <p(/g) :
Since d(A? ) = (d(e% )" , where
(A& )"+ g — 24 (T¢ (V)] 2 a)
¥— [v+aa- d® p)(Nv + «d,

from Exercise 61, we have

d
d(Ad @) (9) (vi AA va) = Z vi AA (o) (7)vi AA vy
i=1
(7€ # VihoAvqe AY V) from Lemma 20.3 and Proposition 20.8. Q.E.D.

Exercise 61. Let (G, K[G]) be a linear algebraic group over K and (H, K[H]) be
its closed subgroup. Let ¢:G - GL(V) be a finite dimensional rational representation
of G over K andlet W be a p(H)-invariant subspace of V . Let
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p:H— GL(V/W)
h — (h): v+W - hv+W
be a rational representation of H defined by KH-module V/W (see Proposition
18.2). Then show that
dp = (d¢)"

where (dp)” : & — #4 (VIW)

7 — (dp)" (7)v+W 5 (dp)(N(V)+W
and 4 1is a Lie algebra of H .

(23.2) Proposition. Let (G, K[G]) be a linear algebraic group over K with Lie
algebra ¢ and (H, K[H]) be a closed subgroup of G with Lie algebra &% . Then
there exist a finite dimensional left KG—submodule V of K[G] (see Lemma 18.4 and
Proposition 18.5) together with a subspace W of V such that
H={ge G| gsW =W}

and #=1{r€ g | (dg) (YW C W)
where ¢: G — GL(V)

g — [w(g)v-gwv] (veV).
Further let d = dimK W, then for any g€ G we have g«W =W if and only if

gx(AM W) =AY W, and for any 7€ ¢ we have WeyC W ie. (dg) (DWW if
and only if (dA? ) (1)Ad W ¢ Ad W (see Proposition 20.7).

Proof. Let J(H) be the ideal of functions of K[G] vanishing on H . Since K[G]
is Noetherian, J(H) has a finite set of generators fj, fs,..., fr as ideal. Let
V = KG#f; +...4+4 KG#if;,
then from Corollary 18.6 V is finite dimensional. Let
W=VnJ®H,
then we have h#«W =W forany he H.

Conversely assume that g#«W = W for some g € G, then

g#fi € J(H) forany 1<i<r.
Hence g#J(H) ¢ J(H), which implies g € H from Proposition 1.7. Therefore, we
have

H={ge G| gs+W=W}.
Now let 7 € &%, then from Lemma 20.5 we have
ve{re g | de(y) Wc W}.
Assume that
dp(NW c W,
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ie., W#yc W for some 7€ #- Since
(H)wy = (WK[G])#7 ¢ (We)K[G] + W(K[G]+7)
(see Lemma 19.10), we have
J(H)#yc J(H) .
Hence f#9(1) = 7(f) =0 for any fe J(H). Therefore, we have 7€ # from
Proposition 19.15. Hence we have shown that
% ={1€ g | dp(7)W c W} .
By definition g#(A9 W) =AW if gsW =W (g€ G) (see Lemma 23.1). Assume
that g#(Ad W) =AW for some ge G.Let {vy...v4,.,vas-1} be a K-basis of
W + g*W such that {vy,...,va} forms a K-basis of W and {vy,...,vg} forms a K—
basis of W n g#«W and {vi, Vis1,...,Vd,...,Vdst-1} forms a K-basis of g#W . Since
g#(vi AA va) = cvg AA Vs for some ¢ €K —{0} and cvy A..A Vg €
KviA..A vg and {v{A..A vq, Vi A...A Vau-} form a part of a K—basis of A4V , we
have t = 1. Hence g«W =W .

Since

d
d(Ad @) (7) (wi Ah wa) 2 wi A..A (de) (Y)wi A..A wq

from Lemma 23.1 where wjy,...,wg € V, we have

d(Ad ) (P AW cAd W
if (dy) (7) W ¢ W . Assume that

d(Ad @) (Y AW At W

for some vy € ¢. Let {vy,...,v4,...,vn} be a K-basis of V and
f n

(dg) (7)vi = 2 Cki Vi .

k=1
d
Then d(A% @) (7) (v AA va) = Z vi AA (de) (9) vi A A Vg
i=1
d n
= 2 2 Cki Vi AveeA Vit A Vi A Visg AlAvg € Kvy A A vy .
i=1 k=1
Hence cxj =0 if k > d . Therefore, (d¢) (y)W ¢ W . Q.E.D.

(23.3) Corollary (C. Chevalley). Let (G, K[G]) be a linear algebraic group over K
and (H, K[H]) be a closed subgroup of G . Let ¢ and 7% Dbe the Lie algebras of G
and H respectively. Then there exists a finite dimensional rational left KG-module

V with one dimensional subspace L ¢ V such that
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H={g€G| ¢(g)L =L}
and #={1€ 2 | (dyp) (7L c L}
where v: G — GL(V)

g — [p(g)v-gv] (veV).

