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Preface

Algebraic group theory is one of the basic subjects of graduate level
algebra. However, most of graduate programs of algebra do not teach
this important theory. This is because graduate students are expected
to have understood the theory before they entered the graduate pro-
grams. But it is often the case that they have not acquired the basic
knowledge of the algebraic group theory. Furthermore, there are a few
appropriate textbooks with which they can learn it by themselves.

The objective of these notes is to provide graduate students with
completely self-contained lectures with which they can learn the
basic theory of algebra. I explained most of the proofs of the theo-
rems from commutative algebras to algebraic geometry (Chapters 1 and
2). These would help them understand the basic concepts of algebraic
groups (Chapter 3) and construct homogeneous spaces of linear alge-
braic groups (Chapter 5). Also I attempted to relate a particular
theory of this topics to other subjects of algebra with which gra-
duate students may be familiar.

The original lectures started in 1980 when I was a Humboldt-fellow at
the University of Essen and continued sporadically at Sophia Univer-
sity since then. The manuscript was completed in 1988, one year after
the second visit to the University of Essen as a Humboldt and DFG-
fellow.

I am very grateful to my colleagues who were involved in this pro-
ject, especially Prof. Dr. Gerhard Michler, who gave me a chance of
giving the lectures at the University of Essen and invited me again
in 1987. Sections 21, 22 and 23 are the result of seminars with Dr.
Klaus Timmerscheidt in 1987. Although only I am the person who is re-
sponsible to these notes, I should say that these sections are the
joint work with him.

I am also grateful to Prof. Dr. Charles W. Curtis, who kindly gave me
his informal lecture notes on linear algebraic groups which were very
useful for preparing Chapter 1. Finally I should like to thank Sophia
University for granting me the study leave twice and Frau Sabine
Weber for her beautiful and careful typing.

Sophia University, November 1989 Hideki Sawada
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I. Affine algebraic varieties

In this chapter we explain basic ideas from affine algebraic varie-
ties necessary for linear algebraic groups, which are defined by

affine algebraic varieties and their morphisns.

Throughout these lectures unless otherwise stated, K always denotes

an algebraically closed field, and an affine variety means an affine

algebraic variety.



1. Definitions of affine algebraic varieties and morphisms

Let S be a non-empty set and M(S,K) be the set of maps of S in-
to K . Then M(S,K) has a natural commutative K-algebra structure

as follows:

For f£,g € M(S,K) , N € K and s € § ,

(£+g) (s) = £(s) + g(s) ,
(fg) (s) = £(s)g(s) and
(AF) () = Af(s) .

Assume that A 1is a K-subalgebra of M(S,K) , then we can define a

natural map, called an evaluation map, of 8 into HomK_alg(A,K)
which takes s to €q where
es(f) = f(s) for any f € A
€q is said to be an evaluation at s .
(1.1) Definition (see Steinberg [2]). Let (V,A) be a pair where

V is a non-empty set and A 1is a K-subalgebra of M(V,K) . We call
(V,A) an affine algebraic variety over K if

- A is finitely generated as K-algebra and the evaluation map of

V into HomK_alg(A,K) is bijective.

- A is called the coordinate ring of V and we write A = K[V]

(1.2) Example. Affine n-space. Let K" be the n-times direct pro-

n

duct of K where n 1is a positive integer and X, be a map of K
into K which takes (xl,xz,...,xn) e " to x; € K, where
1 < i ¢ n . Then the pair (Kn, K[Xl’xz""’xn]) is an affine alge-

braic variety over K . We call (Kn, K[Xl,...,Xn]) affine n-space.

From Lang [l1, Cor.4.6 on P.192] we can consider the coordinate ring

of K" as a polynomial ring in n-variables over K



Exercise 1. Verify Example 1.2.

Next we define a morphism between two affine varieties. Let S, and

82 be non-empty sets and wzsl - S2 be a map. Then the map

*
¢ :M(S,,K) = M(S,,K)

*
(¢ :f —— fog)
is a K-algebra homomorphism. In case 8, is a non-empty subset of

\ *
S, and ¢:8, — 8, is an inclusion map we write w for ¢

(1.3) Definition. Let (U,A) and (V,B) be affine varieties over
K . We call a map ¢:U = V a morphism of affine varieties if

*
¢ (B) C A . The map

: B— A
£ — fop)

. : N *
is called a comorphism of ¢ and is usually denoted by ¢ . When ¢

' R . —l 0 . . .
1s bijective and ¢ is also a morphism, we call ¢ an isomorphism

of affine varieties.

Exercise 2. Verify the following properties of morphisns.
(1) Let ¢:(U,A) » (V,B) be a morphism of affine varieties. Assume

that ¢ (U) = VvV , then w* is injective.
(2) Assume that ¢ and ¢ are two morphisms of (U,A) into (V,B)
and (V,B) into (W,C) respectively, then
Wop) =9 oy
and ¥ ° ¢:(U,A) » (W,C) 1is also a morphism.
(3) Let (U,A) be an affine variety. Then the identity map 1y of

. , 1] 3 . *
U 1is a morphism of affine varieties and we have (1U) = 1A

(4) If ¢:(U,A) » (V,B) is an isomorphism of affine varieties, then

* N (] .
¢ B> A 1s a K-algebra l1somorphism.

Now we introduce the Zariski topology on affine variety (V,A) , in

which a morphism of affine varieties is continuous.



(1.4) Definition. Let W be a subset of V , where (V,A) is an
affine variety over K . Then W is said to be closed (in V) if
W= (vev]| f(v) =0 for all f € X)

for some subset X of A . We sometimes write Y (X) for W , i.e.,

the set of common zeros of X in V .

Let X and W etc. be as in Definition 1.4. Assume that I 1is the
ideal generated by X , then W = ¥(I) . Hence a subset W of V is
closed if and only if there exists an ideal I of A such that

W=1v(1) . If J, € J, are ideals of A , then we have

1(I,) € V(T)) -

(1.5) Proposition. Let (V,A) be an affine variety over K , then
the closed sets in .V define a topology, called the Zariski topo-

logy.

Proof. Since V = ¥({(0)) and @ = ¥ (A) (notice that 1(v) =1
for all v € V) , V and the empty set are closed.

Assume that (VA}AEA are closed sets such that VA = W(IA) for some
ideal IA where AN € A , then we have AQA VA = Y (I) where

I = XEA I, is the ideal generated by (I Yyep -

Now let W, =7%(J;) and W, = 7(J,) be closed sets defined by the
ideals J, and J, respectively. Since

W, U W, =9(3; N3, ,
W,y U W, is closed in V . Q.E.D.

(1.6) Examples.

(1) The closed subsets of the affine l-space (K, K[X]) are K,0
and all the finite sets, because K[X] is a principal ideal do-

main.



(2) The circle V = ((x;,X,) € K2 | Xi + x5 = 1) 1is a closed set of
the affine 2-space (K2, K(X,,X,]) -
_ 2 _ U2 _ - ]
(3) V.= ((xy,X,) € K | (xy = x7) (X5 = X3) 0} 1is also a closed set

2
of (K%, K[X;,X,]) .

(4) Let x = (xl,xz,...,xn) e K" , then (x)} 1is closed in the affine
n
n-space, because (x)} = W(igl K[Xl,...,Xn](Xi - xi))

Let (V,A) be an affine variety over K and S be a subset of V
Let
$(8) = (f €A | f(s) =0 for any s € S)
be a set of elements of the coordinate ring of V which vanishes on
S . Then ¢(S) is an ideal of A , and
#(s,) € ¥(s))

if sl C 32 , and further we have

(1.7) Proposition. A subset S of (V,A) is closed if and only if
Y(9(S)) =8 .

Exercise 3. Prove Proposition 1.7.

(1.8) Proposition. Let ¢:(U,A) -» (V,B) be a morphism of affine

varieties (U,A) into (V,B) , then ¢ 1is continuous in the Zariski

topology.

Proof. Let F be a closed subset of V , then there exists an
ideal I of B such that F = #(I) . Since ¢ (£)(u) = fop(u) = 0
for any £ € I and u € w—l(F) ,

pTH(F) © V(e (1))
Let w € ¥(p (I)) , then ¢ (£)(u) = E(p(u)) = 0 for any f € I .
Hence ¢(u) € F , i.e., u € ¢~1(F) . Thus we have
w—l(F) = W(w*(I)) , which implies that ¢ 1is continuous. Q.E.D.

Remark. A continuous map (with respect to the Zzariski topology)

between affine varieties needs not always to be a morphism. For



example let (K,K[X]) be an affine l-space and define a map ¢:K = K
which takes 0 to 0 and x € K-{(0) to x—l € K-{0) , then ¢ Iis

continuous in the Zariski topology but not a morphism of affine va-

rieties.
Exercise 4. Verify the above Remark.
(1.9) Proposition. Let #(K) be a collection of all affine varie-

ties over an algebraically closed field K , then o (K) forms a ca-

tegory of affine varieties with morphisms of affine varieties.



2. Subvarieties of affine algebraic varieties

In this section we introduce a notion of subvarieties of an affine
variety and show that any affine variety over K is isomorphic to a

n

subvariety of (K, KX, X .,Xn]) for some n . For the rest of

g e
these lectures we always denote by o (K) the category of affine va-

rieties over K

(2.1) Definition. Let W be a non-empty closed subset of an affine

variety (V,A) over K , then we call (W,wv(A)) a subvariety of

V , where w is the comorphism of the inclusion map ¢: W - V .

The following proposition justifies the above definition.

(2.2) Proposition. Let (V,A) € #(K) and W be a non-empty sub-
set of V . Then W is closed in V if and only if (W,w(A)) 1is an

affine variety.

Proof. Let ¢:W - V be an inclusion map, then = was defined to
be the comorphism of ¢ as follows

mT:M(V,K) - M(W,K)
(mef ———— w(L£):w - £(w))

Let eyih K be an evaluation at v € V , and let e&:v(A)’% K Dbe

an evaluation at w € W . From the definition of w we have

e ==¢' oy for any w € W
W \ Y

We first assume that (W,w(A)) is an affine variety. It is clear that
Y($(W)) D W . We shall apply Proposition 1.7. Let =z € ¥ ($(W)) , then
f(z) = 0 for all f € #(W) . Since Ker(w|A) = $(W) , we can define
a K-algebra homomorphism

EZ : A/Ker(w|pA) — K

(Ezzf + Ker(w|A) — f£(z)) .

Since w(A) £ A/Ker(w|A) and (W,w(A)) is an affine variety, there



exists w € W such that e_ = e Thus we have 2z = w € W , because

' L]
z W

e o = e_ = e'loy = e .
z z w \

Next we assume that W is closed in V . Since A 1is finitely gene-
rated as K-algebra, so is w(A) . Thus all we have to do is to show
that the following evaluation map

E:W - Hom (m (A) ,K)

K-alg
. —_— 1
(E:w ew)
is bijective. Let © € HomK_alg(w(A),K) , then ©ow € HomK_alg(A,K)
Therefore, there exists z € V such that ©6om =-e_ . Since w(f) = 0

for all f € $(W) , we have ez(f) = f(z) = 0 for any £ € #(W)

Hence =z € Y($(W)) = W (see Proposition 1.7). Since
O(w(f)) = e (f) = £(z) = w(f)(2) = e (v(£)) for all w(f) € w(A) ,
we have 06 = eé . Thus the evaluation map E 1is onto. Finally assume

for certain w and w, € W , then we have

1) — 1
that ew ew 1 5

1 2
e& °om =e, = e& om =€
1 1 2 2
which implies W, = W, o because (V,A) € A(K) . Q.E.D.
Exercise 5. Let (V,A) € 4(K) and W be a non-empty closed subset

of V. Let S be a subset of W . Show that S 1is closed in
(W,m(A)) , i1.e., S = ﬂw(a) for some ideal a C w(A) if and only if

there exists an ideal I of A such that S = WV(I) nw.

(2.3) Theorem. Let (V,A) be any affine variety over K , then

(V,A) 1is isomorphic to a subvariety of K", K[X,,X ..,X_]1) for
1 n

2'°

some n . More precisely assume that A is generated by n-elements

{al,az,...,an} and let ¢ be a map which takes v € V to
(al(v),az(v),...,an(v)) e " , then ¢:V - K" is a morphism of
. *
affine varieties such that ¢ (V) =17 n(Ker ¢ ) and the map
K

PV — ¢ (V)

(p5:V — #(V))
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is an isomorphism of varieties.

For the proof of this theorem we need the following lemma and propo-

sition.
(2.4) Lemna. Let (U,A), (V,B) € sf(K) and let ©:B -2 A be a
K-algebra homomorphism. Then there exists a unigque morphism ¢:U = V

such that © = W*

Proof. For any u € U we define ¢(u) € V ‘to be a unique element

in V such that €y ° 6 = Notice that

€ (u)

ey ° © € Hom (B,K) and (V,B) € #(K) . Since

K-alg

ey © O(b) =0 (b) (0) = ) (b) = b(r(u) = o¥(b)(u) for b€ B and

€
¢ (u

*
u€ U, we have ©O(b) =¢ (b) for all b€ B, i1.e., O =49

*
Next we shall prove the uniqueness. Assume that = 6 for some
morphism :U - V , then for b € B and ue€ U,

* *
p (b)(u) =y (b)(u) , i.e., b(p(u)) = b(¥(u)) . Thus we have

€o(u) = Cy(u) ’ which implies ¢(u) = y(u) . Hence ¢ is unique.
Q.E.D.
(2.5) Proposition. Let (U,A), (V,B) € o(K) and ¢:U >V be a
*
morphism such that ¢ (B) = A . Then ¢ (U) = ¥ (Ker w*) , l.e., ¢ (U)

is closed in V and the map

P50 — ¢ (U)
(pyiu — (1))

defined from ¢ 1is an isomorphism of varieties.

%
Proof. First we show that ¢ (U) 1is closed. Let I = Ker ¢ and
£f €I, then f(¢(u)) = w*(f)(u) = 0 for any u € U . Hence
p(U) C ¥ (I) . Next let v € ¥(I) . Since eV(I) = 0 , the map

8:A — K

(019" (£) — e (£))
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is well-defined, where f € B . Hence 0O = e/ for some u € U , be-

cause (U,A) € #(K) . Thus we have
e (7 (0)) = @ (£)(0) = £(p(w) = £(V)

for all £ € B . Hence ew(u) =€, which implies v = ¢(u) . There-

fore, Y (I) C ¢(U) . Thus we have ¢(U) = V(I) .

Now let w:M(V,K) - M(p¢ (U),K) be the comorphism of the inclusion map
p(U) » V . Then from Proposition 2.2 we have (¢ (U),m(B)) € d(K) .
Since

Pl r(£)) (W) = w(£) ° w (W) = £(p(W) = ¢ (£) (1)

for any f € B, u € U, wZ(v(f)) = w*(f) for any f € B . Since

* * . . .
¢ (B) = A from the assumption, wo:v(B) -» A 1is also surjective.
’ * * L] ’ L] . * L]

However, since Ker(w|B) = Ker ¢ , P, 18 injective and P, 18 @

K-algebra isomorphism. From Lemma 2.4 there exists a unique morphisnm

* * -1
Yv:p(U) » U such that ¢y = (wo) .

Finally we only have to check that ?, ° Y = lw(U) and

oo Po = lU . Since
o LA S - (1 * d
(b o W) =¥ o T tw(B) ( w(U)) an
. L *
(\I’ “{)O) - (PO \p = A - ( U) 14
from Lemma 2.4 we have woow = 1@(U) and wowo = 1U . Q.E.D.
Proof of Theorem 2.3. Since A is finitely generated, let

(al,az,. .,an} be a set of generators of A . Then we can define a

K-algebra homomorphism e:K[xl,xz,...,xn] - A such that 6 takes

Xi to a; - From Lemma 2.4 there exists a morphism ¢:V - k" such

*
that © = ¢ . Since evoe = e for all v € V from the proof of

P (V)
Lemma 2.4, we have

p(v) = (al(v)l az(v)l“‘larl(v))

for any Vv € V . From Proposition 2.5 V 1is isomorphic to the sub-

* . . .
variety ¢ (V) = ¥(Ker v ) of K" , because © 1is surjective.
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Exercise 6. Let (V,A) € 4(K) and x be any point in V . Show

that (x) 1s closed in V .

Finally we shall end this section introducing an idea of principal
open sets which are open sets of a given affine variety but have

another affine variety structures.

(2.6)_Dbefinition. Let (V,A) € d(K) , and f be an element of A .
We call a subset of the form
' Vf={v€V|f(v);éO)

a principal open set of V .

(2.7) Lemma. Let (V,A) € #d(K) . Let £ € A - {(0) and A, be the

ring of fractions of A by (fn | n € N) (for the definition of a
ring of fractions see Lang [1, Chap.II,§3]), where IN is the set of

natural numbers including 0. Then the ring Ag is also a K-algebra

(we define

a = 8 ¢ a ¢
C(Tﬁ) = - for any c¢ € K and ™ € Af ) .
£ £ f
and we can define an injective K-algebra homomorphism
pihg > M(Vg,K)
such that p(é—)(v) = av) for any Vv € V_. , where g&_¢n
£h f(v)n £ £h £

Exercise 7. Verify Lemma 2.7.

Remark. Let Lf:A - A be the map such that cf(a) = % , where A

£

and f are as in Lemma 2.7, then e is a K—algebfa homomorphism.

(2.8) Proposition. Assume that (V,A) € f(K) and £ € A - (0)
as a K-subalgebra of M(Vf,K) by Lemma 2.7, we

Then considering Ag

have (Vf,Af) € o (K)
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L3 . l
Proof. Since Af is generated by A8y 1 F where
{al,az,...,an) is a set of generators of A , we only have to show
that the evaluation map of Vf into HomK—alg(Af'K) is bijective.
Let © € HomK_alg(Af,K) , then we have © o L = €y for some
v € V., because 06 © v, € HomK—alg(A’K) . Since
o(1) =1=0(f- 1) =£w)e(}) , ve have £(v) # 0, i.e., VETV.,
1 1 ay - 9(dy (X = 1_yn_ _a(¥) g
and e(f) =T Hence ©( n) = 9(1)(_n) a(v)(f(v)) 5 for
£ £(v)
any éﬁ € Ag and © 1is an evaluation at v € Ve -
f
. ='
Since €y e, as elements of HomK_alg(Af,K) means
e0ly = € %lp where v,v' € Vf , we have
eVOLf(a) = a(v) = a(v') = eV,OLf(a) for any a € A
= ! ! ~ N
Hence v \Y% and the evaluation map of Vf into HomK_alg(Af,K)
is injective. Q0.E.D.

(2.9) Remark. Let (V,A) € d(K) and O # @ be an open set of V ,
then there exist £._,£f ..,f; € A such that

1r-2" 1
0O =YV Uv, U -+« U V_ .
5 f1
Exercise 8. Let (V,A) € f(K) and £ € A - (0) .
(1) Verify that a subset O of Ve is open in (Vf,Af) if and only

if O is open in (V,3) .

(2) Show that V. N F is closed in (V for any closed subset

£/ 2g)
F in (V,B)
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3. Products of affine alqebraic varieties

Let (U,A), (V,B) € #(K) . We shall show how to construct a product
of affine varieties (U,A) and (V,B) in #(K) by making use of the

tensor product of the two commutative algebras A and B

Let R be a commutative ring and E, E, o vee s E and F be
left R-modules. We call a map
£ : E1 X E2 X oo X En — F

R-multilinear if

(e ,--w,e; + el cu.e) =vf(e1,...}ei,...,en) S I CHPPNE Y NS
for all (el,...,en) € E1 X E2 XooaX En and ei € Ei , where

1< 1i<n, and

f(el,...,rei,...,en) = rf(el,...,ei,...,en)

for all (el,...,en) € E; X E, XeooX E_, T € R and 1 < 1 {(n

A tensor product of E, , E, ,..., E| is a pair (T,0) where T is

a left R-module and

e El X E2 XeooX En —_— T

is an R-multilinear map with the following universal property: if F
is any left R-module and

£ El X E2 XooeX En — F

is any multilinear map then there exists a unique R-homomorphism
f : T —> F such that
T .3
3] iy
/ﬂ .\‘f
El X E2 X .. X B ———E——*ﬂ F .

We write e, ® e, ®...0 e, for G(el,ez, f’en) where
(el,ez,...,en) € El X E2 XowaoX En .

In order to introduce necessary notations we should like to review

some results from tensor products.
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Proposition. Let R be a commutative ring. Assume that A is a
free R-module with R-basis (a;) and B 1is also a free R-module
i€Tx
with R-basis (b.) , then A ®R B is a free R-module with R-basis
:] j€J
(ai ® b.) .

37 (1i,9)€T x J

(3.1) Proposition. ILet A and B be commutative algebras over a

field Xk . Then A ®k B is a commutative k-algebra with the follo-

wing multiplication

(> a, ® b,) (2 a, ® b,) = 3 a,a, ® b,b, ,
I i 3 | j i, * J i3
where ‘2 ay ® b.l ' ? aj ® bj € A ®k B .
1 J
Proposition. Let A and B be commutative algebras over a field

B be two k-algebra

k . Let a : A —— A ®{ B and p «+ B— A ®

} k
homomorphisms such that
a(a) = a ® 1 for any a € A and
B(b) =10 Db for any b € B .

