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Preface

Algebraic group theory is one of the basic subjects of graduate level algebra. However,

most of graduate programs of algebra do not teach this important theory. This is

because ~raduate s.tude:p.ts are expected to have understood the, theory before they

entered the graduate programs. But it is often the case that they have not acquired

the basic knowledge of the algebraic group theory. Furthermore, there are a few

appropriate textbooks with which they can learn it by themselves.

The objective of these notes is to provide graduate students with completely self-eon-'

tained lectures with which they can learn the basic theory of algebra. I explained most

of the proofs of the theorems from commutative algebras to algebraic geometry

(Chapters 1 and 2). These would help them understa~d the basic concepts of algebraic

groups (Chapter 3) and construct homogeneous spaces of linear algebraic groups

(Chapter 5). Also I attempted to relate a particular theory 'of this topics to other

subjects of algebra with which graduate students may be familiar.

The original lectures started in 1980 when I was a Humboldt-fellow at the University

of Essen and continued sporadically at Sophia University since then. The manuscript

was completed in 1988, one year after the second visit to the University of Essen as a

Humboldt and DFG-fellow.

I am very grateful to my colleagues who were involved in this project, especially Prof.

Dr. Gerhard Michler, who gave me a chance of giving the lectures at the University of

Essen and invited me again in 1987. Sections 21, 22 and 23 are the result of seminars

with Dr. Klaus Timmerscheidt in 1987. Although only I am the person who is respon

sible to these notes, I should say that these sections are the joint work with him.

I am also grateful to Prof. Dr. Charles W. Curtis, who kindly gave me his informal

lecture notes on linear algebraic groups which were very useful for preparing Chapter

1. Finally I should !ike to than~ Sophia University for granting me the study leave

twice and Frau Sabine Weber for her beautiful and careful typing.

Sophia University, November 1989 and March 1991 Hideki Sawada
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CHAPTER ill

BASIC CONCEPTS OF ALGEBRAIC GROUPS

In this chapter we define algebraic groups and explain the related basic concepts such

as subgroups, morphisms of algebraic groups, connectedness, abelian varieties and

linearization of affine algebraic groups.
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