Now let G, H,V and L be as in Corollary 23.3. Let P(V) be the projective space
defined by V (see §11). Let ‘
7:V—{0} = P(V) 7
be a map of V — {0} into P(V) which takes each ve V- {0} to KveP(V),
then 7 is a morphism of the open subvariety V — {0} into P(V) (see Example
21.4). Let
G x P(V) — P(V)
(5, () — =&,
then G operates on P(V) morphically by the following Lemma.

(23.4) Lemma. Let (G, o}‘é) be an algebraic group over K and ¢: G - GL(V) be

a finite dimensional rational representation. Let = :V — {0} » P(V) be the mor-
v — Kv

phism as above, then by the map
¥: Gx P(V) — P(V)
(g, m(v)) — 7(gv)
P(V) becomes a G-variety (see Definition 17.1), where gv = ¢(g)v .

Proof. Let V=V -{0} and ¢ :G x V' — V’ | then ¢’ is also a morphism of

(g,v) — gv
varieties and we have the following commutative diagram.

GxV' =2, v

1xx x
G x P(V) = P(V)
Let {vq, Vi,-..,vn} be a K-basis of V . Since
pi: G x P;j(V) 4 G x
(8, K(covo +...4 cavn)) = (8, -2—;) Vo +..d Vi Hot g—’j‘vn)

is a morphism of varieties and 7o ¢’ o p; = ¢|GxPj(V) where 0<j<n, ¢ isa

morphism of varieties. Q.E.D.

Let X = Gx where x =L € P(V), then from Proposition 17.8 X is openin X.
Hence X is a quasi—projective variety over K. (see Definition 11.5). Thus we have
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got a quasi-projective homogeneous space X of G (see Definition 17.9) with certain
point x € X such that

H={geG|gx=x}.
Further we have

(23.5) Proposition. Let G, H,V and L be as in Corollary 23.3. Let P(V) be the
projective space defined by V and x=Le P(V). Let X be the quasi—projective
homogeneous space of G as above, then

(i) (dex)1: g— T(X)x is surjective where ¢x: G — X

B —* gx

(i) the map ¢:G®— G%x is a separable morphism where G° is the irreducible
E —* Bg'Xx

component of G containing 1.

Proof. Since ¢y : G — X is a morphism of varieties and G? is closed in G, the map
g — gx

G ¢ G &&X

g — 8 —E8X

is also a morphism. Hence from Exercise 40 on p.113 the map G° — GO0x is a
g — gx

morphism. From the proof of Lemma 17.12 G%x is open and closed in X . Hence the

map

P:GY— GOx
g —mgX

is a morphism.

Since G° is openin G and goleo =19,

T(G); = T(G%y, T(X)x = T(G%x)x and (dgx)1 = (d¢): .
From Theorem 13.14 there exists a point g’x in G%x such that
dim ¢ (g x) = dim G - dim G%x ,
where g’ € G°.

Since ¢ gx)={geG| gx=¢g=x}=g(G°nH) and HO>HNG") H® where
H° is the irreducible component of H containing 1, we have |

dim ¢(gx) = dim G'n H = dim H .
Thus dim, T(G)1 = dim T(H)1 + dimy T(X)x .
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(i) - From the above argument it is enough to show that Ker(dpx); =%. Let L = Kv
for some v € L —{0} and {v = vy, vy..., va} be a K-basis of V . Then the map

P GL&V) — v E(;[’())}

is a morphism of varieties and

(dp)1 f/(v) - TEV;V .

1— (v
Since ox 1 G 2 GL(V) & v-{0} T X
g — ¢(g) — g — 7(gy) =gx

and (dp)1 = -G8, p/v) oL, q(y), (v, 7x),
we have Ker (dpx)1 = (d(poy)s)™ (Ker (dm)y)

= (d(pog)1) (L) (see Example 21.4)

= H (see Corollary 23.3).
(i) is clear from Theorem 21.9. Q.E.D.

Exercise 62. Verify the statement (dp);: g/(V) — TEV;V in the above proof.
¥ — (v _

Now we define the quotient space G/H .

(23.6) Definition. Let (G, of) be an algebraic group over K and (H, o)) bea

closed subgroup of G . We call a pair (G/H, a) of a homogeneous space G/H of G
and a point a in G/H whose isotropy group is H a quotient of G by H if for
any pair (Y, b) of a homogeneous space Y of G and a point b €Y whose iso-

tropy group contains H there exists a unique G-morphism ¢ of G/H into Y

such that ¢(a) =b .
gra€eG/H

v

g €G P

NN

gbe Y

(23.7) Theorem. Let (G, K[G]) be a linear algebraic group over K and (H, K[H])
be a closed subgroup of G . Let V be a finite dimensional rational left KG-module

with one dimensional subspace L ¢ V such that
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H={geG|gL=1L}.
Let 7:V—-{0} — P(V) and x=1L.Let X = G-x where G operates on P(V)

v — Kv
as follows
P(Vg — PEV)
(g m(v)) — =(gv) .
Then the pair (X, x) is a quotient of G by H and is unique up to G-isomorphism
of G—varieties.