Then the triple (A ®k B,a,B) satisfies the following property: for

any commutative k-algebra € and k-algebra homomorphisms
¢ +t A——> C and ¥ : B —— C there exists a unique k-algebra ho-
momorphism

9:A®kB————9C

which makes the following diagram commutative,

A8, B
2" 5, 8
: “1e
A0 g B
NP A

Remark. O(a ® b) = ¢(a)y(b) for any a ® b € A ®k B
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(3.2) lemma. Let (U,A) , (V,B) € f(K) and ¢ be a map of A x B
into M(U x V, K) which takes (a,b) € A x B to
t((a,b)) + Ux V—> K . Then there exists a K-algebra homo-

(¢((a,b)) : (u,v) —— a(u)b(v))
morphism ¢ of A ®: B into M(U x V, K) which makes the follo-

wing diagram commutative.

A® B
///(] N

A x B - M(U x V, K) .

Further the map ¢ is injective.

Proof. We only have to check that © is injective. Take a K-basis

(ai) of A , then it is clear that every element of A ®K B is a
i€

sum of elements (a; ® by | i € I) for some b;'s € B . Assume

(s a, ® b,) = 0, then we have
ier
(3 a; ® by) (w,v) =3 a;(u) by(v) =0 for all (u,v) €UxV
i€x i€l '
Hence we have 3 a, b,(v) = 0 for any fixed v € V . Since (a;)
. i7i i’,
1€ 1€l
is a K-basis of A , we have bi(v) = 0 for any i . Thus bi =0 .
Hence X a, ® bi =0 and ¢ is injective. Q.E.D.

i€l
From the above lemma we shall regard A ®K B as a K-subalgebra of
M(U x V ,K) by

Tt A 8, B —— M(U x V, K)
Notice that ©(a ® b) (u,v) = a(u) * b(v) for any a ® b € A @K B

and (u,v) € U x V

(3.3) Proposition. Let (U,A) and (V,B) be affine varieties over

K , then
(1) (U x V ,A ®K B) € A(K) ,
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(2) let LY t: UXx V— U and LB : Ux V—YV
(wl : (u,v) — u) (wz : (u,v) — V)
be projections, then L and T, are morphisms and are open maps

(i.e. they map any open set Y of U x V onto the open sets wl(Y)
of U and wz(Y) of V respectively), and

(3) for any affine variety (W,C) over K and morphisms
E:W—>U and n : W — V there exists a unique morphisn

X : W —— U x V which makes the following diagram commutative,

Ux V

3, 0

X \'

S

<3

\:\

esee s a0 s
N

= .

Proof. (1) Assume that A 1is generated by (a;,a,,...a } and B

is generated by {bl,bz,...,b } as K-algebras, then A ®K B is ge-

n

nerated by (a; ® 1, 1@ bj) | 1 ¢i¢m and 1 < j ¢ n) as K-alge-

bra. Thus we only have to show that the evaluation

map : U x V —— Hom (A ®

K-alg B, K) 1is bijective.

K

Let © be any element of Hom (A ®K B, K) , then the maps

K-alg
0
91 t A— A ®KB — K
(a — a ©® 1)
and
. <)
92 : B—-——-—)A@KB-—-)K
(b — 1 @ Db)
belong to HomK—alg(A’K) and HomK_alg(B,K) respectively. Since
(U,A) ,(V,B) € d(K) , there exist u € U and v € V such that
el = €L and 92 =€, - It is easy to check that © = e(u,v) Thus
the evaluation map is onto.
Now assume that e(u,v) = e(u',v') for some (u,v) and

' ' = -
(u',v') € U x v , then e V)(a ® 1) e(u',v')(a ® 1) for any
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a € A . Hence we have a(u) = a(u') for any a € A, i.e.,

e Hence u = u' . Similarly we have v = v' . Thus the eva-

= e '
u u

luation map is injective.

(2) First we shall prove that Tr;i(A) CA®, B .Let £ bean ele-

ment of A ,
m

TI(E) t U XV L,y-Lfox
*
(w (£) = (4,v) — u — £(u))
Since f(u) = (£ ® 1)(u,v) for any (u,v) € U x V , we have
w;(f) = f® 1 € A ®K B . Thus L is a morphism. Similarly L is

also a morphism.

Now let Y be an open set of U x V and v be a fixed element of

V . Let jv t: U——> U x V be a map which takes u € U to
(u,v) € U x V . Then we have

 * - _ . -
jv(i fi ® gi)(u) = ? fi(u) gi(v) for any u € U

and ? fi ® 94 € A ®K B .
% Jy Z;£,89y
jv(E fi®gi) t U —— U x V——— K
i
L *
(Gy( 5@ gj) @ — (u,v) ———— 3 £;(W)g; (V)
X " _ i , ) . , ,
Hence )V(i fi ® gi) = ? gi(v)fi € A . Therefore Jy, 1is a morphism.
Since wl(Y) = U j;l(Y) . wl(Y) is open (see Proposition 1.8).
VEWZ(Y)

Similarly, w_,(Y) 1is also open.

5 (

(3) Define x:W > U x V to be the map which takes w € W to
(E(w), m(w)) € U x V . Then we have

x*(f) t W =X U xV —f K

(x(£) +w —— (E(w), n(w) — 3 £,E (W) gym (W)
1
£

for any £ = ® g, € A®_, B

1 K

e M

i



|

s * .* _ *_.*
Since ? £;8(w)-gyn(w) = 2 & (£5)(wW)em (g;) (w) = (? £ (£;)m (g;)) (W)
* .
for any w € W , we have x*(f) =3 € (fi)'n*(gi) € C . Thus x 1s a
i

desired morphism. The uniqueness is clear from the definition of x
Q.E.D.

We call (U x V, A ®K B) the product of affine varieties (U,A) and

(V,B)

(3.4) Proposition. Let (U,A) and (V,B) be affine varieties over

K . Then

(1) Fl x F, is closed in the affine variety (U x V, A ® B) for

any closed sets F in (U,A) and F, in (V,B)

(2) 0, x 0, is open in the affine variety (U x V, A ® B) for any

open sets O1 in (U,A) and O2 in (V,B) .

Exercise 9. Prove Proposition 3.4.
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4. Tangent spaces to affine algebraic varieties

We first introduce an algebra of dual numbers over an arbitrary field

k
(4.1) Definition. An algebra of dual numbers k[e] over a field Xk
is defined by k[e] = k x k ,

(x,y) + (x',y') = (xtx', y+y') and

(x,y) (x',y') = (xx', xy'+yx'")

for any (x,y), (x',y') € k{e] . Then k[e] is a k-algebra with a
unity element (1,0) . We write e for the element (0,1) . Thus
e? =0 and kl[e] = k ® ke .

Now let (V,A) be an affine variety over K and assume a:A - K[e]

be a K-algebra homomorphism, then we have

(4.2). a=p 4+ 7e , i.e., a(a) = p(a) + 7(a)e for any a € A ,
where
B:A » K is a K-algebra homomorphism

and T:A » K 1is a K-linear map satisfying

4.3). 7(ab) = p(a)y(b) + vy(a)pB(b) for any a and b € A .
Conversely for any couple of K-linhear maps B and 7 of A into K
such that B is a K-algebra homomorphism and 7 satisfies (4.3),

the map a:A - K[e] defined by (4.2) is a K-algebra homomorphism.

Let a:A - K[e] be a K-algebra homomorphism and fp,7 be as in

(4.2), then we have f = €y for some Vv € V . Hence (4.3) has the

following form:

4.3)°'. 7(ab) = a(v)y(b) + yv(a)b(v) for any a,b € A



(4.4) Definition. Let (V,A) be an affine variety over K . A
K-linear map 17:A - K satisfying (4.3)' for some v € V is called a
tangent vector to V at v . The set of all tangent vectors at v

forms a vector space over K called the tangent space T(V)V of V

at the point v .

The operations of T(V)V are as follows:

(1+1') (a) = 7(a) + 71'(a)
(c7) (a) = cy(a)
where 7,7' € T(V)_ , a € A and c €K .

Exercise 10. Let (V,A) € (K) and v € V . Verify that
(1) 7(1) = 0 for any 17 € T(V)V '

(2) each tangent vector 7 to V at v is determined by the

values at generators of A

(4.5) Example. Let (Kn, K[Xl,XZ,...,Xn]) be an affine n-space,

and Vv be any fixed element of K" . Let T4 be a map of

K[Xl,Xz,...,Xn] into K such that

~ Sf
7i(f) = 6Xi (v) for any £ € K[Xl,...,Xn] .

m ' ] - 4 n
Then the set (71,72,...,7n} is a K-basis of T(K )V

Proof. Let Ty be a map of K[Xl,XZ,...,Xn] into K such that
oy o OF . -
71(f) = 6Xi (v) for any f € K[Xl’X2'°"’Xn] . Then for any
f,g € K[Xl,Xz,...,Xn] and ¢ € K we have
o (£+ ) (3
vi(eve) = Sl () = g () g )
1 i i
- _ 6(cf) _ O f
and 7i(c£) = 5. (v) = c S (v)
i i
Hence 7, is K-linear. Now let a,b € K[Xl,Xz,...,Xn) , then
6(ab) _ ba N b
b + a %

5X.  6X,
1 1 1



Thus we have 'yi(ab) = b(v)'yi(a) + a(v)7i(b) .
Therefore, 17, € T(Kn)V for any 1 < i {( n . Next we shall prove

that (7, | 1 ¢ i< n) span T(Kn)v . Let 7 be an arbitrary ele-

n
ul n | —— ] n
ment of T(K )V . Put q!' = igl 'r(Xi)'yi , then 7' € T(K )V and

7'(Xi) = 7(Xi) . Since a tangent vector is determined by the values
at generators of K[Xl’xz""'xn] , we have shown that T(Kn)V is

generated by {11,12,...,7n} as a K-space.

Finally assume that 7T, = 0 for some (cy) C K , then

i n 6
2, Cy13(5) = 425 ¢4 5% (v) =0

for all £ € K[Xl’xz""’xn] . By taking £ = Xj we have cj = 0

for all 1 ¢ j < n . Q.E.D.
5%, _

Remark. Ti(Xj) = 3?1 (v) = 6 +1 for all 1 ¢ i,j ¢ n , where

i3

(v;) are as in Example 4.5.

Now let ¢:U -» V be a morphism of affine varieties (U,A) into

(V,B) . If «a:A - K[e] 1is a K-algebra homomorphism, then

*
*
a o ¢ B 2 A% K[e]
is also a K-algebra homomorphism. If a = B+ye with p = € for
some u € U , then
* * *
ao g =Pog + (109 )e
* * .
and B o ¢ = €u o p = ew(u) . Hence we can conclude that 1if

T € T(U)u for some u € U , then 17 o° w* € T(V)w(u) and the map

de = T(U)u——» T (V)

u ¢ ()

*
(dp, ¢+ 7 — 7°¢ )

is K-linear.
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(4.6) Definition. Let ¢:U » V be a morphism of affine varileties
(U,A) into (V,B) . Let u be an element of U , then we call the
map

d<pu:T(U)u —~4T(V)¢(u)

*
(deyt v — 71°9¢ )

the differential of ¢ at u .

The following proposition is clear.

(4.7) Proposition. Let (U,A), (V,B) and (W,C) € #(K) and
¢:U >V and y:V - W be two morphisms. Then

(1) d(y o ¢)u = dy o de¢ for any u € U .

¢ (u) u

de
T(U), ——— T(V)

d(\l'w)u\ e ../ ay

TW oy (u)

¢ (u)

¢ (1)

(2) kdl for any u € U .,

vu = tru)

(3) If ¢:(U,A) 2 (V,B) 1is an isomorphism of affine varieties, then

d<pu:'I‘(U)u = T(V)w(u) for any u € U .

(4.8) Proposition. Let (U,A) and (V,B) € #(K) , and

wle X V- U and WZ:U X V -» V be the projections. Then for any

pair (u,v) € Ux V the map ¢ of T(U x V) into

T(U) + T(V) (the external direct sum) which takes
w v

* * . .
n € T(U x V) (u,v) to (n o Ty MO 1r2) € 'I‘(U)u + 'I‘(V)V is a

K-linear isomorphism.

Proof. Since L and T, are morphisms, we have

(momy, no v;) € T(U), + T(V), and the map ¢ is well-defined and
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K-linear. Let

leU — U x V and L2!V — U X V

(tp:x — (x,V)) (tyy — (w,y))

be injective maps of U and V into U x V respectively, then ¢,

and ¢, are morphisms and we have

Ty ° Ly = 1U and T, 0 L, = 1V .
From Proposition 4.7 we have
d(wl ° Ll)u = (dvl)(u,v) ° (dcl)u - lT(U)u and
A(my © 1)y = (dry) (g oy © (Aty)y = 1T(V)V . Let

(nl,nz) € T(U)u + T(V)V , then from the above facts

ny = (@) (g gy (my 0 )

*
and n, = (dvz)(u,v)(n2 o Lz)

. * *
Since LERRALEY and n, ° t, are elenments of T(U x V)(u,v) and

*
d(wlOLz)V(nz) = 772 ° (Trlo"z) =0 7

Il

* *
we have ¢(n1 ° ty + n, © L2) = (nl,nz) .

Finally assume that ¢(n) = 0 for some = € T(U x V)(u v) then
14

o o = o) * i
n T, = 0 =7 Ty - Since
%*
vl:A — A Q@ B
* *
(wl:f — vl(f) = fel:(x,y) ~f(x)) ,
* *
where (x,y) € Ux V , mn o T, =mow, =0 implies nn = 0 . Q.E.D.
Exercise 11. Let (U,A), (U',A'), (V,B) and (V',B') € d(K) and

L:U » U' "and p:V -» V' be morphisms of affine varieties. Let h be
a map of U x V into U' x V' which takes (x,y) € U x V to
(n(x), p(y)) € U' x V' , then h is a morphism of affine varieties
and

(Ah) (M. © tr +m, 0 () = (Au).(ny) © ! + (a o 1"

: a1 17 M) 2! T Wy 1 (dp), (my) 2

for any point a = (u,v) € U x V , where n, € T(U)u , M, € T(V)V ,

2
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Ll:U — UuxVvVv, L22V —U x V , Li:U' — U' x V!

(Lytx = (5,v))  (tyiy — (WY))  (1f:x — (X,p (V)

and Lé:V' — U' x V!

(chiy — ((w,y))

— Noetherian ring -

et R be a ring and M a left R-module. We call M a Noetherian

module if it satisfies any of the following three equivalent con-

ditions:

(1) Every submodule of M is finitely generated.
(2) Every ascending sequence of submodules of M ,

M1 C M2 C M3 cC...

terminates, i.e., there exists i such that My = My,q =«--

(3) Every non-empty set S of submodules of M has a maximal ele-
ment, i.e., a submodule Mo such that for any element N of S

which contains MO we have N = Mo

We shall say that a commutative ring R is Noetherian if R is a

Noetherian module as a left R-module.

(4.9) Examples.

(1) Hilbert's Basis Theorem (see e.g. Lang [1, Th.2.1l on p.226]).
If A is a commutative Noetherian ring, then the polynomial ring

A[X] in one variable with coefficient in A is also Noetherian.

(2) From (1), the polynomial ring k[Xl,Xz,...,Xn] in n-variables

over a field k is Noetherian.

(3) From (2), any finitely generated commutative algebra over a field

k is Noetherian.
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Now let V be a subvariaty of K" , i.e., V 1s a non-empty closed
subset of K% . Let (:V — K' be an inclusion map, then ¢ is a

*
morphism. Since (K[Xl’x .,Xn]) = K[V] , we have

o
K[Xy Xy, oo X 1/9(V) 2 K[V] .

Since K[X X500 X is Noetherian, ¢ (V) 1is finitely generated.

n’

(4.10) Proposition. Let V be a subvariaty of K" and
b = {7 € T(Knjv | 7(#(v)) = 0) , where v € V . Then

v
(1) the map p:<I>V ———>T(V)V is a K-linear isomorphism, where

(pty — 7)

*
7(t (£)) = v(f) for any £ € K[Xl,Xz,...,Xn] , and
. of 6f
= — i 1
(2) dlmK QV n-rank 5%, (V) ,¢.ey e (v) ’
6f 6f
r r
% (V) eee o5 (V)
where {fl,fz,...,fr} is a set of generators of ¢ (V)

Proof. (1) Straightforward.
(2) From the proof of Example 4.5, if g € T(Kn)V , then
n
= .E X- . .
T = 52y T(Xy) T4

Thus we have: 17 Dbelongs to @

v
r
= 7(121 aifi) =0 for any ay € K[Xl’XZ”"'Xn]
r
= igl ai(v)7(fi) = 0 for any ay € K[Xl,xz,...,Xn}
= 1(fi) =0 for any 1 ¢ 1< r

I
o

TX)TL(EL) +eent 1 (X )7, (£,)

Hence



Exercise

(3 n
dlmK( (XlIXZI' -:Xn) € K :
7, (£)
6f 6f
oLy 0Ly
5X1 (V) re* 1 5Xn (V)
n - rank . .
6fr 6fr
5% (V) seee 0 R (v)
12. Prove Proposition 4.10.1.
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5. Noetherian spaces

In this section we show that an affine variety is a Noetherian space,

which has a finite number of irreducible components.

Let (V,A) be an affine variety over K , then A is Noetherian

from Examples 4.9. Let

WlD W2 J...D WrD Wr+1 ...

be a descending chain of closed sets in V . Then we have
$(W)) € $(W)) C...C (W) C F(W ) Cens

Since A is Noetherian there exists an integer n such that

FM ) = (W 1) =W ) =...
Thus we have shown that
Wy = W(ﬁ(wn)) - W(?(Wn+l)) = W1 = Wt
(see Proposition 1.7). Hence we have
(5.1) Proposition. Any affine variety (V,A) has the descending

chain condition (D.C.C.) on its closed sets or equivalently it has

the ascending chain condition (A.C.C.) on its open sets.

(5.2) Definition. We shall say that a topological space X is

Noetherian if it has A.C.C. on its open sets, i.e., any non-empty set

of open sets of X has a maximal element.

Thus an affine variety is a Noetherian space.

(5.3) Definition. A topological space X 1is irreducible if for any
closed sets Xl and X2 such that X = Xl U X2 we always have
X = X1 or X = X2 . A subset S of a topological space X is

irreducible if S8 1is irreducible with its induced topology.
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From the definition X 4is an irreducible topological space if and
only if any two non-empty open sets in X have non-empty inter-
section. Hence a topological space X is irreducible if and only if

any non-empty open set of X 1is dense. Thus we have

(5.4) Proposition. A subset S of a topological space X is irre-
ducible if and only if the closure § of S is irreducible.

Remark. Let X be a topological space and Y be a subspace of
X . Then it is clear that a subset W of Y is irreducible in X
if and only if W is irreducible in Y with respect to the relative

topology on Y .

(5.5) Proposition. Let (V,A) € #(K) , then a non-empty closed sub-
set W of V is irreducible if and only if ¢ (W) is prime. Parti-

cularly V is irreducible if and only if A is an integral domain.

Proof. First we assume that W is irreducible and ab € #(W) for
some a,b € A . Let

Wl={w€W|a(w)=O) and W2={w€W|b(w)=0)
Since (ab)(w) = 0 for any element w € W , we have a(w) = 0 or
b(w) = 0 , which implies W = W, U W, . Since W 1is irreducible,
Wl = W or W2 =W . Thus a € (W) or b € ¥ (W)

Conversely assume that ¢ (W) 1is prime and W = W, u W, with some

closed sets W and W, . Suppose that W # W i.e.,

1 1/
(W) # f(wl) . then ¢ (W) 5 y(wl) and there exists
a, € y(wl) - P (W)
Since ¢ (W) = @(Wl) n $(W2) from the assumption, we have aob € I (W)
for any b € f(wz) . Hence b € ¢ (W) , because ag ¢ $(W) and JI(W)
is prime. Thus @(Wz) C (W) and further f(Wz) = $ (W) . Therefore,

W="9(FMW)) =74 W,)) =W, and W is irreducible. Q.E.D.
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(5.6) Lemma. Let X and Y be topological spaces and assume that

X 1s irreducible. Let ¢:X - Y be a continuous map, then ¢(X) is

irreducible.
Exercise 13. Prove Lemma 5.6.
(5.7) Proposition. Let (U,A) and (V,B) be irreducible affine va-

rieties over K , then (U x V, A ® B) -is also irreducible.

Proof. Assume that U x V = Zl U Z2 , Where Zl and Z2 are

closed subsets of U x V . Let

., U — U x V and J.. V. — U x V

VO uo

(jVO:u — (urvo)) (ju():v - (uo.lv))

be maps of U and V 1into U x V respectively where vy € V and
U, € U are any fixed elements of V and U . Then from the proof of

Proposition 3.3.2 jV and ju are morphisms of affine varieties.
o o

Thus jV (U) = U x (vg) is irreducible from Lemma 5.6. Hence
O

U x {vo) C Zl or Z2 . Let Vi = (v eV | (uv) e Zi for all

u € U) where i = 1,2 , then V = V1 uv Further since

5 °

g — 0—1
Vi= @y vevlouv) ez = 03,73
A is closed for each i = 1,2 . Thus V = v, or V=1vV,, because
V 1s irreducible. Hence U x V = Z1 or 22 . 0.E.D.

Finally we shall show that a Noetherian space is the union of its

finitely many maximal irreducible subsets.

Let X be a Noetherian space. Let # = (W | WC X and W 1is closed
and W cannot be expressed as a union of finitely many closed irre-
ducible subsets of X) . Assume that # # ¢ , and let W, be a mini-
mal element in # (notice that X 1is Noetherian). Thus W itself
is not irreducible. Hence W, = Wl U W, where W1 and W, are pro-

per closed subsets of W, . By minimality of W, we have W, ¢ I



_31_

for i = 1,2 , which implies that WO = W1 U W2 is also a finite

union of closed irreducible subsets contradicting to the assumption

WO € i . Hence we have proved:

(5.8) Lemnma. Assume that X is a Noetherian space, then X is the

union of a finite number of closed irreducible subsets.

