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Preface

Algebraic group theory is one of the basic sUbjects of graduate level
algebra. However, most of graduate programs of algebra do not teach
this important theory. This is because graduate students are expected
to have understood the theory before they entered the graduate pro
grams. But it is often the case that they have not acquired the basic
knowledge of the algebraic group theory. Furthermore, there are a few
appropriate textbooks with which they can learn it by themselves.

The objective of these notes is to provide graduate students with
completely self-contained lectures with which they can learn the
basic theory of algebra. I explained most of the proofs of the theo
rems from commutative algebras to algebraic geometry (Chapters 1 and
2). These would help them understand the basic concepts of algebraic
groups (Chapter 3) and construct homogeneous spaces of linear alge
braic groups (Chapter 5). Also I attempted to relate a particular
theory of this topics to other subjects of algebra with which gra
duate students may be familiar.

The original lectures started in 1980 when I was a Humboldt-fellow at
the University of Essen and continued sporadically at Sophia Univer
sity since then. The manuscript was completed in 1988, one year after
the second visit to the University of Essen as a Humboldt and DFG
fellow.

I am very grateful to my colleagues who were involved in this pro
ject, especially Prof. Dr. Gerhard Michler, who gave me a chance of
giving the lectures at the University of Essen and invited me again
in 1987. sections 21, 22 and 23 are the result of seminars with Dr.
Klaus Timmerscheidt in 1987. Although only I am the person who is re
sponsible to these notes, I should say that these sections are the
joint work with him.

I am also grateful to Prof. Dr. Charles W. curtis, who kindly gave me
his informal lecture notes on linear algebraic groups which were very
useful for preparing Chapter 1. Finally I should like to ·thank Sophia
University for granting me the study leave twice and Frau Sabine
Weber for her beautiful and careful typing.

Sophia university, November 1989 Hideki Sawada
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la Affine algebraic varieties

In this chapter we explain basic ideas from affine algebraic varie

ties necessary for linear algebraic groups, which are defined by

affine algebraic varieties and their morphisms.

Throughout these lectures unless otherwise stated, K always denotes

an algebraically closed field, and an affine variety means an affine

algebraic variety.
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11. varieties

In this chapter we introduce the notion of variety, which is a gene

ralization of the notion of affine and projective varieties. The idea

of variety is necessary for defining the homogeneous space G/H of

an affine algebraic group G by its closed subgroup H.
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Algebraically independent 33 Alternating product 129
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