Proof. From the definition of quotient the uniqueness is clear. Let v: G - G/H and
(G/H, ¢’) be as in p.218 and let (Y, b) be as in Definition 23.6. Let

v:G/H—Y
gHh— gb,

then ¢ is a well defined G-map. Let

wb: G—Y (see Remark 17.2),
g —gb

then we have the following commutative diagram
G/H

14

G P

N

Y
Let O be an open set in Y , then
p!1(0) ={gH | ge G and gbe O}
=v({geG | gbeO})
= v (pp™ (0)) .
Hence ¢ (0O) is openin G/H.
G/H —f Y
U U
p-! (0)— O tx

14
| Giyp! (0)
Since 71 (¢4 (0)) = pp* (0) and fo(py | purie) € % (91 (0)) for any £ € & (0)
we have
£o (p | ) € Z(970)) -

Therefore ¢ is a morphism of ringed space.
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Now we shall show that if (Y, b) were (X, x) then ¢:G/H— X would be an
gHh — gx

isomorphism of ringed spaces. Clearly ¢ is bijective. Let U be an open set in G/H.
Since  p(U) = ¢x (v1 (U)) and ¢y is an open map from Lemma 17.12, ¢(U) is
open in X . Hence ¢ is a homeomorphism.

gh e G/H

w4

gEG P (commutative diagram)

ANEN

g'xe X

Finally we shall show that ¢ 1is also a morphism of ringed spaces. Let O be an
open set in X . If the map

2: & (0) — & (¢ (0))

f— foyp] o1(0)
is a K-algebra isomorphism, then ¢ :X - G/H is a morphism of ringed spaces.
Since the map & is clearly an injective K-algebra homomorphism, it is enough to
show that @ is surjective, that is, for any
fe (e’ (0))

there exists F € o (O) such that

E=Fovl -

Now let o, (ox(0)"
= {fe o, (9x(0)) | f(gh) = f(g) for any g€ o' (O) and h e H}.

(Notice that ¢x™ (0) = v (p1(0)) and ¢x? (O)h = ¢, (0O) for any he H.)
Then we have got the following bijective correspondence:
- . - p - - H
F (9 (0) = {T: 7 (0)+ K | Tov | o€ o (o (0))} — &, (0x™! (0))
e HO) ¢+

f - fov

Thus we only have to show that for any fe€ o (px1 (0)) such that f(gh) = {(g)

(g € ‘<px'1 (O) and h € H) there exists F € o (O) such that

f=Fop, on ¢! (0).

t
Let G° be the connected component of G containing 1, then G = Y G g; (dis-
i=

joint union of open subsets) and
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£
X=Gx= Y Ggix=G%g;; x U.UG gy, x
(disjoint union of G’-orbitsin X, s <t). Then G° gy, x,..., G® gj; x are the irre-

ducible components of X and each G°gjy x is open and closed in X .

Now let Uj= px (O)nG%g; (1 <igt), then
¢ t
px (0) = U (px! (O)NG°gi) = U Ui,
Let fi=1 |, ,then f€ o (px1 (0)) if and only if
1
f; € %(Ui) forany 1<i<t.
Let ¢; be a map of G® into GYg; x which takes each ge G® to g;gx,ie,
pi: G'— g G" g1 — Ggix
g — Bi 8817 —— Bi8Bi T BiX.
Since gigx€0 & gige p((0)
=geg o (0)
=gegi” Ui(=gi" px' (0) NG
for any ge G°, we have
i1 (0) =gi1U; (1¢igt).
Let H = Hn G° and

£i%: ;1 (0) — K
g — fi(gig)

where 1 < i < t, then fi° € (™ (0)) = o (¢i7(0)) (see Exercise 37 on p.111) and
f;° (gh) = fi (g1 gh) = f(gs gh) = (g1 g) = 11’ (g)

for any g € ;™ (O) and h € H° Thus if we showed that for each i € o, (1™ (0))

such that f;%gh) = f;%g) (g € p1! (O) and h € H?) there exists

Fi€ oy gx (O nGYg;x)

such that fi®= Fjo ;i on ;! (O), we should have
fi=Fio ¢x
on each ¢x! (0) N G°gi and the function F € o (O) such that

F |OﬂG0 g;x =T

for each 1 <1<t should be the desired one.

Hence from now on we assume that G 1is connected. Let

= {(g 1(g)) | g€ vx™ (0)} C o™ (O) x K
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and I = (¢« |¢x-1 (Q) x 1K) (T)

. oo -l
where Ox |¢x_1 0) * 1ot ¢x (0) x K— OxK
(g:,k) — (g-x k).
Then I" ¢ OxK and

OK ~T" = (px |, ot (0) x K= T) .