Now we can prove the following theorem:

(5.9) Theorem. Let X be a Noetherian space. Then

(1) any irreducible subset of X is contained in a maximal irredu-
cible subset (which is closed from Proposition 5.4),

(2) X has only finitely many maximal irreducible subsets and is the
union of them, and

1 f = = ! ! !
(3) if X X1 U X2 u...uU Xt X1 U X2 u...U XS where

(X | i =1,2,...,t) and {Xj | 4 =1,2,...,8) are maximal

irreducible subsets of X such that Xi #A X if 1 # k and

k

Xj # Xy if j # 1 , then we have

(X Xyreoe Xy ) = (X3,X5, 000, X0)
Proof. From Lemma 5.8 X is the union of a finite number of closed
irreducible subsets Xl’Xz""'Xn . We can assume that Xi ¢ Xj '

when i # j . Let S be any irreducible subset of X , then

S = (SN Xl) U (s n Xz) U...U (s N Xn) . Hence S = S5 NN Xi for some
i , which implies that S C Xi . Thus each X, 1is a maximal irredu-
cible subset of X , and Xl,Xz,...,Xn are precisely the maximal
irreducible subsets of X

(3) also follows from the same argument. Q.E.D.

(5.10) Definition. We call the maximal irreducible subsets of a

Noetherian space X the irreducible components of X




Exercise 14. Let X be a Noetherian space. Then

(1) any open subset of X 1is Noetherian with respect to the relative
topology;

(2) any closed subset of X is Noetherian with respect to the rela-
tive topology;

(3) let F be a non-empty closed subset of X and F = Fl u...u Fl

be irreducible components of F . Let O be an open subset of X

such that F, N O # @ , then F, N 0 1is an irreducible component

of FNO.
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6. Some results from commutative algebras

In this section we shall explain two main theorems from commutative
algebras which are necessary for further development, that is, Hil-

bert's Nullstellensatz and Noether Normalization Theorem.

- Transcendence degree -

Let L be an extension field of a field k , and S be a finite
subset of L , i.e., 8 = (xl,xz,...,xn) . Let T, be the direct pro-

duct of n N's , i.e.,
T =N xIN x...x N ,
n

\\__\\J,,_,//

n
where IN is the set of natural numbers including ©0 . Then S is

said to be algebraically independent over k , if whenever we have a

relation
ti tz tn —
Atzk g ¥ Xp ee¥, =0
€ “Th
with alsmost all At = 0 , where ¢t = (tl’tz""’tn) € Tn , then
At = 0 for all t €T
n

A subset A of L is algebraically independent over k if every
finite subset of A 1is algebraically independent. Since the set of
all algebraically independent subsets of L 1is inductively ordered
by ascending inclusion, there exist maximal elements in that set.
Thus a subset A of L which is algebraically independent over k
and is maximal with respect to the inclusion ordering is called a

transcendence base of I, over k . It is clear that if A is a

transcendence base of L over k , then I 1s algebraic over the

field k(&) generated by A over Kk

Similarly we have the following proposition.



(6.1) Proposition. If I' is a set of generators of L over Kk ,

i.e., L =Xk(I') and o is an algebraically independent subset of
I' , then there exists a transcendence base % of L such that
4 C % C I , because

(T | £ cTCcTr and T is algebraically independent over Xk }

is also inductively ordered.

(6.2) Proposition. Let k be a field and L be an extension field

of k . Then if L has a transcendence base S with a finite number

of elements Xy rXgpeoo Xy then any other transcendence base has n

elements.

Proof (see the proof of Lang (1, Th.1.1, p.373]). Assume that L

has a finite transcendence base {xl,xz,...,xn} . It is enough to

show that if w,,w.,...,W are elements of I which are algebrai-
1772 m

cally independent over k , then m { n . Since {wl,xl,xz,...,xn}

is not algebraically independent, there exists a non-zero polynomial

fl in n+l1 variables with coefficients in k such that

fl(w "Xn) = 0 .

llxllle

Furthermore by assumption w, occurs in fl , and some Xy also

occurs in fl ,osay Xy because (wl,wz,...,wm) is algebraically

independent over k . Then x is algebraic over k(wl,xz,...,x )

1 n

Suppose inductively that after a suitable renumbering of Xy rXgpee o X

we have found w,,w

LrWore e W (L < r <m) such that L is algebraic

over k(wl,wz,...,wr,x Then there exists a non-zero po-

r+1""'xn)
lynomial f in n+1 variables with coefficients in k such that

f( s W X ...,xn) = 0

YWepgrWyre

and such that Yol actually occurs in £ . Since (wl,wz,...,w

r+1’
)

nm

is algebraically independent over Kk , some xj(r+1 < J < n) also

occurs in f . After renumbering we may assume J = r+l1 . Then X 11

is algebraic over

k(wl'wz"'°’wr+1’xr+2"'"Xn)
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Since a tower of algebraic extensions is algebraic, it follows that

I, 1is algebraic over k(wl,wz,...,wr+l,xr+2,...,xn) . We can repeat
this procedure, and if m > n we can replace all the xl,xz,...,xn
by Wy W ees W ,- to see that L 1is algebraic over

k(wl,wz,...,wn) . This contradicts the assumption that
(wl,...,wn,wn+l,...,wm) is algebraically independent. Thus we have
m < n . Q.E.D.
(6.3) Definition. Let k be a field and L be an extension field

of kX . When I has a finite transcendence base with n elements

over k , then we call n the transcendence degree of L over k

and write

tr.degk L=mn.

Exercise 15. Let I' be as in Proposition 6.1. If T is a finite

set and contains no algebraically independent subset of I' , then L
is algebraic over k . When a field L is algebraic over its sub-

field Xk , then tr.deg, L = 0 .

Exercise 16. Let E, F and k be fields such that E D2 F D k
Assume that E has a finite transcendence base over Kk , then we
have

tr.degk E = tr.degF E + tr.degk F .
More precisely if E has a finite transcendence base {xl,xz,...,xs}
over F and F has a finite transcendence base (yl,yz,...,yt}
over k , then (xl,...,xs,yl,...,yt) is a transcendence base of E

over k .

— Integral extensions - (see e.g. Lang [1, Chap.IX])

Let A be a commutative ring and B be a subring of A
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(6.4) Definition. An element a € A is said to be integral over B
if one of the following four equivalent conditions holds.

(1) a satisfies a monic polynomial with coefficients in B , i.e.,

n n-1 _
a’  + bla +...+ bn = 0 for some bl’bz"“’bn € B .

(2) B[a] 1is a finitely generated B-module.

(3) There exists a subring A' of A containing B[a] which is a
finitely generated B-module.

(4) There exists a faithful module over B[a] which is a finitely
generated B-module.

When every element of A is integral over B , we shall say that A

is integral over B .

M '
Remark. We say that an A—moduleAis faithful if, whenever a € A is

such that aM = 0 , then a =0 .

Proof of the equivalence of the four above conditions.

(1) = (2) Since the polynomial X" + blxn‘l +...+ b_ € B[X] is
monic, we can easily see that
Bla] = Ba"™ ! +...+ Ba + B .

(2) » (3) 1is clear.
(3) » (4) 1is also clear, because A' is a faithful B[a]-module.
(4) = (1) Let M be the faithful module over B[a] which is
finitely generated over B , say by elements

Wy rWoyeee W

Since aM C M , there exist elements a,. € B such that

1]
.
Wy Q44 Qgz2***ayn Wy
a Wz = Qz4 @z2°°*azn W2
Wn én; énz"'ann L wn
a—ajy 4 —Qj32°*** —aA;n Wiy
—-azy a—-agz*** —azn w
Hence L2 22, 2 .2 = 0 .
-3ny =&ns°**‘a-ann Wn
a-agy ~Ag2°°** ~ain
—8z4 a=az2°** —dazn
Now let X = . i ,

. .

—én1 —énz":a-ann
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then from Lang [1, Cor.4.17, p.456] we have (det X)M = 0 . Thus
det X = 0 , because det X € Bla] and M is faithful over B[a] .

Since det X is a monic polynomial of a over B , we have proved

that (4) implies (1). Q.E.D.
Exercise 17. Let B be a subring of an integral domain A , and S
be a multiplicative subset of B such that 0 ¢ S . Prove: If A is

integral over B , then s71a  is integral over s™1p

(6.5) Proposition. Let A be a commutative ring and B be a sub-

ring of A .

(1) Assume that Xy e Xy pee o Xy € A are integral over B , then
B[xl,xz,...,xn] (the subring of A generated by B and
xl,xz,...,xn) is finitely generated as a B-module.

(2) The set of all elements of A which are integral over B forms

a subring of A .

Proof. (1) We prove this by induction on n . When n = 1 , from
Definition 6.4 B{x,] is a finitely generated B-module. Assume that
B[Xl'xz""’xn-1] is a finitely generated B-module, i.e.,
B[xl,xz,..L,xn_l] = Ba, + Ba, +...+ Ba, for some aysd,, 0008 € A .
Since X is integral over B[Xl’xz""’xn—l] ’

B[xl,xz,...,xn] = B[xl,xz,...,xn_l][xn]

= B[xl,xz,...,xn_l]b1 +...+ B[Xl'xz""’xn—1]b1 for some
bl'bz""’bl € B[X;,X,,+-.,% ] . Hence B[xl,xz,...,xn] is generated
by {aibj | 1 ¢ 1 ¢k and 1 ¢ j < 1) as a B-module.

(2) We only have to show that x-y and xy are integral over B
if x,y € A are integral over B . Assume that x,y € A are inte-
gral over B , then B[x,y] is a finitely generated B-module from
(1). Thus for any a € B[x,y] a 1is integral over B , because

B[a] C B[X,y] (see Definition 6.4.3). Q.E.D.



(6.6) Proposition. Assume that A, B and C are commutative rings

such that A D2 B> cCc and A is integral over B and B is inte-

gral over C , then A is integral over C .

Proof. Since a € A is integral over B , there exists sone
bl’bz""’bn € B such that
a + lolan'1 Foeuk b= 0 .

Hence a 1is' integral over C[bl,bz,..;,bﬁ] and C[bl’bz”"’bn'a]
is a finitely generated C[bl,bz,...,bn]-module. Thus we have

C[bl,bz,...,bn,a] % C[bl'bz""'bn]xl +..0t C[bl’bz""’bn]xs
for some XyreserXg € C[bl’bz""’bn’a] and
C[bl’bz""'bn] = Cyl +.00t Cyt for some
Yyr-e+/¥g € Clby,by,e..,b ] from Proposition 6.5. Hence
C[bl,bz,...,bn,a] is a finitely generated C-module and a is inte-
gral over C from Definition 6.4.3. Q.E.D.

— Extension of homomorphisms -

Nakayama's Lemma. Let A be a commutative ring and M be a fi-

nitely generated A-module. Let « be an ideal of A . Then

(1) If aM = M , then there exists x € A such that x-1 € ¢« and
xM = {0)

(2) If aM =M and ¢ 1is contained in all maximal ideals of A ,
then M = (0)

Proof. (1) Assume that M 1is generated by Wy Woreoe W o Since
qM = (a;m +a,m +...+a;m | a; €a, m;y €M and 1 € N) by defi-

n
nition, we have w, = jél aijwj for all 1 =1,2,...,n where

a € a . Since

i
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l-a;4, ~—aA4z4s+¢;, ~—aA4n Wy =0,
—Aas4, l-azz,e.., —asn Wo
=any » —Ang g se ey l—-ann wWn

we have (det X)M = (0) from Lang [1, Cor.4.17 on P.456], where

X = 1-a11, ~Ayq7 ey —=an .
—8g1 ., l—azz,..., —dsn
-ans, ~—Ans, ..., l—ann

It is clear that (det X)-1 € a

(2) Let a € A such that a-1 € « and aM =0 . If a is not a

unit in A , then it is contained in some maximal ideal m . Since
a-1 € o C m by hypothesis, we have a contradiction 1 € m . Hence a
is a unit and M = {0} . Q.E.D.

(6.7) Proposition (see Lang [1, Prop.l1l.10 on P.360 and Prop.3.1l on

P.369]). Let A be a commutative ring and B be a subring of A .
Assume that A 1is integral over B .

(1) Let p be a prime ideal of B and
pA = (pja; + pya, +...+ p a_ | p; € b, a; € A and n € N} , then
pA # A and there exists a prime ideal % of A such that
NB=p .
(2) Let ¢:B - L be a homomorphism of B into an algebraically

closed field L , then ¢ has an extension to a homomorphism of
A into L .

Proof. (1) Let S = B-p , then S is a multiplicative subset of
B . We shall write Bp for the local ring of B at p , i.e.,
s™B . since B C A , we have the inclusion map

s™lp —s s71a

(b/s — b/s) (s € S, b € B)



We write Ab = S—lA . From Exercise 17 on P.37 Ab is integral over
B
b
et m, = S—lb be the maximal ideal of B, . Assume that we proved

[ )
the first assertion in case B were a local ring, then since

mbAb = (bBb)Ab = bAp # Ab '

we have 1/1 ¢ pA lHHence 1 ¢ pA , which implies pA # A . Thus wve

po
only have to show that in case B 1is a local ring. In this case, if
PA = A , then 1 € pA and we have

1= p,a, + pza2 +...+ P2,
for some P, €p and aj € A . Let A, = B[al,az,...,an] , l.e., the
subring of A generated by B and (al,az,...,an) ;, then from Pro-

position 6.5 A is a finitely generated B-module. Since ph, = By

and f 1is contained in the unique maximal ideal of B , we have

Al = (0) by Nakayama's lemma, contradiction.

To prove our second assertion, note the following commutative dia-

gram:
A —— A, Db/s
>
u ¢ v |
B — Bb b/s
(b — b/1)
We have just shown m, A, # A, . Hence m, A is contained in a maxi-
PP > pop
mal ideal M of Ab . Since the inverse image of i in Bb is
AN Bb , which contains m, Since ", is maximal, we have
AN B =m . Let % be tlie inverse image of N in A , i.e.,

[5 [
$ =4HNn N . Then ¢ 1is a prime ideal of A . The inverse image of

n in B 1is simply f . Taking the inverse image of A going

I8

around both ways in the diagram, we have
N B=pp

as was to be shown.
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(2) Let f be the kernel of ¢ and let S be the complenent of
in B . Then we have a commutative diagram:
A — s p/s

u e Y 1
B— S B b/s , where b € B and s € S
(b — b/1)
Let ;: s1B 5 1 be a map which takes b/s to ¢(b)/¢(s) , then ;
is a well-defined homomorphism and we have
A
1

9:B— 8 "B L5 1,

(ptb — b/1 — ¢ (b)) .
Notice that Ker $ = S—lb . Thué we only have to prove the assertion
in case B 1is a local ring, because SulA, is integral over s71p
Therefore, we now assume that B is a local ring. Let m be the
kernel of ¢ . We assume that m 1is the maximal ideal of B . Since
mA # A , there exists a maximal ideal A of A such that A« I mA
It is clear that A N B =m . Thus A/M is a field which is an alge-
braic extension of B/m . Let @:B/m —> ¢ (B) be the isomorphism

(pibtm — ¢ (b))

of B/m onto ¢(B) induced from ¢ , then there exists an embedding

® of A/H into L which makes the following diagram commutative:

A — DAJA bHA

Uo U to

B — B/m bitn i

(b — binm) P
Thus we get an extension of ¢ to homomorphism of A into L .

Q.E.D

(6.8) ''heorem (see Lang [1, Th.2.1 on P.374}). Let
A= k[xl,xz,...,xm] be a finitely generated commutative algebra over
a field k

(1) Then any ring homomorphism ¢:k - K where K 1is an algebrai-
cally closed field extends to a ring homomorphsim A > K
(2) If A is a field then A is algebraic over &k .

(3) If A is an integral domain and Yi¢¥yre+-,¥Y; Aare non-zero ele-

ments of A then there is a k-algebra map +:A - k such that
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¥(y;) # 0 for all i=1,2,...,1, where k is an algebraic

closure of k .

Proof. (1) Let M be a maximal ideal of A . Let o be the cano-
nical homomorphism o:A -» A/d . Then o(A) = a(k)[a(xl),...,a(xm)]
is a field, and is in fact an extension field of o (k)
AL A/ = 0 () [0(Xg) yeeer0(X )]
o (k)

If we can prove our theorem when the finitely generated ring is in
fact a field, then we apply ¢ o ot on o(k) and extend this to a

homomorphism of o(k)[a(xl),...,c(xm)] into K to get what we want.
T-1 o oo L
poo “oo :A = k[x ..,xm] — A/H = a(k)[a(xl),...,a(xm)] f—— K

1r*
k & o (k) Poo
Without loss of generality, we therefore assume that A is a field.
If A 1is algebraic over k , we are done. Otherwise let

tl’tz""’tr be a transcendence basis of A over k , r 2 1 .

Without loss of generality, we may assume that ¢ is the identity on

k , that is, we assume that K is an algebraic closure of k
v

g o1 :na-= KIXypeen %] =k £ 5 x
U e u @ u
x i » k =25 ¢ (k)

where X 1is an algebraic closure of k and i is an identity map
on k . Each element Xy rXgpeeo X is algebraic over k(tl,...,tr)

If we multiply the irreducible polynomial Irr(xi,k(t),X) by a

suitable non-zero element of k[t] = k[tl,...,tr] , where

k(t) = k(tl,...,tr) , then we get a polynomial all of whose coeffi-

cients lie in k[t] . Let al(t),...,am(t) be the set of the leading

coefficients of these polynomials, and let a(t) be their product
a(t) = al(t).....am(t)

Since a(t) # 0 , there exist elements ti,...,té € k such that

a(t',...,té) # 0 (see Lang [1l, Cor.4.6 on P.192]), and hence



is integral over the ring
1 1
1r'°°rtr) D )k[tll"'rtrr W l"'lam(t)]

!
ai(t

1,...,tl':) # 0 for any i . Each Xy

(k(t

Consider the homomorphism w:k[tl,...,tr] - kX such that ¢ 1is the

identity on k , and w(tj) =+t! (J=1,2,...,r) . Let p be its

J
kernel. Then a(tl""’tr) & b
k[xl,...,xm]
U
k(tl,...,tr)
U
K[ty eeertp ], = (a/b | a,b € k[(t], b ¢ p)
U

K[ty eeest,] V% .

The homomorphism  extends uniquely to the local ring

k[tl""’tr]p . Since

k[xl,...,xm] = k[tl,...,trjp[xl,...,xm]
is integral over k[tl""’tr]b , V¥ extends to a homomorphism of
k[xl,...,xm] into k from Proposition 6.7.2. Thus we have proved

(1) .

(2) Let Xk be an algebraic closure of k , then from (1) there
exists a ring homomorphism of A into kX which is identity on k .
Since the homomorphism is injective, A 1is algebraic over Kk .

(3) Let k[X;,...,X y;l,...,yilj be the subring of the quotient

ml

field of A generated by RyveoerXy yil,...,yll , then from (1)

there exists a ring homomorphism of K[Xy,...,X, yil,...,yil] into
kX which is identity of k . The restriction of this homomorphism to

the ring k[xl,...,xm] is a desired map.

Q.E.D.

Now let A be a commutative ring and I an ideal of A . We define

the radical I of I to be the set

m

JTI = (fen]| £ € I for some m€eN ),

where I is the set of natural numbers including 0 . If f£,g € {1
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with fm,gn € I , then (f+g)m+n € I . Thus we can easily see that

{T is also an ideal. Further we have JJT = JI . We call the radical
of (0) , i.e.,

(Fen| £ =0 for some m € N)

the nilradical of A . It is clear the I 2 I

llilbert's Nullstellensatz. Let (V,A) be an affine variety over K
and I an ideal of A , then we have

2r(r)) =41 .
Proof. Let g € {I , that is g" € I for some m € N . Hence for
any Vv € ¥(I) we have gm(v) = g(v)m =0 .If m=0 and g # 0 ,

{A . Thus we can assume that m # 0

I

then I = A and J(¥(I)) = A
Hence g(v) = 0 and therefore g € $(¥(I)) , i.e., I C 2(¥(1))

Let £ € $(¥(I)) and assume that f£ ¢ {I . (Hence I G A.) Let S

be the set of ideals of A which contain I but do not contain any
power of f . For example I € S but A ¢ S . Since A is

Noetherian (see Examples 4.9), S has a maximal element § . Suppose
there exists x,y € A such that x ¢ 4, y ¢ p and xy € p . Since

3} g p+Ax and p 1is maximal in S , £ e p+Ax for some m € I

Similarly we have f" € p+Ay for some n € IN . Hence

£ e e (hhax) (bHAY) C B,

which contradicts to the fact that p € S . Hence f{ 1is a prime

ideal

Since A/p is an integral domain, there exists a K-algebra map
GO:A/p - K such that 90(f+p) # 0 from Theorem 6.8.3. Let
0:A — A/p 295 K

(a — atp)
be a map which takes a € A to 90(a+p) . Since © 1s a K-algebra

map and (V,A) € A(K) , © = e, for some v €V . Since I C f , we

have c(v) = e_(c) = 8(c) = Go(c+p) = 0 for any c¢ € I . Thus
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v € ¥(I) . Hence f(v) = 0 , because f € ¥(¥(I)) . However, we also
have
£(v) = ev(f) = 0 (f) = 90(f+b) # 0,

a contradiction. Hence ¢ (¥(I)) C {I , and we have shown that
2v(r)) =1 . Q.E.D.