- x 1
< 1(0) K) (
Since the map ux! (0) x K— K x K is a morphism of varieties and T is its
(8,k) — (f(g) k)

inverse image of A(K) = {(k,k) | k€ K} , T isclosed in ¢x' (O) x K . Let GxK
be the product of algebraic groups (G, K[G]) and (K, K[X]) (see Examples 14.9),
then GxK operates on XxK morphically as follows:

(GxK) x (XxK) — XxK

((g)k)) (Y7z)) - (gy, k-I—Z)
Since (GxK) (x,0) = XxK, XxK is a homogeneous space of GxK . Hence the map

Px % 1K : GxK — XxK
(g7k) - (g-x, k)
is an open map from Lemma 17.12. Thus
. ol
b, -1 (o) * Ig t #x7 (0) x K — OxK

is also an open map and I is closed in OxK .

Let A =m [, :T7- O where m:OxK - O is the projection, then
A:Dc OxK XL 0
is a morphism of varieties. Since I = {(gx, f(g)) |g € vx'(0)}, A is bijective.
Since I is the image of the morphism
ox (0) — OxK
g— (g% 1(g))
I is irreducible. If
AT = {(gx 1(g)) | g€ ¢x (0)} — O
(g-x,1(g)) — g%
is an isomorphism of varieties, then the map

W2|I\’

F: 0 ’\-lﬁ m -+ K - K

g -x —(gx, f(g)) — f(g) — 1(g)

belongs to 4 (O), where m; : OxK - K is the projection, and satisfies the condition

f=Fop, on ¢ 1(0).
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Now we shall show that A 1is an isomorphism of varieties. Since ) is a bijective
morphism, A is dominant and we can embed K(O) into K(I’). Since I" is the
image of the morphism
px (0) — OxK

g — (8-x, 1(g))

and I is closed in OxK , the map
px(0) — I

g — (gx, 1(g))
is a surjective morphism (Exercise 40 on p.113). Hence we can also embed K(I") into
K(px (0)) = K(G) . Thus we have

K(0) = K(X) ¢ K(I") ¢ K(G).

Since the map ¢x : G — X  is a separable morphism from Proposition 23.5, K(G)
g — X

is separable over K(X) . From Corollary 6.19 K(I”) is also separable over K(O) .
Since A is bijective, we have r=dim IV —dim O =0 from Theorem 13.14.i.
Therefore, from Theorem 13.14.iii we have [K(I"):K(O)] =1, because X is bi-
jective. Hence K(I") = K(O) . From the Zariski’s Main Theorem A becomes an iso-
morphism of varieties. Q.E.D.

Thus we have constructed the quotient (G/H,¢’) or (X, x) of G by H. Notice that

(i) ¢:G/H—X is an isomorphism of varieties which makes the following

gH — g=x
diagram commutative
gh e G/H
Y
gEG ¢
ANRN
gxe X

(i)  for any open subset U of G/H we have ¢! (p(U)) = v(U), and the
following correspondence is a bijective K~algebra homomorphism
o% W(U)T — & (V)
f— [f:gH - 1(g)]
where

o, (v (U)T = {fe o, (v (V) | f(gh) = f(g) for any g€ v (U) and h € H}

and
F(U) = {: UK | fov | gy € % (v (U} 5
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(iii) (G/H,¢’) is a quasi—projective variety of dimension dim G — dim H (see Pro-
position 23.5 and its proof);

(iv) wvo:G%— {gH | g€ G} (c G/H) is a separable morphism where GO is the
g — gH

connected component of G containing 1 (see Proposition 23.5);

(v) v:G- G/H is a separable morphism if G is connected.

(23.8) Lemma. Let (G, K[G]) be a linear algebraic group over K and (H, K[H])
be a closed subgroup of G . Let X be a G—variety over K . Assume that H = Gy
and X = G-x for some x € X and the map
x| ot G — G%x
§— X

is separable where ¢y : G — X and G° is the connected component of G con-
g — gx

taining 1. Then the map
p:G/H-—X
gh— gx
is an isomorphism of varieties.

Proof. From the definition of the quotient G/H ¢ is a bijective G—morphism. Let
t

G= G%g; (disjoint union of open subsets),
i=1

then X = Gx = ,ltJl Gogix = G%x U G° gi,x U...U G'%i,x  (disjoint union of G-

1=
orbits in X, s <t). G%gix (= G%x),..., G® gigx are the irreducible components
of X and each G° gi; is open and closed in X (1< j<s). Since ¢ is bijective,
we also have

G/H=G°HUGgj; HU..UG" gi; H (disjoint union).
From Proposition 10.7. it is enough to prove that
W :GgH — G° gx (t €@
tgH — tgx
is an isomorphism of varieties for any g € G . Notice that
{t € G| tgx = gx} = G"n gHg™,

We shall show that ¢y and ¢, in the following commutative diagrams
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6°/G°nglg! G°/G ngHg !
14 v
t € G° 31¢1 and t € G° 31p2
\ & \ Cox
tgh € G°gH - tgx € 6%x

are isomorphisms of varieties.

Since Yen and Py 2TE separable, this is an application of the Lemma in case G is

connected. Hence it is enough to prove the Lemma in case G is connected.

Now we assume that G is connected. Since K(G) is separable over K(X) and
K(X) ¢ K(G/H) ¢ K(G),

K(G/H) is separable over K(X) . Since K(G/H) is algebraic over K(X) from

Theorem 13.14.1i, K(G/H) 1is separably algebraic over K(X) and we have

K(G/H) = K(X) from Theorem 13.14.iii. Hence from Zariski’s Main Theorem ¢ is

an isomorphism of varieties. Q.E.D.

(23.9) Proposition.  Let (Gi, K[G3]) be a linear algebraic group over K and
(Hi, K[H;]) be a closed subgroup of G; (i = 1,2), then the map
@ G1XG2/H1XH2 — G1/H1 x Gz/Hz
(g1,82)HpxHy — (g1Hy, g2Ha)
is an isomorphism of varieties (see Examples 14.9.iii).

Proof. From Exercise 43 on p.118 the map

(G1xGy) x (Gy/Hy x Ga/Ha) = (G1 x Gy/Hy) x (G2 x Ga/Hy) » G1/H; x Ga/Hs
((81,82), (g1'Hy, g2'H2)) » ((g1,80H), (g2,82°H2)) - (8180 H1, §282H))
Hence Gi/H; x Gz/H;is a homogeneous GxGz—variety.

Let x = (Hy, Hy) € Gy/Hy x Gy/Hy , then

(GixGg)x = HixHy and Gi/Hy x Gp/Hy = (GxGa)x .
Let G;i° be the connected component of Gj containing 1 (i = 1,2), then G’ x G,
is also the connected component of GxGz containing (1,1) . Let

©Ox - G10 X Gzo—-’ (Glo x G2°)x (C Gl/Hl bl Gg/Hz)
(g1,82) — (gHy,g2Ha)

0
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then (d(px)(1 1 is surjective from Lemma 20.3 and Proposition 23.5. From Theorem
21.9 ¢y is a separable morphism. Thus from Lemma 23.8 ¢ 1is an isomorphism of
.varieties. Q.E.D.

(23.10) Theorem. Let G be a linear algebraic group over K and H be a closed
normal subgroup of G . Then there exists a rational representation

¢: G — GL(V)
such that Ker ¢ = H and Ker dp = & where & is the Lie algebra of H .

Proof (see Humphreys [2, Theorem 11.5]). Let ¢ : G = GL(V) be a finite dimensional
rational representation of G and L be a one dimensional subspace of V as in
Corollary 23.3, that is,
H={geG| y(g)L =L}

and #=1{1¢ g | (dy) (P c 1}
where ¢ is the Lie algebra of G . Let A be a rational linear character of H ,i.e,
A is a group homomorphism of H into K = K —{0} and X e K[H],and A be
the set of rational linear characters of H . Let

V,={veV|hv=2A(h)v forall heH},

then gV, C Ve
for any g € G where X8:H — K"
h — )\(g'1 hg) .

We assume that VA DL for some Ao € A.Let V' be the sum of all nonzero V,\
0

(A € A), then V’ is a KG-submodule of V and the direct sum of the nonzero V,,,

because the set A is linearly independent over K (see e.g. Lang [1, Theorem 4.1 on
p.319]). From Lemma 20.5 without loosing generality we can assume that V = V.

Now let Ad: GL(V) — GL( (V)
x — [Ady:f -+ xfxT|
be the adjoint representation of GL(V) (see Proposition 20.4), then
Ad o p: G - GL(V) 24 GL(#(V))
is a rational representation of G into GL(g/(V)) . Let
W = {fe #(V) | f(hv) = hi(v) forany he H and veV},
then Ad o ¢(g)W ¢ W for each g€ G, because H is normal in G . Thus we have
got a rational representation 9 of G into GL(W) defined by
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P : G — GL(W)
g — Adop(g)].,
We shall show that Ker ¢ = H . Since
Y(h) = Ad o (h) | : £ — o(b) fp(h) = £
(heH, fe W), we have Ker 9> H. Conversely let g be an element of G such
that 9(g)f =1 forall fe W . Let f; be amapof V into V such that

f(v)y=v i veV,
0

and fi(v)=0 if veV, (Aer-{A}).
Since hV, CV,y = V/\ for any h € H, where A € A, f; is contained in W . Thus
we have
'¢(g) =1,
which implies gfi(g'v)=v forany ve V}‘o .

Therefore f; (g'v) =g'veV, and gV, =V, ie,
0 0 0

vV, =gV

Ao Ao

Let ¢o:V

y V,\ be a K-linear map such that
0 0

<po:V/\o——-)V/\0
vV— gV .

Let o be any element of End, (V) ), then we can define a K-linear map f of V

Ao
into itself by
f(M=o) ifve V/\U
and f (v)=0 if veV, where A€ A—{Ao}.
Since f (hv)=hf (v) for any heH and veV, we have f ¢ W . Hence

Wg) f, =£ for any ae End (V, ), which implies gf (87 v) = go(g™ v) = ofv)

Ao

for any v eV, . Thus we have 9o a= aopp for any a € Endy (V/\ ), ie, o
0

0

is an element of the centre of End, (V, ) . Hence
0

po (L) =1L,

le., gb=1L,

because ¢ is a scalar multiplication. Therefore, g € H, i.e.,
Kery=H.