Exercise 18. (1) Let (V,A) € #(K) . Show that 7¥(I) = ¥({I) for

any ideal I in A .

(2) Let (V,A) € d(K) and I and J be ideals of A . Show that
Y(I) = v(J) = 11 =17 ,

and the operator ¥ is an inclusion reversing bijection with the in-

verse J between the set of ideals I such that {I = I and the

set of closed sets of V .

Exercise 19. Let R be a commutative ring with unity element 1.
Let @« be an ideal of R such that R 2 ¢ . Let Rad ¢ be the in-

tersection of all prime ideals containing ¢ . (Since R e« , a is

7
contained in some maximal ideal of R .) Prove:

{¢ = Rad «a
Hints. Assume that x ¢ Ja , i.e., x" ¢ a for any m € N . Then the
set % = (I | I. is an ideal of R such that I J ¢ and
IN (x| me W) =0) is non-empty and inductively ordered by the
inclusion relation. Let f be a maximal element in % . By the same
argument as in the proof of Nullstellensatz § 1is prime. Hence there
exists a prime ideal f such that p D a but x ¢ p , which implies
X ¢ Rad a

(6.9) Proposition. Let A be a finitely generated commutative

K-algebra with trivial nilradical. Let V = HomK—alg(A’K) and define

t:A —> M(V,K)

(t:a — v(a):v » v(a))

where v € V . Then « 1is an injective K-algebra map and hence the

pair is an affine variety.
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Proof From Theorem 6.8.1 V # @ . It is easy to verify that ¢ 1is
a well-defined K-algebra map. Assume that ¢(a)(v) = 0 for some
a € A and for all v € V , then v(a) = 0 for any Vv € V . Suppose
that f is a prime ideal of A such that a ¢ p . Then there exists
a K-algebra map

OO:A/p — K

such that eo(a+b) # 0 from Theorem 6.8.3. Let

0:A —> A/p o, K
(a — A/b)

be a map which takes a € A to 90(a+p) . Since © 1is a K-~algebra

map such that ©(a) # 0 , we have got a contradiction. Thus a is

contained in any prime ideal of A . Hence we have

a € Rad(0) = {(0)
from Exercise 19. Since A has a trivial nilradical, a = 0 . There-
fore, ¢ 1is injective. It is clear that the evaluation map:

V— Vv (A,K) where e : A — K is bijective.

= Hom
(v ev) K-alg

(ev: a — v(a))

Q.E.D.

(6.10) Theorem. Let % (K) be the category of finitely generated

K-algebras with trivial nilradicals. Let V¥ be the contravariant re-

presentation functor from €(K) into the category of sets which

takes each algebra A in ©(K) to V¥ (A) = HomK—alg(A’K) and a

K-algebra map f:A - B , where A and B are objects of ®€(K) , to

¥ (f£) :Hom (B,K) — Hom (A,K)

K-alg K-alg
(Y (L) » aof)

Then from Proposition 6.9 we have

(1) ¥ 1is a contravariant functor €(K) into «(K) ,
(2) let @& be a rule which associates to each object (V,A) in
#d(K) an object
P(V) = A in €(K) ,
and to each morphism ¢:V - U associates a K-algebra map

*
D(p) =9



- 47 -

where (U,B) € o(K) , then & is a contravariant functor from
d(K) into €(K) , |

(3) o ¥ and ¥ o & are identity functors of ©(K) into %(K)
and o (K) into o (K) respectively.

Exercise 20. Prove Theorem 6.10.

~ Perfect field -

(6.11) Definition. A field k 1is called perfect if kP = x , where
p > 0 1is the characteristic of k and
P = (xP | x € x) .

We also call a field of characteristic 0 perfect.

Example. An algebraically closed field K 1is perfect.

(6.12) Definition. An element a (of an extension field of a field

k) which is algebraic over k is said to be geparably algebraic

over k if the monic minimal polynomial of « has no multiple

roots.
Exanple. If the characteristic of k is zero, then a € k is al-

ways separably algebraic over k where k 1is an algebraic closure

of k

(6.13) Definition. Let E be an algebraic extension of a field

k . We define E +to be separably algebraic over k 1if each element

of E 1s separably algebraic over k .

(6.14) Definition. Let F be a finitely generated extension field
of a field k , i.e., F = k(xl,...,xq) . Then we shall say that F
is separably generated if we can find a transcendence base
(tl'tz""’tr)v of F/k such that F is separably algebraic over
k(t,,t L)
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(6.15) Definition. Let I and F be extension fields of a field

k both contained in one field € , which is algebraically closed,

then L 1is said to be linearly disjoint from F over k 1if every

finite set of elements of L that is linearly independent over k

igs still such over F .

Exercise 21. Let Q, L, F and k be as in Definition 6.15. Prove

that F is linearly disjoint from L over k if L 1is linearly

disjoint from. F over k

Q

/ 0\

L F

\_/
K

Criterion for linear disjointness (see Lang [1, Chap.X, §5]).

Suppose that L 1is the quotient field of an integral domain R and

R 1is a vector space over a field k , LD R 3 k . Let {ua) be a

basis of R considered as a vector space over k . Assume that F
is an extension field of kX and L and F are contained in an al-

gebraically closed field Q .

It {u,) remain linearly independent over F , then L and F are

linearly disjoint over k .

Proof. Let XyrXgreo s Xy € R be linearly independent over Kk .

Since each X4 is.a finite linear combination of {u,}

{xl,xz,...,xm) is contained in a finite dimensional vector space ge-
nerated by some of the {ua} ; SAY  UgUgpeee U .
n n
(xl,xz,...,xm} C igl kui ' dJ.mk igl kui = n
n
Since {xl,xz,...,xm} is linearly independent over k , izl kul
n

has also a k-basis (xl,...,xm,zl,...,zt) . Since dlmF iél Fui = n
from the assumption and

n m t

121 Fuy = 529 Fxy 4 42, F2y
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(xl,xz,...,xm} is also linearly independent over F .

Now assume that xi,x',...,xﬁ € L are linearly independent over k .
Then there exists y € R such that y # 0 and yxi,...,yxﬂ € R .
Since {yxi,...,yxﬁ} is also linearly independent over k ,
{yxi,...,yxﬁ) is linearly independent over F from the above argu-
ment. Hence also so is {x',xé,...,xﬁ} over F . Q.E.D.
(6.16) Definition. Let k be a field of characteristic p > 0 .

The field obtained from k by adjoining all pm—th roots of all ele-
1

ments of k will be denoted by kP™ | The compositum of all such

1 1
fields for m = 1,2,... is denoted by kP? , il.e., kP* is the
1
smallest subfield of Xk containing all xPm , m=1,2,... where Kk
is an algebraic closure of k .
(6.17) Definition. An extension field L of k is called

separable if every subfield of L containing k and finitely gene-
rated over k 1is separably generated.

Exercise 22. Show that an extension field L of k is separably
algebraic over k 1if and only if L is separable over k in the
sense of Definition 6.17 and L is algebraic over k .

In the proof of the Theorem 6.18 we refer to the following propo-
sitions from Lang [1] and Jacobson [1]. For the convenience of the
reader we refer to them with their proofs.

Lang [1, Prop.5.3 on P.382]: Let K be an extension field of a
field k both contained in an algebraically closed field Q . Let
{ul,uz,...,ur} be a subset of @ which is algebraically independent
over K . Then the field k(ul,uz,...,ur) is linearly disjoint from

K over k .
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Proof. Since the set of monomials (M(ul,uz,...,ur)} forms a
k-basis for k{ug,uy e uld it is enough to prove that
{M(ul,uz,...,ur)) remains linearly independent over K from the

Criterion for linear disjointness. Since linear dependence of

{M(ul,uz,...,ur)) over K implies algebraic dependence of
(ul,uz,...,ur) over K , {M(ul,uz,...,ur)} remains linearly inde-
pendent over K . Q.E.D.

Jacobson [1, Lemma 2 on P.48]: Let K be an extension field of a

field k of characteristic p > 0 . Let p be an element of K
which is algebraic over k . Then p 1is separably algebraic over Kk
if and only if we have .

k(p) = k(pP) = R(pP ) = x(p?P ) =

Proof. Let g(X) be the monic minimal polynomial of p over k .
We first assume that p 1is not separable over k . Since g'(p) =0
and deg g'(X) < deg(X) , g'(X) = 0 . Hence we have (Jg(X) = h(Xp)
for some h(X) € k[X] . Thus we have

[k(pp):k] < deg h(X) < deg g(X) = [h(p):k] , which implies

k(pP) g k(p) .

Now assume that p 1is separably algebraic over k . Let h(x) be
the monic minimal polynomial of p over k(pp) . Since h(X) | 9(Xx)
and g(X) = 0 has no multiple roots, h(X) has distinct roots.
Since p satisfies the equation Xp--pp = (X—p)p = 0 over k(pp) '
we have h(X) = X-p . Hence p € k(pp) = k[p”] , which implies

2
k[pP] = k[p] . since pP € (k(pP1)P c kx(pP ] , we have

2
k[pp ] = k[pp] . Sigilarly we have

a
kip] = k[pP] = k(pP ] = k(p? ] =... Q.E.D.
Lang [1, Prop.5.1 on P.380}: Let K be a field containing another

field k , and let L D E be two other extensions of Kk . Assume
that K and L are contained in an algebraically closed field 1
If K and E are linearly disjoint over k and KE , L are

linearly disjoint over E , then K and L are linearly disjoint

over Kk
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Proof: Let ({k} be a basis of K as vector space over k and

let {(a) be a basis of E over k . Let (A} be a basis of L
over E . It is clear that (aA)} is a basis of L over k . Assume
that {aA} 1is not linearly independent over K , then there exists a
relation

3, (3¢

Ao K)Aa = 0
’

KAa

with some ¢ # 0 where ¢ € k . Thus we have

KAa KA

% (Kga CKAaKa)A =0

contradicting to the linear disjointness of L and KE over E ,

because m?a Cng® = g (% cKAaK)a with some Cena * 0 and K and

E are linearly disjoint over k .

Now let (Vireee,vy) be a finite subset of L which is linearly in-

dependent over k . Then (v WA is contained in a finite

1’:
dimensional k-subspace of L generated by finite elements {aihi}

from {aA} . Since {aiki} is linearly independent over K ,
{vl;...,vt} is also linearly independent over K . Thus X and L
are linearly disjoint over k . Q.E.D.

Now we state Theorem 6.18.

(6.18) Theorem (see Lang [1l, Prop.6.1 on P.382]). Let L be an
extension field of a field k both contained in an algebraically

closed field Q@ of characteristic p > 0 . Then the following con-

ditions are equivalent:

1
(1) L is linearly disjoint from kP®  over k .
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1

(2) L is linearly disjoint from xP™  for some m > 1 over k .

(3) Every subfield of L containing k and finitely generated over

k is separably generated, i.e., L is separable over Xk .

1 1
Proof. (1) = (2) Since 0 2 kP 2 xP™ 5 k , it is clear that L is
1
{pm

linearly disjoint from ] for some m > 1 .

1”"’Xn) be a finitely generated subfield over Kk

contained in L . It is clear that we can assume L = k(xl,...,xn)

(2) > (3) Let k(x

Let r = tr.degkL . If r=n, then L 1is clearly separably alge-
braic over itself. Thus we assume that r < n and {xl,xz,...,xr)

is a transcendence base of L over Kk . Then X 11 is algebraic

over k(xl,...,xr) . Let f(xl""’xr+1) € k[xl""'xr+1] be a
polynomial of lowest degree such that

f(xl,...,xr+l) = 0
Since (X reeerX) is algebraically independent over k , f 1is ir-
reducible. We show that not all X, (1 =1,2,...,r+1) appear to the

p-th power throughout. If they did, we could write

E(XpreniXpq) =3 caMa(xl,...,le)p ,
where Ma(Xl""'Xr+1) are monomials 1n Xl""’Xr+1 and c, € k
: - - P _
Since f(xl,...,xr+l) = 2 caMa(xl""’Xr+1) = 0 , we have
R 1 E
p - - _ P p i e
Eca Ma(xl,...,xr+1) = 0 for some p-th roots ., € k¥ , which 1m
1
plies that the Ma(xl""’xr+1) are linearly dependent over kP

However, the Ma(xl,...,x are linearly independent over k ,

r+l)

because otherwise we would get an equation for XyreeorXpgg of lower

degree. Thus we get a contradiction to the linear disjointness of L
1

1
and kP (c Kb , m=1,2,...) . Say Xi does not appear to the
o
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p-th power throughout but actually appear in £(X X

1" r+l)

(1 g io < r+l) . Since E(XyreoerXpyq) is a polynomial of lowest de-
gree such that f(xl,...,xr+l) = 0 , we have

df

ax, - (Fureeer¥pgg) # 0
lo
Hence x. is not a multiple root of an equation
o)

f(xl"”’%&0’°"’xr+1) = 0 over k(xl""’xio4l’xio+1’""xr+1)

Thus X4 is separably algebraic over
o

k(xl""’Xio;l’xio+1""’xr+1) . Changing the suffices of the x , we
may assume X, is separably algebraic over k(xz,...,xr+1) Since
k(xz,...,xn) D k(xz,...,xr+l) roXy is separably algebraic over
k(xz,...,xn) If (xz,...,xn) is a transcendence base, the proof is
complete. If not, say X, is separably algebraic over

k(x3,...,xn) , then k(xl,...,xn) is separably algebraic over
k(x3,...,xn) . Proceeding inductively, we can get down to a transcen-

dence base. This proves that (2) implies (3).

(3) » (1) We would like to show that every finite set of elements

(xl,xz,...,xn) of L which is linearly independent over k is
1

still such over kP” . Thus it is enough to prove the assertion in
case L is finitely generated over k , i.e., L = k(xl,xz,...,xn)
Let (ul,...,ur} be a transcendence base for I over k such that
L 1is separably algebraic over k(ul,...,ur) . By Lang [1, Prop.5.3

1
on P.382] k(ul,...,ur) and kP are linearly disjoint over k ,

. 1
because (U ruy,eeyu) is algebraically independent over kP” . Let

1

K = k°° . Then k(ul,...,ur)K is purely inseparable over
k(ul,...,ur) , i.e.,

V x € k(u U)K 7n e N

AR
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n

such that xP € k(ul,...,ur) . Assume that {pl,...,ps} CL is 1li-
nearly independent over k(ul,...,ur) . Then there exists a finite
extension field E of k(ul,...,ur) which contains (Ppr-eipg)
and has a k(ul,...,ur)-ba51s {pl,...,ps, ps+1""’pt) . Since
t
2 3
(ep,e p,e p,...) C iél k(ul,...,ur)pg for any element e € E and
e € k(ul,...,ur)[ep] from Jacobson [1, Lemma 2 on P.48],
{pﬁ,...,pg} 'is also a k(ul,...,ur)-basis of E . Thus (pl,...,pt)
will never be linearly dependent over k(ul,...,ur)K . From Lang [1,
1
Prop.5.1 on P.380] L is linearly disjoint from K (= kpw) over
k . Q.E.D.

(6.19) Corollary (see Lang [1l, Cor.6.3 on P.383]).

(L) Let E be a separable extension of a field k and L be a se-

parable extension of E . Then L 1is separable over Kk .

(2) Let L be an extension field of k . Assume that L is finitely
generated over k . Then L is separable over k if and only if

I, is separably generated over k .

Prootf. (1) We only have to show this in case ch k =p > 0

1
kP”. g L

1
Since E is separable over k , E 1is linearly disjoint from xP*
over k . Since L is separable over E , L is linearly disjoint
1 1
00
from EF” over E . Hence L 4is linearly disjoint from kP E over
1 1

E , because EP” 2 ¥xP"-E . From Lang [1, Prop.5.1 on P.380] (see
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1
P.50) L is linearly disjoint from kP° over k . thus L is se-

parable over k .

(2) From the definition of separable extension it is clear that L
is separably generated over k 1f L is separable over Kk . Assume

that ch k = p > 0 and L is separably generated over k , i.e.,

there exists a transcendence base {tl,...,tn} of IL/k such that L
is separably algebraic over k(tl,...,tn) . Since {tl,...,tn) is
1

also algebraically independent over kP for any m > 1 , from Lang

| 1
[1, Prop.5.3 on P.382] (see P.49) xP™  anad k(tl""’tn) are
linearly disjoint over k . Hence k(tl,...,tn) is separable over Kk
from Theorem 6.18. Thus 1L 1is separable over Kk from (1). Q.E.D.
(6.20) Corollary (see Lang [1, Cor.6.4 on P.383]). If k 1is a per-

fect field (of characteristic p > 0 or 0), then every extension

field of k 1is separable.

Proof. It is clear in case ch k = 0 . Now we assume that
chk=p>0 and L is an extension field of k . Since k 1is per-
1
’ z a -_m L]
fect, i.e., k = P = kP =P =... , we have kP = x  for any in-
teger m > 0 . Hence L 1is separable over k from Theorem 6.18.
Q.E.D.

(6.21) Proposition (see Zariski & Samuel [1, Cor.2 on P.124]). Let

k be a field and F = k(a) be a separably algebraic extension of k
with primitive element o« . Let E be an extension field of F ,
then any derivation D:k » E , i.e., D 1is a map of k into E
such that
D(x+y) = D(x) + D(y) and D(xy) = xD(y) + yD(x)
for any X,y € k , can be extended to a derivation
D:F » E .



Proof.

w

3 (] D
Let f(X) be a monic minimal polynamial of a over Kk . Let g (X)
be the polynomial obtained by applying D to all coefficients of

g(X) € k[X] . Since a 1is separable over k , we have f'(a) # O

and the equation fD(a) + Xf'(a) = 0 has a unique solution

X = —fD(a)/f'(a) . Now let g(a) € F where g(X) € k[X] and define
D

Blg) = o) - G 9@

then D is a well-defined derivation of F into E such that
Dk = D . Q.E.D.

(6.22) Proposition (see Zariski & Samuel [1, Cor.4 and 4' on P.125]).
Let k be a field of characteristic p > 0 and L be an extension

field of k . Then

kP = (x € k | D(x) = 0 for any derivation D:k - L)

(For the definition of derivation see Proposition 6.21).

Proof. et z € k - kP and u be an arbitrary element of L ,
then D(g(z)) = ug'(z) , where g(X) € kp[X] , defines a derivation
D:kp[z] - L

such that D(z) = u and D(kp) = (0) . Let I be the set of all
pairs (F',D') composed of a field F' such that kp[z] C F' C k
and a derivation D' of F' extending D . We define

(F',D') < (F",D")
if F' C F'" and D" extends D' . This relation < defines an in-
ductive order in I . Thus by Zorn's lemma there exists a maximal

element (F_,D ) of I . Assume that F § k and let y € k-F and
o'"o o o
U be an arbitrary element of L . Then
~s D ~
D(g(y)) = g °(y) + ug'(y) , where g(X) € F_[X] ,
defines a derivation 5:Fo[y] » I such that D(y) = u , because

Xp—yp is the monic minimal polynomial of y over F_ (see Lang [1,
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§7 of Ch.VII]). Since (FO,DO) 3 (Fo[y],ﬁ) , we have got a contra-
diction. Hence FO = k and we have shown that for any elements

z € k-kxP and u € L there exists a derivation
Dozk -» L such that Do(z) = u .

Therefore we have
¥P = (x € x | D(x) = 0 for any derivation D:k - L)

(6.23) Proposition (see Zariski & Samuel [1, Th.42 on P.128]). Let
k be a field of characteristic p > 0 and L be an extension field
of k . vaevery derivation D of k into L , i.e., D 1is a map
of k into L such that

D(x+y) = D(x) + D(y) and D(xy) = xD(y) + yD(x)
for any X,y € k , can be extended to a derivation D of L into

itself, then L 1is separable over Kk .

J~
1, 2 1,
€
U D
k

Proof. We shall show that if (X reeei¥y) is a subset of L which
is linearly independent over k , then the p-th powers of X;,...,Xg

are also linearly independent over k (see Theorem 6.18). Con-

p

versely, assume that (xl,..

.,XE} are linearly dependent over k .
Let

* p p -

(*) alxji Fouot anxjn (ai € k—-{0))

be one of the shortest non-trivial relations satisfied by {xg) . We

shall write X, = in""’xn = xjn and assume that a; = 1

Now let D be a derivation of k into k and D be its extension,

then we have

B p p
D(alx1 +ooot anxn)

Il

p p
D(az)x2 S D(an)xn =0 ,

= D(1)

because B(xg) =0 (1< ig<n) and D(a 0 . Hence

1)



- 58 -

D(a = D(az) =,,.= D(an) = 0 for any derivation D:k = k , because

1)
(*) 1is one of the shortest non-trivial relations satisfied by

(x?} . From Proposition 6.22 we have

{al,...,an) c xP .
Thus {xl,...,xt} are not linearly independent over Xk , which con-
tradicts to the assumption. Q.E.D.

Noether Normalization Theorem:

1. (see e.g. Lang [1, Theorem 4.1 on P.378]). Let
A = k[xl,xz,...,xm] be a finitely generated commutative algebra

over a field k . Assume that A is an integral domain. Then

there exist algebraically independent elements Z11ZyreecrZy

over k in A such that A 1is integral over X[z , 2

]

qrZoreeer2Zy

2. Let A Dbe a finitely generated commutative algebra over a per-
fect field K , and assume that A 1is an integral domain. Then

A = K[xl,xz,...,xn] , with {xl,xz,...,xd) algebraically in-
dependent over K , and for each i > 4 , Xy is separably alge-
braic over K(xl,xz,...,xd), with monic minimal polynomial

Fi(xi) which has coefficients in K[xl,xz,...,xd] .