Finally we shall show that Ker d¢y = &% . Notice that from Lemma 20.5 we have
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dy(y) = d(Ad o @)7 |,
for any 7€ g . Assume that dy¥(7) = 0 for some 7€ # , then
d(Ad o ¢)y IW =0.
Hence ad (dg(7)) (f) = [de(7), f] = dp(q) o f—fo dp(7) =0 for any fe W . Thus
dp(y) o £, =1 o dy(7)

for any a € End, (V, ), which implies
0
d V, ¢V
w(7) X X

and do(7) Iy, o a=acde(y) |y
0 ¢

for any « € End (V, ). Hence dy(7) | V, is a scalar multiplication and we have
0 0

dp(7)LcL,ie. 7€ &% .
Therefore, Ker d¢ ¢ & . Since dim G = dim H + dim %(G) ,
dim, ¢ = dim, 7 + dim, T(¢(G));

and dim, ¢ = dim ker d¢ + dim  Im d¢,
we have dimK% < dimK Ker dv .

Hence Ker dy = o4 and ¢ is a desired rational representation of G .
Q.E.D.

(23.11) Theorem. Let G be a linear algebraic group over K and H be a closed

normal subgroup of G . Then

(i)  the quotient variety G/H 1is affine;
(ii) the factor group G/H is a linear algebraic group with respect to the variety
structure of the quotient of G by H.

Proof. (i) Let ¢ and V be as in Theorem 23.10, i.e.,
¢: G — GL(V)
is a rational representation such that
Ker p = H and Kerdp = &
where % 1is the Lie algebra of H . Let X = ¢(G), then X is closed in GL(V)
and G operates on X morphically as follows '
GxX — X

(g,x) — p(g)x.
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Let x =1 and ¢x: G— X, then we have
g — gx

p: G4 X (L: GL(V)
g — o(g) — v(g) .
Since dim X = dim G — dim H and Ker dp = Ker dpy = #
dox : g — T(X)x
is surjective where g is the Lie algebra of G . Hence from Theorem 21.9
ox | G*: G' — G%x

g— g°x
is separable, where G° is the connected component of G containing 1. Therefore
G/H is isomorphic to X as variety from Lemma 23.8, and G/H has turned out to
be an affine variety.

(ii) Since H is normal in G, G/H is also a right G-variety. Hence G x G/H - G/H
(g,g’H) = g'Hg

is a morphism of varieties and G/H becomes a left G-variety by the following
operation

G x G/H— G/H

(g,8"H) — g g H.
Thus themap G x (G xG/H)— Gx G/H —— G/H

(81, (82,8H)) — (g1,882 " 'H) — g1gg2"'H

is a morphism of varieties and the group GxG operates on G/H morphically from
the left. From Proposition 23.9 there exist a morphism of varieties ¢:G/HxG/H - G/H
which makes the following diagram commutative:

(g:H,g2H) € G/H x G/H

4

(g1, 82) € G x G Y

¥y

g1 gg-l H € G/H

Hence the group operations are morphic with respect to the variety structure of G/H .
Q.E.D.
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24. Fixed Point Theorem and Borel subgroups

We shall prove the Fixed Point Theorem, i.e., a connected solvable linear algebraic
group operating on a complete variety has a fixed point, and define Borel subgroups
and parabolic subgroups.

We also show the Lie—Kolchin Theorem as a corollary to the Fixed Point Theorem.

(24.1) Definition. Let G be an abstract group and x, y be arbitrary elements of
G . We shall write [x,y] for the commutator of x and y,i.e.,

xy] =xyx1yt.

(24.2) Definition. Let H, K be subgroups of an abstract group G . We use [H,K]
to denote the subgroup of G generated by the set {[h,k] | h € H and k € K} . We
call [G,G] the commutator subgroup of G and inductively we shall define

@ = [G,G], G" = [G",G],..., GV = [GUD, GUHD] (1> 1).

(24.3) Definition. An abstract group G is said to be solvable if G(™ = {1} for

some n > 0.

From the definition of solvable groups it is clear that subgroups and homomorphic
images of a solvable group are solvable. The following proposition is well-known.

(24.4) Proposition. Let G be an abstract group.

(i) If G has a normal solvable subgroup N such that G/N is solvable, then G
is also solvable.
(i) If A, B are solvable subgroups of G and A normalizes B, then AB is a

solvable subgroup of G .
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(24.5) Proposition. Let (G, @fé) be an algebraic group over K and A, B be closed

subgroups of G .

(i) If A normalizes B, then AB is a closed subgroup of G .
(i) If A is connected, then [A,B] is a closed and connected subgroup of G .

Proof. (i) Since A mnormalizes B, AB is a subgroup of G . Since AB is the
image of AxB under the following morphism
AxBc GxG— G

(x,y) = (x,¥) » xy,
AB is constructible from Theorem 8.6. Thus from Proposition 15.3 AB is closed.

(ii) Let @y: A - G be the map defined by ¢y(x) = [x,y] , where y € B . Since A

is connected and ¢y(1) = 1, from Proposition 15.5 [A,B] is closed and connected.
. Q.E.D.

(24.6) Temma. Let (G,of) be an algebraic group over K and X, Y be homo-

geneous G—varieties. Assume that Y is complete and there exists a bijective G—mor—
phism ¢ of X onto Y, then X is also complete.

Proof. We shall show that the projection
Py: XxZ — Z
is a closed map for any affine variety Z . Since Y is complete, it is enough to prove
that
px1 : XxZ — YxZ
(x,2) » (p(x),2)

is a closed map.

YxZ
'n'l 7rz
\\ 997/ z  (commutative diagram)
(x,z)

From Theorem 2.3 we can embed Z into a certain affine n-space (K=, K[X;, Xa,...
.wXn]) as a closed subset. Since XxZ and YxZ are closed subvarieties of XxK"
and YxK® respectively (see Exercises 42 on p.118), it is sufficient to prove that ¢x1
is a closed map only in case Z = K" .
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Notice that by componentwise addition K™ is an additive linear algebraic group.
Thus XxK™ and YxK" are homogeneous GxK"-varieties. From Lemma 17.12 ¢x1
is an open map. Since ¢x1 is bijective, ¢x1 is a homeomorphism. Hence ¢x1 is a
closed map and X is complete. Q.E.D.

Fixed Point Theorem (A. Borel). Let (G, K[G]) be a connected solvable linear aige—
braic group over K . Let X be a G-variety. If X is complete, then G has a fixed

point in X .

Proof. We follow the induction on dim G . Assume that dim G = 0, then G = {1}
and the assertion holds.

If dim G > 0, then G’ = [G,G] is a closed connected solvable subgroup of G of
dimension less than dim G (see Proposition 24.5 and Exercise 48 on p.140). By
induction the set Y of fixed points of G’ in X is non—empty. Since Y is closed
from Proposition 17.4, Y is complete from Proposition 12.2. Since G’ is normal in
G , we have
gYCY forany ge G.
Hence it is enough to find a G-fixed point in Y . Since G’ C Gy, Gy is normal in
G for any y € Y . Thus from Theorem 23.11 G/Gy is an affine variety. We can
choose y € Y such that G-y is closed (see Corollary 17.7). Hence G-y is complete
from Proposition 12.2. Thus we have got a canonical morphism of the affine variety
G/Gy onto G-y .From Lemma 24.6 G/Gy is complete. Therefore
G = Gy
from Proposition 12.2 and y is one of the fixed points which we want. Q.E.D.

(24.7) Lemma. Let (G, of,) be an algebraic group over K and V be an n—dimensional
rational left KG-module (n > 0)), i.e.,
0: G — GL(V)

g — [w(g)v-gv] (veV)
is a rational representation. Then

(i) Foramy 0 <d<n, G operateson P (A% V) morphically as follows

G x P(A V) — P(A2 V)
(g,m(viA. . .Avg)) — w(gvih...Agva) ,
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where vy A..Ava € A2V —{0} and #(viA...Ava)=K(viA.Avq) € P(AdV) (see
Lemma 23.1 and Lemma 23.4).

(i) TLet 0<d<n and g£q(V) be the Grassman variety of all d—dimensional sub-
spaces of V , then the set
{MD|De ga(V)}
is closed in P(A4V) and g{AdD | De ga (V)}c {MD|De #a (V)} for any
geG,ie, 74 (V) is a projective variety on which G operates morphically as follows.
Gx g4 (V) — ¢4 (V)
(g,D) — gD

(i) Let &(V) be the flag variety defined by V, i.e., the set of all sequences of
K-subspaces {0, Vy,...,Vn} of V such that
o;vlgvzg...gvn=v,
then G operates on &(V) morphically as follows.
Gx F(V)— F(V)
(g,{0,V,Va, ..., Vo}) — {0,8V1,gVs,...,.gVn}

Proof. (i) is from Lemma 23.1 and Lemma 23.4.

(ii)  is from Proposition 11.10.
(iii)  is from Proposition 11.13. Q.E.D.

As an application of the Fixed Point Theorem we can prove the Lie-Kolchin Theorem.
Lie—Kolchin Theorem. Let (G, K[G]) be a connected solvable linear algebraic group

over K, then any non-zero finite dimensional rational KG-module V has a one-
dimensional KG-submodule.

Proof. Let & (V) be the flag variety defined by V . Since G operétes on F(V)
morphically (see Lemma 24.7.iii) and &(V) is a projective variety from Proposition
11.13, by the Fixed Point Theorem G has a fixed point in F (V) , i.e., there exists a
sequence of K—subspaces {0, Vy,..., Va} of V such that

Ogvlgvzg...gvn=v
and {0, gV1,..., gVa} = {0, Vy,..., Vi}
for any g€ G . Thus V; is the desired KG-submodule. Q.E.D.
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Now we define Borel subgroups.