Proof of 1. (see Step 1 of Proof of 2).

Proof of 2.

Step 1: (We follow the proof of Lang [1, Theorem 4.1 on P.378].) We
shall prove the following assertion: "Let A be a finitely generated
commutative algebra over a field K (Notice that K is not necessa-
rily perfect), and assume that A is an integral domain. Then

A = K[xl,xz,...,xn] , with (X)rXypeee X algebraically independent

a’
over K , and for each i > d , X4 is integral over

K[Xl’xz""’xi—l] L
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Proof of Step 1: Assume that A 1is generated by {Xl'XZ""’xn) .
I X Xy eeer Xy is algebraically independent over K , then we are
done.

Assume that d < n , where d = tr.degK K(xl,xz,...,xn) , then there

eXiStS a IlOIl"‘triVial relation
t t tn
1 X 2

* =
(*) }\thxtxl P 0
t eT,
with almost all Ap =0 . Let L L be positive integers,
and put
— I LY — _ Jln-4
Yy T X T ¥p ¥y T ¥ T ¥y
Substitute
m,
l L] 1] N
X, =¥y +ox (i =12,2,...,n-1) 1in (*) .
Using vector notation, we put
(m) = (mllmzl"’lmn_lll)
and use the dot product
(t)* (m) = tlm1 + tzm2 +...+ tn—lmn—l + tn

If we expand (*) after the substitution, we get

t .
f(eryz,-..,yn_l,xn) +- % ctxr(l ) (m) = 0

where f 1is a polynomial in which no pure power of X, ~ appears. We

now choose q to be a large integer which is greater than any compo-
nent of a vector (t) such that Cp # 0 , and take

2 -1
(m) = (g,9 r"'lqn (1) .

Then all (t)+(m) are distinct for those (t) such that Cp # 0

Thus we obtain an integral equation for x,  over

K[Yl'yz""’yn—l] . Hence we have found a set of new generators
(Yqr¥oreee ¥y qe%,) of A such that X, is integral over
I<[ylly21 R Iyn__l]

Now we can just proceed inductively, using the transitivity of inte-
gral extensions, to shrink the number of y's until we reach an al-

gebraically independent set of y's
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Remark to Step 1. Let {xl,xz,...,xn} be a set of generators of A
obtained in Step 1. Then KX, 1 Xgpeenr¥y] is integral over
K[Xl’xz""’xi—l] for any i > d , and thus X, is integral over
K[xl,xz,...,xd] for any 1 > d . Hence each Xy (1 > d) has the
monic minimal polynomial over the quotient field of K[xl,xz,...,xd]
with coefficients in K[xl,xz,...,xd] . {xl,xz,...,xd} is a

transcendence base of the quotient field of A .

From this remark we have done the proof of 2 in case of K 1is a

field of characteristic 0.

Step 2 (We follow the proof of Lang [1l, Prop.6.1 on P.382]). We
shall prove the following: "Let K be a perfect field of characte-
ristic p > 0 and A be a finitely generated commutative algebra

over K , say A = K[¥X;,X .,xn} . Assume that A 1is an integral

2, L
domain and {xl,xz,...,xn) is not algebraically independent over

K , then we can rearrange {xl,xz,...,xn) such that X, is separa-
bly algebraic over K(xl,xz,...,x the quotient field of

] .ll

n—1) !

K[Xl,x e X

27° n-1

Proof of Step 2. Since (g 1%y p oo X) is not algebraically inde-

pendent, we can take a transcendence base {xt,xt+l,...,xn) with

t >1 from (X,,X,,...,%X_.} after rearranging (x,,%X,,...,X_} . Then
1772 n 1772

n

is algebraic over K(x , the quotient field of

£ Xge1r %)
X)) € K[X

Xe-1

K{x X . Let £(X be a

AT S RRARRRASY t-1 % t-17" " %n]

non-trivial polynomial of lowest degree such that
f(xt—l’xt""'xn) =0 .
Then f is irreducible in KXy _qrXpr---rX 1 - We show that not all

Xy (1 =t-1,...,n) in f appear to the p-th power throughout. If

they did we would write
£(

LX) =3 e M (X ..,xn)p ,

Xt—l’Xt"' £—17"

where Ma(X) are monomials 1in Xt—l’Xt""’Xn and c, € K . This



- 61 -

would imply that M, (% ..,xn) are linearly dependent over K ,

t-1""
because
= p
f(Xt_lIth"'lxd) = 3 caMa(Xt~l""'Xn)
- 1
(2 caMa(xt_

where c& is an element of K such that c'P =¢ .

However, the Ma(xt_l,xt,...,xn)'s are linearly independent over
K , otherwise we would get an equation for X _qrXpree Xy of lower
degree.

Say Xn does not appear to the p-th power throughout, but actually

appears in £(x) . Since f(Xt—l’Xt""’xn) is a polynomial of
lowest degree such that f(xt_l,xt,...,xn) = 0 , we have

df

ai; (Xt_l,Xt,...,Xn) # 0

Hence X is not a multiple root of an equation

f(xt_l,xt,...,xn) = 0 over K(Xt—l’xt""’xn—l) Thus X, 1is se-
parably algebraic over K(Xl’xz""’xn—l) .

Step 3. "Assume that K 1is a perfect field of characteristic

p >0 . Let A = K[X;,X;,+++,%]] be a finitely generated commutative

algebra over K . Suppose that A 1is an integral domain and

{xl,xz,...,xn} is not algebraically independent over K , then we
can replace (xl,xz,...,xn} by a set of new generators
{yl,yz,...,yn_l,xn) including X such that X, 1s integral over

1 "
K[yl,yz,...,yn_l] and separably algebralc over K(yl,yz,...,yn_l) .
Proof of Step 3. From Step 2 we can assume that X, is separably
algebraic over K(Xl’xz""’xn-l) . Hence there exists a minimal se-
parable polynomial g(Xn) of X, over K(Xl’xz""'xn~l) Thus we

get a non-trivial relation



(*) Atz K Rt X© XyTeelx o= 0]
t € Tn
with almost all At = 0 such that
' t1 t2 tn —
Atg K A X P X2 X = h(Xl,Xz,...,Xn_l)g(Xn)
teT
n
for some h(Xl""’Xn—l) € K[X1’X2""'Xn—1] such that
h(xl""’xn—l) # 0 . Following the same argument and the notation of
the proof of Step 1, we let g = pe and
2 n-1
m= (q,9",...,9 /1)
where e 1s an enough large positive integer, and put
= - my —_ - Mn- 4
Yo =% T Xpreeei¥pg T ¥po1 T Xy '
m,
and subsitute X, =y; + xnl (i=11,2,...,n-1) 1in (*). Expanding
(*) after the substitution, we get
t)s (m
(%) 3 {® ™ v ey v,y x) =0,

where f 1is a polynomial in which no pure éyer of X, appears. Thus

we obtain an integral equation for X, over K[Y ,...,¥ Now

n-—lJ *
since
bs) t t
—— A, XU X2,
5X_ AtZK t X1 %3
t€Tn

tn

m m
Xn p

1 t1 tn—i
gx M (Y HX7) 7T (XX

2)tz...(yn~l+x§“-1)

where Xi = Yi+Xnl for i=1,2,...,n-1 , we see that X is se-

parably algebraic over K(yl""’yn-l) .

Thus repeating the same procedure of Step 3 we finally reach the set
of generators (g1 %5000 rXy) of A with algebraically independent

subset {xl,xz,...,xd} such that for i > d4d , Xy is separably al-

gebraic over K(xl,xz,...,xd) with monic minimal polynomial Fi(Xi)
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which has coefficients in K[xl,xz,...,xd] , because K[xl,xz,...,xd]
is a unique factorization domain. Q.E.D.

Finally we add several remarks on ideals which will be used for

proving Le@% 7.14 by Krull.

(6.24) Definition. Let R be a commutative ring with unity element
1 and @ be an ideal in R . Then ¢ is said to be primary if the
conditions a,b € R, ab € ¢« and a ¢ a imply the existence of an

integer m > 0 such that b" € a .

(6.25) Proposition. Let R be a commutative ring with unity ele-
ment 1 and a« be a primary ideal of R . Then
(1) the radical of ¢« , JYa = (a€ R | a" € « for some n € N) , is

a prime ideal;

(2) for any x,y € R if xy € « and x € ¢« , then y € {a ;

(3) if I and J are ideals in R such that IJ Cae¢ and I ¢ a ,
then J C Ja |

Proof. (1) Assume that xy € Ja and x ¢ Ja¢ , where x,y € R
Since xy € Ya , we have (xy)n € o for some n € N . Since x" ¢ a
and ¢ is primary, (y")™ € ¢ for some m > 0 . Hence y € {a and

Ja is prime.
(2) is clear from the definitions of primary ideal and radical.
(3) Let a be an element of I such that a € ¢« . Since aJ C a

and a ¢ ¢ , we have J C Ja from (2). Q.E.D.

(6.26) Definition. Let R be a commutative ring with unity element
1 and @ be an ideal of R . We call a jirreducible if « is not a

finite intersection of ideals of R strictly containing a
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(6.27) Lemma. Let R be a commutative Noetherian ring with unity

element 1, then every ideal is a finite intersection of irreducible

ideals.

Proof. Suppose that the family S of all ideals of R which are
not finite intersections of irreducible ideals is non-empty. Since R
is Noetherian, S has a maximal element M . M is an intersection

of a finite set of ideals I IpreeerI strictly containing M , be-

1’ t
cause M is not irreducible. Since M is maximal in S ,
I.,I ., I

are not in S . Hence I I,0e-01 are finite inter-

177527t 1’ t
sections of irreducible ideals. Therefore, M is also a finite in-

tersection of irreducible ideals, a contradiction. Q.E.D.

- (6.28) ILemma. Let R be a commutative Noetherian ring with unity

element 1, then every irreducible ideal of R 1is primary.

Proof. ILet I be an ideal of R and assume that I 1is not prima-
ry. We shall show that I 1is not irreducible. Since I is not pri-
mary, there exist elements b and ¢ in R-I such that bc € I
and no power of b 1lies in I . Let

Q. = (x €R | xbt € 1),

where t 1is a positive integer, then Qt's are ideals in R and we

have the following increasing sequence
9, €Q,CcQ;cC...cQ CQ. . C...

.

Since R 1is Noetherian, there exists n > 0 such that QL = Qa1

We claim that
I =(I+Rb?) N (I + Rc) .
n

Clearly, I C (I + Rb') N (I + Rc) . Conversely, let
X € (I + Rbn) N (I + Rc) , then we have

X = u+ybn = v+zc , where u,v € I and y,z € R

Since bc € I , we have bx € I . Hence ybn+l = bx-bu € I . Since

Q ybn € I . Therefore, x € I .

n Qn+1 !

Now since ¢ ¢ I and b" ¢ I , we have
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I+Rc 3 I and I+Rbngx.

Hence I 1is an intersection of two ideals I + Rb' and I + Rc

strictly containing I . Thus I is not irreducible.

(6.29) Proposition (see Zariski & Samuel [1, P.216]). Let R be a

commutative Noetherian ring with unity element 1 and 4 be an
ideal of R , then

® n_ « n
M ngl M = n,r——ll M .
P £ Let ' = 8. 47 da = ﬁ ' h ! e primar
roof. e a =0, an a = 199 Qi where Qi S are p Y

ideals in R and t is a positive integer (see Lemma 6.27 and
Lemma 6.28). Since M+*a C ¢« , it is enough to show that a« C Q; for

all i in order to establish the equality. Since M+a C Q + @ CQ

if Mg JQi (see Proposition 6.25). If A C JQi then Al CQ for

some integer 1 > 0 , because H 1is a finitely generated R-module.
Thus in either case we have a C Qi . Hence Jl+a = a . Q.E.D.

(6.30) Corollary. Let R be a Noetherian local ring with maximal
ideal M , then

n

0, M= (0) .
Proof. It is clear from Nakayama's Lemma. Q.E.D.
(6.31) Definition. Let R be a Noetherian local ring with unique

maximal ideal M . A subset U of R 1is said to be open if and only
if for any X € U there exists a positive integer n > 0 such that
U D M4x . These open sets in R define a topology, which is Haus-
dorff and is called the M-adic topology on R .

Justification of the definition. Clearly the M-adic topology is

well-defined. Let x,y € R and assume X # y , then there exists an
integer n, > 0 such that x-y ¢ M™  from Corollary 6.30. Since

M + x)n (M™ + y) =0 , R is Hausdorff.
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7. Dimension of affine algebraic varijeties

(7.1) Definition. Let (V,A) be an irreducible affine variety over

K , then the dimension of V 1is the transcendence degree of the

quotient field of A over K . We write dim V for the dimension of

V . In general case we define

dim V = max (dim V, | 1 =12,2,...,1} ,
where VirVyreew,Vy are the irreducible components of a given affine
variety (V,A)
Exercise 23. Let (V,A) € f(K) . Then dim V = 0 if and only if V

is a non-empty finite set.

One can see at once that the dimension of affine n-space is n . In
this section we shall explain the deeper geometrical meaning of di-

mension.

(7.2) Proposition. Let (V,A) be an irreducible affine variety
over K and W be a proper non-empty closed irreducible subset of
V . Then we have

dim W < dim V .

Proof. From Noether Normalization Theorem we can take algebraically
independent elements (x,,...,X_ ) over K in A such that A is

1 m
integral over K[xl,xz,...,xm] . Then {xl,xz,...,xm) is a transcen-

dence base of the quotient field of A and dim V = m .

Now let p = (W) , which is a prime ideal from Proposition 5.5, and
let wv:A - A/p be the natural map. Then A/p 1is integral over

K[v (% .,u(xm)] and we can choose a maximal algebraic independent

l),..
subset of {v(xl),u(xz),...,v(xm)) as a transcendence base of the

quotient field of A/p . Since
dim W = tr.deg, (the quotient field of A/p) < m ,
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,v(x_)) is not algebraically

it is enough to show that (v(xl),... -

independent.

Let b be a non-zero element of p . Since A 1is integral over

K[xl,xz,...,xm] , we have
pe pP e HE = 0
1 n
for some fl’f"’fn € K[xl,xz,...,xm] ., We can assume that n is mi-

nimal among those equations. Thus fn # 0 . Let
t

S N T
AtGK
where Tm =N x N x...x N and almost all At's are zero. Since
m

v(b) = 0 and v(O™+E P Y. . +E __b) + v(E) = 0 , we have

1 n-1 n

t1 tm
v(fn) = tsz At v(xl) ...v(xm) =0 ,
A, €EK

t
which implies (v(xl),...,v(xm)) is not algebraically independent.

Hence dim W < dim V . Q.E.D.
(7.3) Corollary. Let (V,A) be an irreducible affine variety over
K . Then

(1) any set S8 of closed irreducible subsets of V has a maximal
element, and

(2) if W is a maximal set among closed non-empty proper irreducible
subsets of V , then W 1is a component of ¥ (Af) for some non-
zero non-unit £ € A . For the definition of units of A see

Lang [1, P.61].

Proof. (1) We assume that S contains a non-empty closed irredu-

cible subset of V . Then we can choose Yo € 8 such that
dim Y_ = max (dim Y | Ye s and Y # 2) .

YO is a maximal element in 8 .



(2) Assume that W = ¥(I) for some ideal I . Since W is a proper

subset of Vv , I g (0) , i.e.;there exists £ € I-(0} . Then
W=(I) C ¥(Af) , because Af C I . Thus W 1is contained in some
irreducible component Y of Y (Af) . Since W is maximal among
closed non-empty irreducible proper subsets of V , we have W =Y
Q.E.D.
(7.4) Definition. Let f be a non-constant polynomial, i.e., non-
zero non-unit element in K[Xl,Xz,...,Xn] , then the subset 7 (Af)

in affine n-space K" is called a hypersurface.

(7.5) Lemma. Any irreducible component of a hypersurface in affine

n-space has dimension n-1 .

Proof. Let f be a non-constant polynomial in A = K{X  Xyreee i X ]

and Vv (Af) C K" be a hypersurface. Since A 1is a unique facto-
rization domain (see Lang [1, Corollary 6.3 on P.199]), we have
f=1ff £,
m

12.0'
where fl’fz""'fm are irreducible elements in A . Now let
fl’fz""'fm be a full set of different elements from
8]
{fl,fz,...,fm) , then we have

Y(Af) = Y(Afy) U ¥(Af,)) U...U ¥(AE ) .

(o]

Assume that g € {Af, , then gl € Afi for some 1 € IN and

1 . Hence we have

v ®

fi | g , because 1
Af, = IKEI = #(V(ALy))

from the Nullstellensatz. If gh € Afi , l.e., 1’:'.l J gh for some

g,h € A, then we have £, | g or £, | h , which implies that AL,

is a prime ideal. Hence each W(Afi) is an irreducible closed sub-

set. It is easy to see that W(Afi) (1 = 1;2,...,m0) are irredu-

cible components of ¥ (Af) , because W(Afi) 1A W(Afj) when 1 # j

(see the proof of Theorem 5.9).
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Now we shall show that
dim 1 (ALy) tr.deg, (the quotient field of A/Afi)

= n-1 , where 1 = 12,000 mg .

We can assume that fi involves X, - Suppose that

(X, + ALy, ..., X + Afy)

is not algebraically independent over K , then there exists a non-
trivial polynomial in n-1 variables over K such that

g(Xl + Afi,...,xn_l "‘ Afi) . 0
Thus g(xl,ij...,Xn_l) € Af; , i.e., £ | g , which implies g in-
volves X , a contradiction. Hence

n-1 ¢ dim ¥ (Af;) < dim K" = n

(see Proposition 7.2). Q.E.D.
- Norm -
(7.6) Definition. Let E be a finite extension field of a field
F Let a € E be an arbitrary element of E , then we define its
norm NE/F(a) to be the determinant of the F-linear transformation
given by the multiplication by a . Thus if (el,ez,...,en) is an
F-basis of E and
n
ae; = j§1 fjiej (L < 1< n) ,
then NE/F(a) = det(fij) . It is clear that NE/F(a) is independent
of choice of basis and the map
* *
NE/F'E — F
(NE/F:a — NE/F(a))

*
is a multiplicative homomorphism where B = E-{(0) and F = F-(0)

Now let F, = Fla] where o € E and {xl,xz,...,xm) be an Fl—basis

of E , i.e.,

E = le1 (1} lez o...0 lem .

Since we can choose an F-basis of E of which each basis element

lies in some lei , we have
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N pla') = {NFi/F(a')}[E‘Fil for any a' € Fla] .

Next assume that X1+A1X1—1+...+Al (A, € F, i=122,...,1) 1is the
minimal polynomial of « over F , then {1,a,...,al—1} is an
F-basis of F, . Hence we have
1

NF1/F(a) (-1) Al .
Thus we have got the following proposition.
(7.7) Proposition. Let a« € E and F, = Fla] . If
X1+A1X1_1+...+Al (Ai € F, i=1,2,...,1) is the minimal polyno-

mial of a over F , then we have
- (=11 [E:F, ]

Now we shall show the first main theorem of this section.

(7.8) Theorem. Let (V,A) be an irreducible affine variety over

K , and f be a non-zero non-unit element of A . Let Y be an
irreducible component of ¥ (Af) , then
dim ¥ = (dim V)-1

Proof. Let p = #(¥) and Y, .Y Yy be the irreducible compo-

AR
nents of ¥ (Af) other than Y .

We assume that t > 1 . Since Y ¢ Yl U Y2 u...U Yt , i.e.
ﬂ’(Yl U Y2 u...u Yt) Z 2(Y) , we can choose

U f— .:_l'. — .a;_
g€ $(¥; UY,U...U Y )-#(Y) . Let Ag = A[g] ( {gr | a€a,

r € N)) in the quotient field of A and
Vy=(vev | g(v) # 0} and
p.=(3|aep, rem .
g gr

From Proposition 2.8 (Vg,A ) 1is an affine variety over K .

g
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(*) We shall show that

"YNV, = (v ey f(v) =0 and
g = ! g | £V )
= (h € A h = 0 for all €EYNV
Py = { g | B Y g
=9 (¥Ynvy,).?"
A
g g

Proof of (*). It is clear that ¥ N vg C (v € vg | £(v) = 0) .
Assume that v € Vg and f(v) = 0 , then we have vV € WV(Af) . Hence

v €Y or vV € Yi for some 1 ¢ i ¢t . In case Vv € Yi for some

1 ¢ i<t , then g(v) = 0 , because g € 5’(Yl U Y, U...u Yt) ,

contradiction. Hence v € Y and Y N Vg = (v € Vg | £(v) = 0) .