(24.8) Definition. Let (G,ef) be an algebraic group over K . We call a maximal

element in the set of all closed connected solvable subgroup of G a Borel subgroup.

Remark to Definition 24.8. (i) Let B be a closed connected solvable subgroup of G
of the largest dimension, then B is a Borel subgroup.

(ii) Let G° be the connected component of G which contains 1, then Borel sub-
groups of G and G° coincide with each other.

(24.9) Theorem. Let (G, K[G]) be a connected linear algebraic group over K and
S be a Borel subgroup of G of the largest possible dimension, then

(i) the quotient G/S 1is a projective variety, and
(ii) all other Borel subgroups are conjugate to S .

Proof. (i) Let V be a finite dimensional rational left KG—module with one dimensional
subspace L (C V) such that _

S={geG|gL=L}
(see Corollary 23.3). We shall write p for the rational representation of G defined
by this G-module V . Applying the proof of Lie—Kolchin Theorem to the S—module
V/L , there exists a sequence of K—subspaces

f={O§LgV2§...gVn=V}

of V such that

S={geG|gl=1},
where n = dimK V.

Hence we have got a canonical bijective G-morphism of G/S onto the quasi-pro-
jective variety
Gf (c Gic F(V)).
Since Ker pc S and S is solvable, the stabilizer of any fixed point of &F(V) is
closed and solvable. Hence the orbit G-f has the smallest possible dimension
dim Gf = dim G - dim S
from Theorem 13.14.ii.
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Therefore G-f is closed from Corollary 17.7. Since G-f is complete from Propositior
12.2, G/S is complete from Lemma 24.6. Since G/S is a complete quasi—projective
variety, G/S is a complete open subvariety of certain projective variety X . Henc
'G/S is closed in X from Proposition 12.2. Thus G/S is projective.

(i) Let B be a Borel subgroup of G, then B is operating on G/S morphically
as follows,
BxG/S— G/S
(b,xS) — bxS .
Since G/S 1is complete, from the Fixed Point Theorem, B fixes xS for some x € G.
Since BxS = xS, we have
x!1BxcS.
From the definition of Borel subgroups we have x'Bx =S . Q.E.D.

(24.10) Definition. Let (G, K[G]) be a linear algebraic group over K . We call a
closed subgroup P of G parabolic if G/P is projective.

(24.11) Proposition. Let (G, K[G]) be a linear algebraic group over K and G is
the connected component of G which contains 1. Then

(i)  a closed subgroup P of G is parabolic if and only if G/P is complete;
(i) a closed subgroup P of G is parabolicin G if and only if G°n P is para-
bolic in G?.

Proof. (i) Since projective varieties are complete (see Theorem 12.4), G/P is
complete if P is parabolic. Assume that G/P 1is complete. Since G/P is a quasi—
projective variety, G/P is open in certain projective variety X . Thus from Propo-
sition 12.2.ii G/P is also closed in X , because G/P is the image of the embedding
G/P ¢ X . Hence G/P is projective, i.e., P is parabolic.

(ii) We first assume that P is parabolic, i.e., G/P is complete. Let
G=G'Ug GoU..Uu gt G
be a disjoint union of left cosets of G° in G, then we have the following G -orbits
decomposition of G/P :
G/P=G°P/P U g GOP/P U.U g G'P/P,

where {g; e8] } ¢ {g2-.,t¢} . Since the canonical map
S
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v:G— G/P
g — gP
is an open map, G°P/P is open and closed in G/P . Hence G°P/P is complete
from Proposition 12.2. Since the map
p:GYG'NnP—GP/P (geGY
gGo NP— gP

is a bijective G%~morphism, G°/G°n P is complete from Lemma 24.6. Hence G%n P
is parabolic in G .

Conversely suppose that G%/G®n P is complete. Since ¢ is surjective, G°P/P is
a complete closed subvariety of G/P . Thus
G/P =G'P/P U g G'P/P U.U g G®P/P

is a disjoint union of complete closed subvarieties. Hence. G/P is also complete.
Q.E.D.

(24.12) Proposition. Let (G, K[G]) be a connected linear algebraic group over K, then

(i) a closed subgroup P of G is parabolic if and only if P contains a Borel sub-
group of G ;

(ii) a closed connected subgroup H of G is a Borel subgroup if and only if H is
solvable and G/H is projective.

Proof. (i) Assume that G/P is projective. Let B be a Borel subgroup of G .
Since B 1is connected and solvable, B fixed a point in G/P from the Fixed Point
Theorem, i.e., there exists a left coset xP in G/P such that

BxP =xP (x€G).
Hence P contains a Borel subgroup x! Bx .

Conversely let H be a closed subgroup of G which contains a Borel subgroup B of
G . Since the morphism
G/B— G/H (geQ)
gB— gH
is surjective and G/B 1is projective from Theorem 24.9, G/H is complete, i.e., H is
parabolic from Proposition 12.2 and Proposition 24.11.

(ii) is clear from (i). Q.E.D.
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