It is also clear that bg C wA (Y N vV
g

g) . Assume that

h = 3? € ?A (Y N Vg) then hgr+1 = ag 1is zero on Y . Hence

g g
ag € p . Since p is prime and g ¢ p , we have a € p . Thus we
have h €
bg

Since pg is prime in Ag , Y n Vg is an irreducible closed set in
Vg . Furthermore,
dim Vg = tr.degK (the gquotient field of Ag )
= tr.degK (the quotient field of A )
= dim V
and dim Y = tr.degK (the gquotient field of A/?(Y) )

= tr.degK (the quotient field of Ag/bg )

I

dim Yy nyv_,
g

where Y N Vg is considered as a closed subset of Vg . Thus we can

now assume that 7 (Af) 1is irreducible and Y (Af) =Y

Now from the Noether Normalization Theorem 1 we can take algebrai-

cally independent elements XqrXo0e from A such that A is

ce Xy

integral over B = K[xl’XZ""’xd]
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Let E be the quotient field of A and F be the quotient field of
B . Let a € A be an arbitrary element of A , then the minimal po-
lynomial of a over F 1lies in B[X] , because B is a unique
factorization domain. Hence

NE/F(a) € B

from Proposition 7.7 and the map NE/F takes A into B

= 1 1-1 . .
Let fo = NE/F(f) and assume that X +b1X +...+b1 is the minimal
polynomial of £ over F . Then we have
1 E:F[£
N p(E) = ((-1)'py) LFIFLE]
(_l)[E:F) b£E:F[f]]
Since fl+blfl-l+...+bl = 0 , we have
1y [E:F], s-1 _1 -1-1 —
(-1) bl (£ +blf +...+bl) o,
where s = [E:F[f]] . Thus
— _1y LE:F]. s
£, NE/F(f) (-1) b1
- (. _ay [E:F] . s-1_.1-1 s-1
= (=-f) (-1) (b] "€ T+...+by "by_;) € Af

From the Nullstellensatz we have
p = 9(Y) = $(V(AL)) = JAf .
Hence fo € Af C p

(*%) Now we show that I = B N $ , where I is the radical of BfO

in B

Proof of (*%). Since BfO Cp, ICBNGEPH . Assume that

h € BN ¢ , then hr = gf for some g € A and r € N , because
b = JAf . Thus we have

NE/F(h)r = Ng p(9)Ng p(£) = LNp p(9) € BL,

Since h € B , the minimal polynomial of h over F is X-h . Thus

NE/F(h) = h[E:F) . Hence h € I and we have I = BN p .

is prime in B . The only possibility that I can be prime

r

Hence I
is if f,=7p for some irreducible element p in



B = K[xl,xz,...,xd] and some r » 1 . Thus we have I = Bp . Since
A is integral over B , A/p is integral over B+p/p and
tr.degK (the quotient field of A/p )
= tr.deg, (the quotient field of B+p/p )
= tr.degK (the quotient field of B/BNp )

= tr.degK (the quotient field of B/Bp ) .

From Lemma 7.5 we have tr.degK(B/Bp) = d~1 . Therefore,
dim Y = tr.degK (the quotient field of A/p )
= d-1
= (dim V)-1 . Q.E.D.
(7.9) Corollary.
(1) Let (V,A) be an irreducible affine variety over K and
V=V, ] 2...0V, 0JV_230

d # Va-1 ZTTC#F L # o #

be any maximal sequence of closed irreducible subsets, i.e., each A

is closed irreducible and there is no proper closed irreducible sub-

set between and Vi for i =0,1,2,...,d-1 , and V has no

Vit1
proper closed irreducible subset. (Because of Proposition 7.2 such a

sequence exists with finite terms.)
Then we have dim V = d .

(2) Let (U,A) and (V,B) be irreducible affine varieties over

K . Then we have
dim(U x V) = dim U + din V .

(3) Let (V,A) be an irreducible affine variety over K and Y
be a closed irreducible subset of codimension ¥ 2> 1 , i.e.,
dim V - dim ¥ = r > 1 . Then there exist closed irreducible subsets

Yi of codimension 1 ¢ i ¢ r such that

Y Y g Yr =Y .

. J .
V22 ¥ 4
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(4) Let (V,A) be an irreducible affine variety over K and

fl’f £ be elements in A . Assume that

RN

V(BE 4. HALL) % O,

then each irreducible component of W(Afl+...+Aft) has codimension

at most t
(5) Let (V,A) be an irreducible affine variety over K and Y
be a closed irreducible subset of codimension r > 1 . Then Y is an
irreducible component of W(Af1+...+Afr) for some
S S R
Proof. (1) We follow the induction on dim V . Assume that
dim V = 0 , then |V| = 1 where |V| is the cardinality of V , and
the assertion is correct. Hence it is enough to show that

dim Vy_, = (dim V)=-1 .
Since V 2 Vi1 7 $(Vd_l) 2 $(V) = 0 . Hence we can take a non-zero
non-unit element £ in y(Vd_l) . Since Y (Af) D W(?(Vd_l)) = Va1
and Va-1 is an irreducible component of ¥ (Af) , we have
dim Vd—l = (dim V)-1 from the Theorem.
(2) First we assume that dim Vv = 0 , then |V|] =1 and B = K .
Since A ®K K =A , we have dim(UxV) = dim U + dim V . Thus we can

follow the induction on dim U + dim V . Assume that dim V > 0 ,
then we can take a non-zero non-unit element b in B . Let

WV(Bb) =V, U...U vV be a decomposition of WV(Bb) as a union of

1 t
irreducible components, then
Py (B @ B)(1 8 b)) = (U x V;) U...U (U x V)

is a decomposition of WUxV((A ®K B) (1 ® b)) into irreducible compo-

nents from Proposition 5.7. Thus from the Theorem we have

dim(Ule) = dim(UxV)-1 .
By induction we have dim(Ule) = dim U 4 din Vl . Again from the
Theorem we have dim V1 = (dim V)-1 . Therefore, we have proved

dim(UxV) = dim U + dim V
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(3) is clear from Corollary 7.3 and (1).

(4) Let W, = W(Af1+...+Af then W is a closed subvariety of

t) ’

t t
Weq = W(Afl+...+Aft_l) . Let Y be an irreducible component of
v (Af,) (= W_.) , then Y is contained in some irreducible
We 1 t t
component Yo of Wt—l and Wt . WYO(Aft) 3 Y . Hence YO =Y or

dim YO = dim Y + 1 from the Theorem. Since codim Yo ¢ t-1 by

induction, we have codim ¥ ¢ t .

(5) Let Yy be closed irreducible subsets of codimension 1 (i { r

J J.eed = .
such that V 2 Yl P, Y2 P, 2 Yr Y We shall prove that for any g

(L < g £ r) there exists fi € A (1L < 1i¢q) such that all irredu-

cible components of W(Af1+...+qu) have codimension g in V and

Yq is one of these components.

Assume that g =1 . Let f, 6 € ﬁ(Yl)—{O) . Since £, is non-zero and

non-unit and V 3 W(Afl) D Y., , it is clear that f1 satisfies the

1

condition from the Theorem.

Now suppose that there exist fl""’fq-l € A which satisfy the con-
dition. Let Zl = Yq—l’zz""’zm be irreducible components of
W(Afl+...+qu_l) . Since any Zj is of codimension -1 , none of
Z.'s is contained in Yq . Hence Q(Yq) 1A f(Zj) for any 1 ¢ Jj { m .

J
Therefore we have

m
I (Y U, ¢ (2.
(Yg) € 4Y; #(23)
from "Zariski & Samuel [1, P.215]: Let A be a commutative ring and
m

¢ an ideal of A . If a 1is contained in a finite union igl pi of

prime ideals bi of A, then @ 1is contained in one of bi's M

m
Let £ be an element of ¢ (Y such that £ _ ¢ .U. #(Z.) . Let 72
q ( q) q J=1 ( ])
be an irreducible component of W(Afl+...+qu) , then there exists

Zj (L £ jJ ¢ m) such that Zj D Z . Since
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Z C Y (Af nz. =1 Af
( q) i Zj( q) '
dim Zj -~ dim 2 = 1 from the Theorem. Hence codim Z = g . Since

Yy Ccv(Af) and Y _ C Y C V(AL +...+Af there exists an

d gq q gq-1 g-1)
irreducible component Z of W(Af1+...+qu) which contains Yq .

Since codim Yq = codim Z , we have Yq =3 . Q.E.D.
Exercise 24. Prove Corollary 7.9.3.
Exercise 25. Prove the assertion "Zariski & Samuel [1, P.215]" in

the proof of Corollary 7.9.5.

(7.10) Proposition. Let A be a finitely generated commutative

algebra over an algebraically closed field K . Assume that A 1is an

integral domain and let

vV = (A, K)

HomK—alg
and define

t:A — M(V,K) ’
(t:a — [cv(a):v » v(a)])

where v € V . Then
(1) ¢ 1is an injective K-algebra map and (V,A) € A (K) ; and
(2) the Krull dimension of A , i.e., the maximal length of d of a

chain prime ideals

0GP GPy GG PaE A

is equal to dim V (= tr.degK (the quotient field of A} ).

Proof. (1) 1is clear from Proposition 6.9.
(2) Let V =7({0}) D W(bl) D W(pz) J...0 W(pd) 3 @ Dbe the sequence

of closed subsets of V corresponding to

0 g bl g bz g...g bd g A .
Since f(ﬂ(pi)) = Jbi = bi for each 1 ¢ i ¢ d from the Hilbert's

Nullstellensatz, each W(bi) is irreducible and W(bi) 2 W(bi+l)

Since f(W(bi)) C $(F) C PV (b, for any closed irreducible

i+1))
subset F of V such that W(pi) D FD W(pi+1) , we have dim V = d

from Corollary 7.9.1 as desired. Q.E.D.
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(7.11) Definition. Let V be an irreducible affine variety over
K . Let p be a point of V . We define the local ring 0p of p

on V to be

Op = XlVg((py)

where K[V] 1s the coordinate ring of- V and

K[Vl (py) = (KLVI = #((p))) KV .

It can be easily checked that Op is a Noetherian K-algebra and in-
tegral domain. Since ¢ ({p)) is a prime ideal in K[V] , Op is
really a local ring with the maximal ideal (K[V] - ?({p))—lf({p)) .

Exercise 26. Let A be a commutative ring with unity element 1 and

S be a multiplicative subset of A .

(1) For an ideal o« of A we define

s7ld = (a/s | a€d4 and s € S)
to be the subset of 8 1A consisting of all fractions a/s with
a€d and s € S . Then S 1o is an S—1A~idea1 and for any ideals
4 and B of A we have

s_l(d+%) = s lu+s™g

s™L (us) (s™ 1) (s™%) ang

st nd) =stn sy .

(2) If A 1is Noetherian, then s7la is also a Noetherian ring.

(7.12) Lemma. Let R be a commutative ring with unity element 1.
ILet M be a maximal ideal of R . We write Ry for (R—M)_lR and
MR, for (R-M) 'M . Then

(1) the operation: R/M><M/M2 — M/M2 defines a R/M-vector

((r+M,m+M2) —~a‘rm+M2)
space structure on M/M2 '

(2) the map: R/M — RM/MRM is a field-isomorphism,
(xr+M — r/1+MRM)
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(3) the map: M/M2 —_— MRM/(MRM)2 defines a vector space-
(m+M® — m/1+(MRy)?)

isomorphism between the two R/M-vector spaces.

Since the proof of Lemma 7.12 is straightforward, we leave it as an

exercise.

Exercise 27. Prove Lemma 7.12.

(7.13) Lemma. Let R be a commutative ring with unity element 1.
et @ be an ideal of R such that R J ¢ . Assume that « 1is con-

#
tained in some prime ideal p of R . Then p contains a prime

ideal P which is minimal among prime ideals containing a .

Proof. Let % = (¥ |¥ is a prime ideal of R such that
f D N D a) . We define an order > on % as follows: J{ > X

(M,¥ € $) if and only if N D H# . Let @O be a totally ordered sub-

set of % . Let

No = Ng@o N
then NO is an ideal of R such that p£ 3 No JDa .

Now we show that NO is a prime ideal. Assume that ab € NO for
some a,b € R . If there exists X € @o such that a ¢ ¥ , then we
have b € X . Suppose that b 1is not contained in some W € @O .
then W 2 M . Thus M does not contain both a and b , which con-

tradicts the fact that M 1is prime and contains the product ab

Thus b 1is contained in all A € 90 , i.e., Db € NO . Hence NO is

prime and % 1is inductively ordered.

From the Zorn's lemma ¢ has a maximal element bo and it is the

desired ideal. Q.E.D.
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(7.14) Iemma (Krull) (see Nagata [1, (9.2)]). Let R be a commuta-
tive Noetherian ring with unity element 1. Assume that R 1is an in-

tegral domain. Let a be a non-zero non-unit element of R . Let ¢
be a prime ideal of R which is minimal among prime ideals of R
containing Ra , then ¢ contains‘no prime ideals except (0} and
p itself.

Proof. Since R g Ra , certainly such a p exists from Lemma 7.13.
Let S = R-p , then s 14 is a unique maximal ideal of the local
ring s™IR . We denote s~ 'R = Rp and S % = pRp . It is clear that

pRp contains S_l(Ra) and a/1 is a non-zero non-unit element in

Ry 1 which also generated S Y(Ra) = (s"'rya/1

Assume that po is a non-zero prime ideal of R properly contained
in p , then S_lbo is also a non-zero prime ideal of S 'R proper-

ly contained in BR, .

b
Now let @ be a prime ideal of Rp such that
PR, D @ D Roa/l .
Since bRp NR=pgI3aNRD Rpa/l N RDJDRa and a N R 1is a prime

ideal in R , we have p = a N R . Hence

PR, = sT'enRr =a .

Therefore, pRp is also minimal among prime ideals of Rp contai-
ning Rpa/l . Thus we may assume that p is the unique maximal ideal
in R .

Let R' = R/Ra and v:R — R/Ra be the natural map, then every
(v:ir — r+Ra)

prime ideal of R' 1is equal to v (p)

Now we show that R' satisfies the minimal condition for ideals.
Since every prime ideal of R' is equal to wv(p) , we have

J{0} = v(p) in R' . Since R' 1is Noetherian, v (p) is generated
by finite number of nilpotent elements PyiPyreee /Py as R'-module.

Then there exists a natural number N # 0 such that p? = 0 for
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every i . Since u(b)Nm = (0) , v(p) is a nilpotent ideal. Let
r # 0 be the smallest natural number such that u(b)r = (0} . Then

we have the following sequence of ideals:
R' D v(p) Dum)2 ..o um o vt = (0)
We can consider all the factor modules
R'/v(p), vip)/v(B)2, oo, vp) T o)

to be R'/vu(p)-modules.

RUv(p) x vip) o) — vip) te ) Y
(rtv (b)), xtu(p) ™Yy — pxrv (p) Y
Since R' is Noetherian, R'/u(p), v(b)/u(b)z,...,v(b)r—l/v(p)r are

finitely generated R'-modules. Hence they are also finitely genera-
ted R'/vu(p)-modules. Since R'/v(p) 1is a field, the factor modules
2 -1 r
R'/u(b), v(b)/v(b)*, vy v(B)" /0 (P)

have finite R'/v(p)-basis as follows

R'/v(p) = R'/v(p) (1t+v(p))

vy Lo @) = reu ) a0 )Y 0l rezo ) P w0 o) T
r 1
(i = 1,2,..3,411)
Since we can also consider R'/v(l))(x:gi)ﬂj p) Yy G = 1,...,1) to

be an R'-module and they are all irreducible R'-modules, we see that
R' has a composition series. Thus R' = R/Ra satisfies the minimal

condition for ideals.

Let ¢ be a prime ideal of R such that ¢ S b . Let

1

M =elr nr,ie, o = (@)Y AR (1=1,2,..0) , then

it is clear that q(l) are ideals of R and

q(l) = q D Q(z) 3 q(3) ...

Put a, = @(l)+Ra . Since R/Ra satisfies the minimal condition,

there exists n € N such that @, = a. for any i 2 n . Let

q(n):Ra = ({x | x € R and xRa C @(n)) . Then we have

q(n):Ra = @(n) , because a ¢ q by the minimality of p .
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Now we shall show that %(n) = q(l) for all i > n . Notice that
R/q(l) is a Noetherian local ring with maximal ideal b/q(l) . Since

%(n)/q(i) C Ra+q(i)/q(i) and

oM (1) = )0 (3) paye (1) )0 (1)

for any x+q(i) € Q(n)/q(i) we have
x+q(i) = ra+q(i)‘ (r € R)
and r+q(i) € q(n)/q(i)

Hence (a+Q(i))(q(n)/q(i)) - (q(n)/@(i))

Thus @(n)/@(i) = (0) , i.e., q(n) = q(i) from the Nakayama's
(n)

Lemma. Therefore, we have = ¢

From the definition we have

e = ir nrR=(R¢) Y NR.

G
Since Rq is a Noetherian local ring with maximal ideal qR@ ,
i R )L = (0
from Corollary 6.30. Since
-1 i -1 i i
(R-¢) g {((R-q) "¢}~ = (@Rq) '

(1) _

we haveiﬁl q = (0) , which implies q(n) = {0) . Hence ¢ = (0}

i

Thus we have shown that p contains no prime ideal except (0) and
[ N Q.E.D.

We supplement the following lemma.

(7.15) Lemma. Let R be a Noetherian local ring with unique maxi-

mal ideal M . Then M 1is generated by its elements (fl,fz,...,fn}
~as R-module if and only if M/M2 is generated by {fl+M2,...,fn+M2)

as R/M-module.



Especially (fl,fz,...,fn) is a minimal set of generators of
R-modules M , i.e., any proper subset of {fl,fz,...,fn) does not
generate M if and only if (f1+M2,...,fn+M2} forms a R/M-basis
for M/M2 .

Proof. Assume that M/M2 is generated by (fl+M2,...,fn+M2) as

R/M-module. Let N = Rf1+...+an , then we have

M(M/N) = M/N .
From Nakayama's Lemma, M/N = (0) , i.e., M =N . Q.E.D.

(7.16) Definition. Let R be a commutative ring with unity element
1. For a prime ideal f of R we define the height of f to be the

maximal of length of descending chains of prime ideals which begin
with §f . The length of a chain is defined to be one less than the

number of terms of the chain.

(7.17) Theorem (Krull). Let R be a commutative Noetherian ring

with unity element 1. We assume that R is an integral domain. Let
@ be a non-zero proper ideal of R generated by r elements, i.e.,

3 I PR - € a such that
a = Ral+Ra2+...+Rar .

Let p be a prime ideal of R which is minimal among prime ideals

of R containing « , then the height § is not greater than r ,

i.e.,

height p ( r .
Proof. We follow the proof of Nagata [1, (9.3)]. Assume that
r =1, i.e., a = Ra, , then from Lemma 7.14 we have

1
height p = 1 { r .

Next assume that r > 1 . Let p = by 2 by g...g by be a chain of

prime ideals by of R . It is enough to show that

s { ¢



Since R 1is Noetherian, we can assume that there is no prime ideal

between bo and p, . Considering Rp = (R-p)-lR instead of R , we

may assume that p is the unique maximal ideal of R (see the proof
of Lemma 7.14).

We can assume that a; ¢ pl , because a ¢ bl . Then there is no

. Hence ~|p1+Ra1 = ph

prime ideal except p which contains pl+Ra

1
from Exercise 19 on p.45. Since a; €p (L=1,2,...,r) , we have
t
a;” € p,+Ra, for some ti €N (L=1,2,...,r) . Thus there exists a
natural number t € N such that
t
aj € pj+Ra,;
(] 13 t K]
. 0= s 13 'e
for all 1 < i ¢ r We write as albl+cl with bl R and
cy € bl Let
' =
a R02+R03+...+Rcr .
Let f£' be a minimal prime ideal between Py and a' . Since
a; € Ja'+Ra1
for all 1 < i< r, Ja'+Ra1 D a . Since pl+Ral . a'+Ra1 , we have

= ]
b ~lp1+Ral JHNa +Ra, JDda .

Thus Ja'+Ra1

contained in the unique maximal ideal §p , which is minimal among

JJa'+Ral = p , because any prime ideal of R 1is

prime ideals of R containing e . Hence we have

= ] 1 =

b 4p1+Ra1 O p +Ra,; 3 {a +Ra, b,

because bl+Ral o] p'+Ral n a'+Ral . Therefore in the ring R/p' ,
which is Noetherian local ring with maximal ideal p/p' , p/p' 1is a

prime ideal which is minimal among prime ideals of R/p' containing

Ral+b'/b' . Hence from Lemma 7.14 we have

0]

bl/b' = (0} , 1.e., bl =p'
because p/p 2 pl/p' . Thus by is a prime ideal which is minimal

among prime ideals of R containing a' = Rc,+Rc +...+Rc . . There-

3

fore from the induction we have



height bl { r-1

Hence s { r . Q.E.D.
Finally we shall prove the main theorem of this section.
(7.18) Theorem. Let (V,A) be an irreducible affine variety over

K . Then
(1) dimKT(V)V > dim V for all v €V

(2) Let 8 = (v eV | dimKT(V)v = dim V) , then S 1is a non-empty

open subset of V (hence S 1is dense).

Proof. We write A = K[Xy 1 Xo oo %] according to the Noether Nor-

malization Theorem 2. Let
(0) » Ker © = K[Xy,Xy, e, X] 2, a5 (0)

X, — X,

be the same exact sequence defined in the proof of Theorem 2.3, then

there exists a morphism

@1V > KD

*
such that © = ¢ and V is isomorphic to the subvariety ¢(V) of
K" . Thus we have

9 (¢ (V)) = Ker ©

and Kle(V)] = K[Xlrle---rxn]/f(¢(v)) = A
Let Fi(Xl,...,Xd,Xi) be a monic minimal polynomial of X, over
K(xl,xz,...,xn) obtained in the Noether Normalization Theorem 2,
where i > d , then each Fi(Xl,...,Xd,Xi) € $(¢(V)) . Hence we can

choose a set of generators of ¢ (¢(V)) containing (Fi | 1 > a) ,

ice., (Fgyqre-+rFy) U (P /Pyyens,Py)
(1) We follow the proof of Hartshorne [1, Theorem 5.3 on P.33]. Let
P = ¢(v) , where v € V and assume that

n
P = (al,az,...,a ) € K

n
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Let viK[X,, X X1 — K

PIAE

L3 _—_—_—.—) .
(U.Xi al)

be a K-algebra map which takes X4 to ay for each 1 ¢ i< n,

then we have

Ker v = <Xl—a1, X2—a2,..., Xn—an> .
Put ap, = Ker v . Let © be a linear map from K[Xl,Xz,...,Xn] into
K' such that
B:R[Xy, v e X)) — K"
~ . 6f 5f
(G'f i (6X1 (P)l"'léxn (P))) .

It is easy to check that
N v
B(Xi—ai) = (0,--.,0,1,0,..-,0)

for any 1 < i {( n and

~ 2 _
G(aP) =0
Thus we can define a K-isomorphism ©' from wP/a% onto X" such
that
~ 2 n
L
GN.aP/aP —_— 5
(6':f+a2 — B(£)) .
Now let )
0F 341 OFa+1
EX L rrteeccecrtiTEX
1 n
J = .
6Fn 6Fn
2L L A 4 ....’
6X1 6Xn
6Pl 6Pl
,C. ....l..’
6X1 6Xn
6 1 6Pl
’..‘.’..'Q., .
h 56X, 5X J

Then dimKT(w(V))P = n-rankJ(P) (see Proposition 4.10).

we

It is clear that rank J(P) = dimKﬁy(¢(V)) . Since #(p(V)) C ay ,

have
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61 (2 (0 (M) +aZ/al) =B (e (V) .

Thus rank J(P) = dimK(y(w(V))+a§/a§) i

since K[¢ (V)] = K[K"]/#(#(V)) D ap/#(¢(V)) , the local ring 0 of
P on ¢(V) is from the definition
Ko T q s (0 ()

Let M be the maximal ideal of 0 i.e.,

P ’
= (ap/I IR T (s (p(v)))

then from Lemma 7.12 we have
H/H2 2 (an/9 (9 (V) )/ (0249 (9(V)) /3 (9 (V))) & ap/aZed (¢ (V)

as K-spaces. Hence dimKﬂ/M2+rank J(P) = n .

2,...,tl be elements of M whose images in M/Mz form

a K-basis of this vector space, then from Lemma 7.15 { is generated
by tl'tz""’t

Now let tl,t

1 as OP-ideal. From Theorem 7.17 we have

height A < 1 = dimg/d?

Since height ¢({P)) ¢ height M and
tr.degK {the quotient field of K[¢(V)])} = dim ¢ (V) = height ¢ ({P})

from Proposition 7.10, we have shown that

n-rank J(P) = dimK'I‘(qo(V))P 2 dim ¢ (V) where P = ¢ (V)

(2) We follow the proof of Steinberg [2, Proposition 3 on P.60].

Since dlmKT(w(V))w(V) =d (= dimp(V)) 1f and only 1if
rank J(P) = n-d , we have dimKT(w(V))w(v) = d 1f and only if some
(n-d)th order minor of J(P) 1is non-zero. Hence

s' = (P € ¢(V) | dim T (e (V) = dim ¢(V))

forms an open set of ¢ (V) . Since



[ 0F341 Faras OFars 0 W
T TR By e,
OF 342 OF 442 o OF 442 o
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5F 5F : - " ST

.
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J(p) = (P)

[e7)
=<
[
=<
[oN
o
o
o]
4
3

o
el
=y
e

|

°Fy Py
e, . e s, ,

Xl 6Xn

Py °Fy

X,...'..............I..I‘C....' ...... ', 6X

=
=

and Xy is separably algebraic over K(Xl""'xd) with monic mini-

mal polynomial F. , for each i > d , certainly the minor

OF 441
X O, ceeeennnnannee, O
d+1
6F OF,
d+2 1
det 0, , O)ceeeennee, O =, -——} # 0
JrooBxL, O : i%a |3%;
* . OF
.. n
O, oooooooooooooo .o oy 0, -6-_——
L n |
Thus S' # @ . Q.E.D.
(7.19) Definition. Let (V,A) be an irreducible affine variety

over K . A point v € V is said to be gimple or non-singqular if
dimKT(V)v = dim V . If all points of V are simple, we call V

smooth or non-singular.




8. Constructible sets

In this section we shall define a constructible set of a topological
space, the image of which under an affine variety morphism is also
constructible. From this fact we shall prove that the image of an

algebraic group is also an algebraic group (see §15).

(8.1) Definition. A subset of a topological space is said to be lo-

cally closed if it is open in its closure. A constructible set is a

finite union of locally closed sets.

Exercise 28. (1) Let L be a subset of a topological space X

Then L 1is locally closed if and only if L is the intersection of

an open set with a closed set.

(2) Let C and C' are constructible sets of a topological space

X , then cU C¢c' and C N C' are also constructible sets.

Exercise 29. Let C be a constructible set of a topological space

X . If C is a union of finite irreducible sets, then C contains

an open dense subset U of C .

(8.2) Definition. Let (U,A) and (V,B) be irreducible affine va-

rieties over K . A morphism
p:U > V
is called
(1) dominant if ¢ (U) 1is dense in V ; and
(2) finite if A 1is integral over Aw*(B)

(8.3) Lemna. Let (U,A) and (V,B) be irreducible affine varie-

ties over K . A morphism ¢:U - V 1is dominant if and only if

*
¢ :B > A 1is injective.

Proof. Since Ker ¢ = (E € B | £ o ¢(U) = 0) = $(p(U)) = & (v (0))



- 89 -

and Y (Ker @*) = ¢(U) , ¢ is dominant if and only if
*
Ker ¢ = (0}

(8.4) Proposition. Let (U,A) and (V,B) be irreducible affine
varieties over K . Assume that ¢:U - V is a finite morphism. Then

(1) If 2 1is a closed irreducible subset of U , then wIZ:Z -» V is

also a finite morphism.
(2) For any closed subset 2 of U , w(Z) is closed in V , in
particular if ¢ 1is dominant, then
p(U) =V .
Proof. (1) Let ¢:Z2 = U be the inlcusion map and w = L Tet
b = fA(Z) , then w(A) € A/p . Since A is integral over ¢*(B) .

A/p 1is integral over w*(B)+b/b . Thus wlzzz -» V is finite,
because ‘
%* *
(01z) (B) = (g5 | 9 €v (B)

* *
¢ (B)/¢ (B) N p
*

¢ (B)+p/b .

IR

IR

(2) If 2 1is a closed subset of U with irreducible components

, then
¢(2) = ¢(2,) U...U ¢(2)) .

.

Thus we may assume that Z 1is irreducible. Notice

(pIZi:Zi - V
is a finite morphism for any 1 ¢ 1 {( n from (1). Hence we may also
assume that 2 = U . We also can assume ¢(U) =V , i.e., ¢ |is
dominant.

Let v € V be any element of V and ev:B -» K be the evaluation at

*

v . Since ¢ is injective from Lemma 8.3, we can define
—_— *
eyt @ (B) » K
—_— * * —_—
by ev(m (b)) = b(v) . Since A is integral over ¢ (B) , e, ex-

tends to a K-algebra homomorphism ©:A - K from Proposition 6.7.
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Since (U,A) € A(K) , we have 6 = € for some u € U , which gives
* _ % .
en(? (P)) =e (¢ (b)) , 1.e., Db(e(u)) = b(v)
for any b € B . Thus we have ew(u) =e, - Hence ¢(u) = v and ¢
is surjective and ¢ (U) 1is closed. Q.E.D.
Corollary to Proposition 8.4. Let (U,A) and (V,B) be irredu-

cible affine varieties over K . Assume that

p:U » V
is a surjective finite morphism and A O 1is an open subset of U such
that O = ¢ L(W) for some subset W of V , then ¢(0) is open in
v .

Proof. Since O = (u € U | ¢(u) € W) and

U-0 = (u€ U | o(u) ¢ w) = w—l(V-W) and ¢ (U-0) = V-W 1is closed in
V, ¢(0) =W 1is open in V . Q.E.D.
(8.5) Proposition. Let (U,A) and (V,B) be irreducible affine

varieties over K . Assume that ¢:U - V 1is a dominant morphisn,

then ¢ (U) contains a non-empty open subset of V

Proof. Let B = ¢*(B) and E be the quotient field of A and F
be the quotient field of B . Notice F C E . Let

A' = (a/b | a€ A, beB-(0)) (CE),
then A' is a finitely generated F-algebra. From the Noether Norma-
lization Theorem 1 there exist elements XyrXgpee o Xy € A' such that
A' is integral over. FIX) Xy, eeerX.] and (Xg 1%y 00 s X ) is alge-

braically independent over F . Then we have
tr.degF {the quotient field of A' )

I

r

I

tr.degFE

]

tr.degKE - tr.degKF

= dim U - dim V , because B & B
: — ! 1 B—
Since X4 xi/bi for some X: € A and bi € B-{0) , where
1< i< r, and
F[xl,xz,...,xr] = F[xi,xé,...,xé] ’

we can assume that each X4 (1 £ i {r) is an element of A .
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Let {al,az,...,am} be a set of generators of A as K-algebra.

Since aj € A' (1 ¢ Jj < m) 1is integral over F[xl,xz,...,xr] . aj
satisfies
o Cj
T L TRRIe 1C
J1 Jl(j)
where cji € B[xl,xz,...,xr] and dji € B-{0}) for each
1<i<1(j) . Let £, =d, *d, *++-d.  , then the equation
c 5
f%(j)(a%(j) + a]i. a%-(])_l N a_l(l)_) = 0
J1 Jl(j)
shows that fjaj is integral over ﬁ[xl,xz,...,xr] for each
1< jJ<{<m. Let f£f = flfz"'fm (€ B-(0}), then fal,faz,...,fam are
also integral over ﬁ[xl,xz,...,xr]'. Thus A, = (a/f% | a € A and
s € N) (C E) 1is integral over
NB[xl,xz,...,xr]f = (¢/f° | c € ﬁ[xl,xz,...,xr] and s € N} (C E)

*
Now let fO be an element of B-{(0} such that ¢ (fO) = £ . We

shall show that
P (Uf) = Vf

(o]

r

Let p be a map of B[Xl’xz""’xr]f into K[Vfo x K]

(= B, 8 K[X,,X,,...,X_]) such that p(s (b)/¢ (£,)1) takes

fo
(Y, (\p,---A)) to b(y)/f ()} for be B and 1€ N and p(x,)

takes (y,(A,,...,N)) to A, for 1< i< r , where y € V and
1 r i ’ fo

(A ..,Ar) e k- , then p 1is a well-defined bijective K-algebra ho-

1r-

momorphisn.

R r
p'B[Xl""’Xn]f — K[Vfo x K]

* *
¢ (b) , ¢_(b) , P(y)
> [p( )i (Y, (ANgpeee /A )) ]
0" (£0) ! 0" (£0)* ! g fo ()

Xi — [p(xi):(YI ()\11"'17\1.)) — Ai] .

Since E[xl,...,xr]f C A from Lemma 2.4 there exists a unique mor-

f [4
phism



r
¢-Uf — Vfo x K

* ~
such that v :B[xl,...,xr]f G Af .

Since Ag is integral over ﬁ[xl”"’xr]f , ¥ is finite. From Pro-

position 8.4 (U is closed in V x K' . Since

£)

fo
~ X , as r
K[w(Uf)] = B[xl""’xr]f , we have dim w(Uf) = dlm(Vfo x K7) . Hence
from Proposition 7.2 ¢ 1is surjective.
Now let ¢|U_:U_. > V be the restriction of ¢ to U, , then ¢|U_
£ VF fo , £ £
is a morphism and satisfies wIU =Pr oy , i.e.,
¥, v, KF
o
wlU
where P_:V_. x K- - V_ is the projection, because
r fo fO

|u o (P o *
(wlug)™ = (B0 w) .
Since  and P_ are surjective, «pIUf is also surjective. There-
fore, we have Vf = ¢(Uf) as required. Hence ¢ (U) contains a
o

non-enpty open subset Vf of V . Q.E.D.
o}

(8.6) 'Theorem. Let (U,A) and (V,B) be affine varieties and

¢:U = V be a morphism, then ¢ maps constructible sets to con-

structible sets.

Proof. We follow the induction on dim U . Assume that dim U = 0 ,
then U is a finite set (see Exercise 23 on P.66). Since a set of
finite points is closed in an affine variety, a finite set in V is

always constructible.

Now assume that dim U > 0 and S8 1is a constructible set in U

Since S 1is a union of locally closed sets §1185r++48; (C U) , we

have

0
|

= S1 U S2 u...uU Sl

and p(8) = w(Sl) U w(Sz) u...uU w(Sl)
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Thus we can assume that S 1is locally closed (see Exercise 28 on
P.88). Hence S 1is open in its closure. We can also assume that
S =U.

Let U,,U.,...,U be irreducible components of U , then we have
172 n

¢(8) = ¢(SN U U...U9p(8NU,,

where each S N Ui is open in Ui for every 1 < 1 ¢ n . Hence we

0 ]

can further assume U 1is irreducible. Since any non-empty open set
in an affine variety is a finite union of principal open sets (see
Remark 2.9), S 1s a union of finite principal open sets

Ufl,Ufz,...,Ufm for some fl'fz""’fm € A-(0)

Therefore, we can assume now that 8§ = Uf for some f € A-{0) and

show w(Uf) is constructible. Since (UprA is an affine variety

e)
from Proposition 2.8, restricting ¢ to U we may assume U, = U

Thus it is enough to show that ¢ (U) 1is a constructible set.

Finally we can also assume that ¢ is dominant, because ¢ (U) 1is a
constructible subset of ¢ (U) if and only if ¢ (U) is a con-
structible subset of V . Let O be a non-empty open set of V such
that O C ¢ (U) (see Proposition 8.5). Let 2 = V-0 and

W = wnl(Z) . Assume that W' 1is an irreducible component of W ,
then W' g U , because ¢(W') # ¢(U) . Thus we have dim W' < dim U

and dim W < dim U . By induction ¢ (W) 1is constructible. Since
-1 -1 -1
U=9¢ "(0) Uy "(2) =9 "(0) UW,

we have ¢(U) = O U ¢ (W) . Hence ¢(U) 1is contructible, because O

is open and ¢ (W) 1is constructible. Q.E.D.
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II. Varieties

In this chapter we introduce the notion of variety, which is a gene-
ralization of the notion of affine and projective varieties. The idea
of variety is necessary for defining the homogeneous space G/H of

an affine algebraic group G by its closed subgroup H



9. Sheaves of functions

(9.1) Dbefinition. A sheaf of functions over K on a non-empty to-
pological space X is a function ¢ which assigns to each open set

U C X a K-algebra ¢ (U) consisting of K-valued functions on U
such that
(0) ¥(@) = (0) ;
(1) if U C V are two open sets, then f|U € ¥(U) for any
£f e (V)
(2) let U be an open set covered by open subsets Ui (1 running

over some index set 1I), i.e.,
U= ¥ Y -
then a function f of U into K belongs to ¥(U) if and only

if f|U € ¥y(U;) for any i €I
i

We call a pair (X,¥) of a topological space and a sheaf of

functions a ringed space over K .

Remark to Definition 9.1. ¥(U) 1is a K-subalgebra of M(U,K)

(see §1).

(9.2) Definition. Let (X,?X) and (Y,QY) be ringed spaces over
K . We define a morphism ¢ of (X,¥) into (Y,¥,) to be a con-

tinuous map of X into Y such that for any open set O in Y and
- ] ~ . —].
function £ € ¥, (0) fO(cpl(P_i (O)) belongs to ¥, (¢ ~(0))

X —& v
U U
o to) & o L,x, fe ¥, (0)

1

When ¢ 1is homeomorphic and ¢ is also a morphism of (Y,QY)

into (X,wx) , we call ¢ an isomorphism of rindged spaces.




_96_

Exercise 30. Let (X,9Y

X), (Y,QY) and (Z,QZ) be ringed spaces

over K . Show that

(1) if w:(X,QX) - (Y,9 and

yv)

vi(Y,9y - (2,9 are morphisms of ringed spaces, then

Y) Z)
w0¢:(X,9x) - (Z,QZ) is also a morphism of ringed spaces;

(2) the maps 1X:X - X and

(1X:x - X)

:X where y_ is any fixed
X

€]
(9:

- Y
= Yo)
element of Y , then 1y and © are morphisms of ringed spaces;

(3) if ¢:(X,9X) - (Y,QY) is an isomorphism of ringed spaces, then

9Y(w(0)) = QX(O) as K-algebras for any open set O in X .
(f — fo(¢]0))

Now let V be an affine variety over K with coordinate ring

K[V] . We define a sheaf of functions 0, on V

(9.3) Definition. Let (V,K[V]) € 4(K) . Let v € V and N/ be a

neighbourhood of v , i.e., N, is a subset of V which contains an
open set O such that v € 0 C N, - A K-valued function f defined

on N_ is said to be regular at v if there exists an open neigh-

bourhood UV (C Nv) of v and g,h € K[V] such that g(y) # 0

and

for all y € Uv . A K-valued function f defined on a non-empty open

set U of V is said to be regular if it is regular at all points
of U

(9.4) Proposition. Let (V,K[V]) € 4(K) . Let OV(U) be the set of

all regular functions defined on U , where U 1is a non-empty open
set of V , then OV(U) is a K-subalgebra of M(U,K) and OV de-

fines a sheaf of functions on V .
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Proof. Let £,g € OV(U) and Vv € U , then there exist open neigh-

bourhoods UV and U& in U such that

f = g on Uv for some a,s € K[V]
and g = 2% on U& for some a',s' € K[V]
Oon UV n U¢ we have
(£-9) (v) = (225)(y)
and (f9) (v) = (E29) (v) (y € U, nuy)
Hence f-g , f£fg € OV(U) . It is clear that cf € 0V(U) for any

c € K . Thus OV(U) is a K-subalgebra of M(U,K) . Let U' C U be

two open sets in V . Let f € 0, (U) , then it is clear that fIU,
is regular at each point v in U' . Hence fIU, € 0V(U') . Now let
U be an open set of V covered by open subsets Ui (L€ 1) , i.e.,

U = igI U, - Let f be a function of U into K such that
flU € OV(Ui) for Vi € I . Assume that v € U , then there exists
i

i €I such that v € U, . Since f|U € 0y,(U;) , there exists an
i 1

open subset OV of Ui such that v € OV and f is regular on

Ov . Thus f € OV(U) . Q.E.D.

Next we shall investigate how regular functions relate to the coordi-
nate ring. Let v be an element of an affine variety V over K .

Let (Uv,f) be a pair of open neighbourhood UV of v and a regu-

lar function f on u, , i.e., f € OV(UV) . We denote the set of

We define an equivalence

S>
<

all pairs such as (Uv'f) at v by

A
relation ~ on OV as follows.

(UV,f) ~ (Wv,g) if and only if
£lp, = 9lg
v \Y

for some open neighbourhood T, of v in U, n W, o where

A

(U, £), (W, ,9) €0,



- 908 ~

(9.5) Proposition. Let (V,K[V]) € 4(K) and v be an arbitrary
point of V

(1) Let 8V/~ be the set of all equivalence classes with respect to
~ , then 6V/~ has the K-algebra structure as follows. Let

(ﬁ;?f), (W;TE) € 6v/~ be equivalence classes represented by (U, f)
and (Wv,g) respectively, then 5V/~ has the following algebra ope-

ration.

1

(lef) ¢ (erg) = (UV n WV ’ (fg)luvnw\/)

Hh
N
|

(UV,Cf) (c € K) .

(2) Let K[V]y = (K[V] - y(v))_lK[V] , Wwhere ¢(v) = 9((v)) . Then

(v)
there exists a K-algebra isomorphism ¢ of 5V/~ onto K[V]y(v)

which takes

a/s € K[Vl gy

to
where a,s € K[(V] and f£f(y) = aly) (y € OV) for some open neigh-

bourhood OV of v 1in UV .

Proof. (1) 1is clear.

(2) Since ¢(v) 1is a prime ideal of K[V] , K[V3y(v) is well-

defined and is a local ring. Assume that (Uv,f) ~ (U&,f') , then
there exists an open neighbourhood W, of v in U, n U¢ such that

fIW = f'lW .
v v
Since f| £
w,! Wy

€ OV(WV) , there exists an open neighbourhood o,

of v in W, such that for some a,s € K[V]

ty) = e = S (v e o

Now let TV,TQ be open neighbourhoods of Vv in U, such that for

some al,sl,az,s2 € K[V]
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(v) = 53 (vem)
- -~ az(2) !
and £(z2) s (2) (z € TV)
— - 1
Hence a;s, a,s, 0 on TV n TV . Next let
V = Vl U...U.Vt
be the decomposition of V into its irreducible components
Vl""’vt . We assume that Vl,...,Vi do not contain v Dbut
: * r mi 3 3
Vi+1""'vt contain v . Since (I‘V n DV) n Vj # 0 (i+1 ¢ Jj < t)
and
- 1
Vj D ’ij(K[V](als2 azsl)) D TV n TV n Vj ’
we have Vj = 'ij(K[V](als2 - azsl)) for any i+l £ j < t
Hence (a;s, - a,s;) | (Vi4q U-+:U Vi) = 0 . On the other hand since
v €& Vl u...uU Vi , there exists g € 5’(V1 U...UVi) such that
q(v) # 0 , i.e., q ¢ #(v) (see Proposition 1.7). Thus we have
q(als2 - azsl) = 0 in K[V] , which implies that al/s1 = az/s2 in
K[V]y(v) . Hence ¢ is a well-defined map.

It is clear that ¢ is a K-algebra homomorphism. Assume that

—_— a A .
w((UV,f)) =g = 0 , where (Uv'f) € OV , we have ga = 0 1n K[V]

for some g € K[V] - #(v) . Let Vg be the principal open set in V

defined by g . It is clear that v € Vg . Since

s(y) g(y)s(y)
for any y € 0 N Vg ' (Uv,f) ~ (Vg,O) , i.e., ¢ 1is injective. Fi-

nally we show that ¢ 1is surjective. Let % € K[V]j(v) . Then we

have

_h
))—gl

because g(v) # 0 . Q.E.D.

¢ ( (Vgr

Q=

We shall denote this local ring 0 /~ by 0



- 100 -

Exercise 31. Prove Proposition 9.5.1.

(9.6) Proposition. Let (V,K[V]) be an irreducible affine variety

over K . Let U be a non-empty open set of V . Then there exists a

K-algebra isomorphism  of 0V(U) onto xQU K[V]y(x) (C K(V) ,

the quotient field of K[V]) which takes £ € OV(U) to g € K(V)

where h,g € K[V] and £ = g on some'open neighbourhood Ux (c u)
of some point x in U .
Proof. First we show that ¢ (f) does not depend on x or U

X

Let x' be an arbitrary point of U and Oy be an open neighbour-
hood of x' in U such that

£(y) = 20 (y e o)

g'(y) x!
for some g',h' € K[(V] . Of course g¢'(y) # 0 for any Yy € O,
!
Since V is irreducible, we have U N O, , # @ . Since % = ST on
UX n Ox' , we have

V D ¥(K[V](hg' -gh')) 2 U N O,

-

=

which implies hg' - gh' = 0 on V . Hence in K(V) and we

Q=

gl
have shown that ¢ (f) does not depend on x or UX . It is clear

from the above argument that (f) belongs to XQU K[Vlj(x) . One

can easily check that ¢ 1is a K-algebra homomorphism.

Now we assume that (f) = 0 for some f € OV(U) . Let x € U , then

there exists an open neighbourhood U, of x in U such that

h

feyy = Box)

) =g

for all y € u, - Since % =0 in K(V) , h =0 in K(V) . Thus
f =0 when V(f) =0 . Hence y 1is injective.

h - .
Next let g € xQU K[VJy(x) , then for each x € U there exist

gx’hx € K[V] such that Iy ¢ $(x) and
h _ by

5 Ix
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=2
=y

x . _x!
Ix

Since for another point x' € U , we have

Q

x'
hxgxl = gxhxl
h (y)  hy,(y)

V . H = f €V nv . Since
on enee g ) T g, () oA YRy g

X x!
hy
— € 0,(V N U) and U = (v nu ,
Ix Vg XQU Ix
there exists f € OV(U) such that
by
tly nu= 9,
Ix
hx h
(see Proposition 9.4). Hence (£f) = 3. "3 and ¢ 1is surjective.
X
Q.E.D.
(9.7) Theorem. Let (V,K[V]) € of(K) and 0y be as in Propo-

sition 9.4. Let ¢ be a map of K[V] into OV(V) which takes
f € K[V] to f € OV(V) , then ¢ 1is a K-algebra isomorphism.

PiK[V] 2 0,(V)
(p ¢+ £— £ ) .

Proof. (We follow the proof of Springer [1, Theorem 1.4.5].) It is

clear that ¢ is a well-defined injective K-algebra homomorphism.

Let £ € OV(V) . Let v be an arbitrary element of V , then there
exists an open neighbourhood U, of v and gv’hv € K[V] such that

J,(y) # 0 and
h (v)
gy (¥)

f(y) =

for all y € UV . From Remark 2.9 we have Uv = Vf u...u Vf for

some finite elements fl’fz""'fn € K[V] . Hence for some 1 £ i { n
we have Vv € Ve and we may assume that U, = Ve, - We write a,

i i
for fi . Slince Va C Vg , we have

v v
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c c
\% cv
v 8y
Thus we have W(K[V)gv) C ¥(K[V]a,) . From the Hilbert's Nullstellen-

satz we have

#(4(K[V]a,)) = {K[Via, C ¢ (1 (K[V]g,)) = {K[VIg, -

Hence there exists a natural number m such that

m _ .
Ay 9v9v
for some g& € K[V] . Thus on Va we have
v
h_g!
F =V
Al
v
Since Va = V'm , we may further assume that on Va
v a v
v
h
£ =
v
. — c — C = ] . 3
Since V = ng Vav , we have V VQV VaV @ , which implies

W(VZV K[V]av) = @ . Therefore,

K(vl =2, K[V]a, and 1 € 2, K[V]a, .
Hence there exists a finite subset (a,,...,a, ) of (&, | v € v)

such that

i=1
It is clear that V =V u...u v

, because
a1 At
t t o
1(;2, K[Vlay) = 40, vai =0 .
Since —==f=- on V. NV, =V (1 < i,5 < t) , we have
a. a a. a, a,a,
1 J J 1]
(hia - aih )ala. = 0 on V= Va a U Vg a.
J J J 1?5 1?5
t
Since Va? = Va. and V = igl Va? , there exists {bl,...,bt) C K[V]
i i 1
such that
2 2 2 _
bla1 + bza2 +o..t btat = 1
t .
Now let p = igl bihiai € K[V] and we shall show that ¢(p) = £
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Let x € Va. , then we have
j
a3 (0P (x) = a3(x) (by )y (X)ay (1) +...+ by (N (X)ag (x))

Since a?hiai = aihjaj (1 < i, < t) , we have
a?(x)p(x) = bl(x)ai(x)hj(x)aj(x) bt bt(x)ai(x)hj(x)aj(x)
= (b (x)al (x) +...+ bl(x)ai(x))hj(x)aj(X)
= hy(x)ay(0)

= ag(x)f(x) forany 1< 3 <t .

< ot

Thus on V = Va , we have p = £ . Q.E.D.

1 .
J

J

(9.8) Corollary. Let (V,K[V]) € of(K) and £ € K[V]-(0) , then
(1) OV (0) = OV(O) for any open set O in Ve (see Exercise 8 on
£

P.13), and
(2) 0,(Vg) = K[V]g -

Proof. (1) Let g € OV(O) , then for each x € O , there exists an
open neighbourhood u, (c 0) of x in V such that

g:UX — K

. agy!
(9:y — S5y))

for some a,s € K[V] . Since U, is also open in (Vf,K[V]f) and

~a/l,s/1 € K[V]f , Wwe have g € OV (0)
£

Conversely let g € OV (0) , then also from the definition for each
£

X € 0 there exists an open neighbourhood v, of x in Ve such

that
g:Ux — K

(gry — ———)
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for sone E—, E_ ¢ K[{V],. , where m,n € N . Since U is also open
e ogn £ X
in V and
_ afh
g(y) = 210
(sf™) (y)

for any Yy € Ux C O, we have g € OV(O) . Hence OVf(O) = OV(O)
(2) 1is clear from the theorem. Q.E.D.
(9.9) Proposition. Let V,W be affine varieties over K with co-

ordinate rings K[V] and K[W] respectively. Let ¢:V » W be a map
of V into W , then ¢ is a morphism of affine varieties defined
as in Definition 1.3 if and only if ¢ is a morphism of sheaves of

functions of (V,0 into (W,0

V) W) .

Proof. We first assume that ¢ is a morphism of affine varieties,
then it is clear that ¢ 1is continuous (see Proposition 1.8). Let O
be an open set of W and £ € OW(O) , then we have a map

fo(pl _, ) of o 1(0) into K . Let x € ¢ 1(0) . Since ¢ (x) € O
¢ ~(0)

and £ € 0,.(0) , there exists an open neighbourhood Uw( in O

X)
and a,s € K[W] such that s(y) # O and

£(y) =28

_ a°y(z)
o (%) ° Hence fog¢(2) sov (z) for all

Since aoyp,so¢ € K[V] and wnl(Uw(X)) is an open

for all y € U

z € «p_l(U(P (X))

neighbourhood of x in ¢~ 1(0) , we have

fo(p| _ ) €0 (w_l(O))
P l(0) M

for any £ € OW(O) . Hence ¢ 1is a morphism of ringed spaces.

Now assume ¢ 1is a morphism of ringed spaces (V,OV) into (W,Ow) .

Since fog € Uv(w—l(W)) for any £ € OW(W) and
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OV('p.-l(W)) = 0,(V) = K[V] and 0, (W) = K[W] from Theorem 9.7, it is
clear that ¢ 1is a morphism of affine varieties. Q.E.D.
(9.10) Lemma. Let (V,K[V]) € f(K) and O be an open set of V .
Let f € OV(O) , then

O, = (veo | £(v) % 0)

is open in V .

Proof. Since f € OV(O) , there exist an open neighbourhood Uv

(C 0) of v for each v € O and g,h € K[V] such that g(y) # O

and
h
f = _jll
) = 5v)
for all y € U . Since (y € U, | £(y) # 0) =U_n v N vy 1is open
in V and O = VEO UV '
0, = VYo (y €U, | £(v) # 0)

is also open in V . Q.E.D.
Exercise 32. Let (V,K[V]), (K,K[X]) € #d(K) . Let O be an open

subset of V and f € 0,(0) . Show that f£:0 - K is a continuous

map.
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10. Varieties

Before defining a prevariety we prove the following proposition.

(10.1) Proposition. Let (V,A) be an affine variety over K , then

any open covering of V has a finite subcovering.

Proof. Let (O, | A € A} be an open covering of V . Since
OA = ka U...Q fo for some finite elements fkll...,fkl(x) € A
! 1(N)
for each N € A (see Remark 2.9), we have
vV = AEA 0, = AQA (VfA Uu...uU ka ) .
1 1(N)
c _ c c
Hence V™ = AQA (ka n...n VfA )
1 1(N)
= ¥ (Af, +...+Af )) =0
aen Ah Mo
From the Hilbert's Nullstellensatz we have
J (Af, +...+Af ) = A .
aen (A STN
Therefore there exist finite elements £.,...,f, € (£ ,...,£ ]
1 1 A A
1 1(\)
A € A} such that
1l € Afl+"'+Afl
. _ oC c _ . _
Hence ﬂ(Afl+...+Afl) = Vf n...Nn Vf =@ . Since V = Vf u...u Vf
1 1 1 1
and each Ve is contained in some Ok(i) (AN(1) € N) ,
i .
(OA I A € A} has a finite subcovering {Ok(l)”"’ok(l)} of V .
Q.E.D.
(10.2) Definition. A topological space V 1is called guasi-compact

if any open covering of V has a finite subcovering.
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Exercise 33. Let V be a guasi-compact topological space, then any
closed subspace is also guasi-compact.

.3) De on. A ringed space (X;VX) over K is said to be a

prevariety over K if X 1is a finite union of open subsets
Ul’Uz""’Um such that (Ui,yx(Ui)) € d(K) aﬁd QX(O) = OUi(O) for

any open set O in Ui where 1 = 1,2,...,m and OU is thecanoni-
cal sheaf of functions on the affine variety U, . We call U, and

affine open set of X .

More generally, a non-empty open subset U of X is called an
affine open set of X if (U,QX(U)) € 4(K) and yx(o) = OU(O) for

any open set O in U where 0y is a canonical sheaf of functions

on the affine variety (U,YX(U)) .

It is clear that a subset O of X 4is open in "X if and only if
o N Uy is open in each U, (L {ig<m), and a subset F of X is

closed in X if and only if F N U, is closed in each U,

(L < i< m .

Now let Ol co,cC...C O, €... be an ascending chain of open sets in

X . Since each Uy is an affine variety, there exists n, € N such

that
Ol n Ui = Ono n Ul
for any 1 2 n, and 1 < i < m . Thus
m m
0 = XN o0y =,U) (0 NUy) = ;U (0, NUy =0

for any 1 2 ng, - Hence X 1is a Noetherian space.

Further let N | X € A} be an open covering of X , i.e.,
X = AEA OA . Since each Ui 1s dquasl-compact and

Ui = AEA (OA n Ui) P Ui 1s covered by finite open sets
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I
s
c

O, ,...,0 . Hence X 1is quasi-compact, because X .
Al At 1

Exercise 34. Let (X,yx) be a prevariety over K and let 9& be

a sheaf of functions over K on X such that (Ui’yk(Ui)) € d(K)

and 9*(0) = OU (0) for any open set O in U where
i
i= 1,2,...,m . Show that 9X = yi .
Exercise 35. Let (X,YX) be a prevariety over K . Then a subset

C of X is constructible if and only if cC N Uy is constructible

in each (Ui,K[Ui])

(10.4) Proposition. Let (X,VX) be a prevariety over K with a

finite affine open covering (Uy | 1 =1,2,...,m) . Then:

(1) A non-empty closed subset F of X 1is a prevariety with a

finite affine open covering (U; N F | 1 =1,2,...,m) and a
sheaf of functions QF over K such that
QF(O) = OUinF(O)

for any open set O in F which is contained in U, NF

(L < i < m) , where OU OF is a canonical sheaf of functions on
i

the affine variety U, neFrF.

(2) A non-empty open set U of X 1is a prevariety with a sheaf of

functions VU over K such that

9,(0) = 9,(0)

for any open set O in U .

We call (F,yF) a closed subprevariety of (X,¥Y and (U,VU) an

x)

open_ subprevariety of (X,Y

x) -
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Proof. (1) Since X = Q U, , we have a finite cover of open sets
(Uy N F | 1 < i¢m}y of F . Since each U, NF is closed in U, ,

U, NF is a closed affine subvariety of U, with a canonical sheaf

of functions 0 (L ¢ i { m) . We write U! for U, NF

UiﬂF -

Now let U be an open set of F (of course in the relative topo-
logy), then we define QF(U) to be the set of all K-valued functions

f of U into K such that

g 1
flynyy € Oyy (U N UD
1 1

for all 1 ¢ i { m . It is clear that QF is a sheaf of functions

over K . Let O be an open set of F and U be an open set of X
such that U C Ui for some 1 (1 {m and O = F N U . Assume that

£ e QF(O) , then from the definition we have

- ]
Elonyy € Oyy (U N UY)
i i
Since o0 N U} =0 , we have f € 0y, (0) . Conversely assume that
i
£ € OU,(O) . We shall show that
i
S ]
flomU:,j € UUj (0 N ul)

for any 1< j {m.

Let v € onN Uj . then there exists an open neighbourhood U, of v

in U (UV is open in X) and a,s € K[U,] such that s(y) # 0 and

£(y) = Jﬂ:(y,

for all vy € UV N F , because K[Ui] = (gIU, | g € K[Ui]) . Since
1

U, nu,) ,
j(l ;)

OUi(Ui N U5) = 9, (U N Uy) = 0y

]
we have alU.ﬂU. , SIU.HU. € 0y (U N Uj) . on U N Uj
1] ] J
(Cc Ui n Uj N F) we have
a(y)
) = 5(v)
for all y € U N U! . Since aIU nu. slU nu. € 0y (U N UL and
) i3 vy )
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veu, n Uj , there exists an open neighbourhood Uy, of v in

'
u; Ny (U

a,(y) # 0, s,(y) # 0 and
a(y) = ay () s(y) = sy ()

1s open 1n X) and a,1,8,,8,/8, € K[Uj] such that

az (y) ' sz (Y)
1

for all y € UV . Hence on Uv n U& nFeE (C Uj N F) , we have

a

2= (y)

f(y) = _gz___
= (Y)
2
] v . - (a182) (¥)
for all y € UV n U¢ N F . Since £f(y) (2e5:) (Y) ' (azsl)(y) # 0
1
for all y € U, N Uy NF (CUJ and alszlu:,j , a251|U5 € K[uil
we have
flonU! € 0y, (0N Uj) .
J J
Therefore £ € QF(O) , and we have VF(O) = OU,(O)
i

(2) Let ¥,(0) =9¥,(0) for any open set O in U , then it is
clear that QU is a sheaf of functions on U over K .
Since U N Uy is open in an affine open set U, (L ¢ i ¢ m) , each

un Uy is the union of a finite number of principal open sets in
U, . Hence U is a finite union of principal open sets

U

1. f U ., U peee, U where
!

OOOU
2,gs m,hl’ ’

ee.,U
’ ’ 1’frl mlht 4

. € KU1, 9gj,...,9, € K[Uy] ,.oey hy,...,h € KU T .

) 2,gl,..

P

Since principal open sets are affine varieties, we only have to show
that

$.(0) =0 (0)
v Ui, g

where f € (f

for any open set 0 in fr} . Since

Ullf NARRY
0 (0) = 0., (0) from Corollary 9.8, we have
U . U
1,f 1
0 (0) = 0,, (O) =9,(0) =9¢_(0) .
Ul,f Ul X U
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Hence (U,¥ ) is a prevariety over K with a finite affine open co-
vering
8] ..., U U «e.,U .o, U .o, U
{ llfl, 4 1,frl Zlgl’ ! 2,gsl ’ m’hll ! mlllt}
Q.E.D.
Exercise 36. Let (X,9y) be a prevariety over K with a finite

affine open covering (Uy | 1 = 1,2,...;m) and (F,95) be a closed

subprevariety of (X,Y Let (Oj | 1 ¢ J ¢ 1) be another affine

%)
open covering of (X,QX) , then for an open set U of F we can
also define Vf(U) to be the set of all K-valued functions £ of U
into K such that

£l

unoNF € OOjﬂF (U N oy N F

for all 1 < i ¢ 1 . Show that ¥L(U) = ¥ (V)

Exercise 37. Let (X,Wx) be a prevariety over K and (F,VF) and
(U,QU) be open and closed subprevarieties respectively. Show that
= ¢ 1 F =]
EI’F J’U 1f F U
(10.5) Corollary. Let (X,QX) be a prevariety over K and (U, 9y)

be an open subprevariety defined as in (2). Let O be an open set in
U , then O is an affine open set in (U,QU) if and only if 0O is

an affine open set in (X,QX) .

Exercise 38. Prove Corollary 10.5.

be prevarieties over

(10.6) Definition. Let (X,QX) and (Y,QY)

K . We call a morphism of ringed spaces ¢ of (X,9 into (Y,VY)

x)

a morphism of prevarieties, i.e., ¢ 1is a continuous map of X into

Y such that for any open set O in Y and function f € ¢ (0)

£o(pl,-1 o)) belongs to QX(w—l(O))
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X —— v
U U
o o) % 05k,
£e9,(0)
Exercise 39. Let w:(x,yx) - (Y,?Y) be an isomorphism of prevarie-

ties over K , i.e., isomorphism of ringed spaces, and O be an
affine open set of X . Show that ¢(0) is an affine open set of Y

and
w11 (0,94(0)) 2 (9(0),9,(2(0))

as affine varieties.

(10.7) Proposition. Let (X,QX), (Y,VY) be prevarieties over K

and ¢ be a map of X into Y . Suppose there is a finite covering
of Y by affine open sets (W | 1 < T < t) and a covering of X

by open sets (V_ | 1 < 7 ¢ t) such that

(1) (V) CW_ and

(2) fo(¢|VT) € (V) whenever f € ¢ (W) , for all 1 <7<t .

Then ¢ 1is a morphism of prevarieties of A(X,VX) into (Y,VY)

Proof. Let (U4 | 1 < i < m} be a finite cover of affine open sets
of X as in Definition 10.3. Since v.n U, is a union of finite

principal open sets

U .,U in Uy (9y,.-.,9; € K[U;])

irgl'.' ilgl 1

)) is an affine open set in X (1 ¢ k € 1)

and each (U (U

. g, (U,
1,9 " "X 71,9

from Corollary 10.5, expanding the suffixes set (7 I 1 <1< t)y , we

can assume that {VT I 1 {7 < t) are also affine open sets. Thus

¢|v Vo W is a morphism of affine varieties from the assumption.
-



t t
Hence ¢ is continuous. Since X = _U. V and Y = U. W_, ¢
VT = T =1

is also continuous on X .

Now let W_ be an open set in Y and V_ = ¢—1(Wo) . Let

£ e, (W) - since ¢|V is a morphism of affine varieties of \
T

into W and
T

£l € S (W, N W) = owT(wO nw),

W NwW
o'T

we have fO(wlv Np~ ) € OV (VT n w_l(Wo n WT)) from Propo-
T T

1
(W NW_)
sition 9.9. Hence

-1
fo ((PlVTn‘P—i (WOnWT)) € OVT (VT n ¢ (WO n WT))

B -1
=9 (V. N e (W, N W)
t

. _ -1 -1 -

for any 1 { 7 ¢ t . Since VO = ¢ (Wo) = ¢ (Tgl (WO n WT))

t
_ -1
= U, ¢ "(W, N W) , we have f°(¢IVTnVo) € ¥, (VN V) . Hence

t

f°(¢|vo) € $4(V)) , because X = U, V_ . Q.E.D.
Exercise 40. Let V¥ be a morphism of prevarieties (X,?X) into
(Y,QY) over K . Let V¥ (X) be the closure of V¥ (X) in Y . Show
that

yiX — ¥ (X)
(bix — ¥ (x))

into (¥ (X),Y55<%) .

is a morphism of prevarieties of (X,¥ VX

x)

Now we shall show how to construct the prbduct of prevarieties. Let

(X,9 and (Y,yy) be prevarieties over K with finite affine open

x)
coverings

(Uy 1 2<¢i<1) and (o5 [ 2 <3 <my
respectively. We first examine the structure of XxY . Since
1

m
X = igl Ui and Y = jgl Oj , we have
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XxY = .U . Ui x O, ,

where each U, x O, is an affine variety. Hence it is natural to de-

fine the following topology on XxY :

A subset O 1s open in XxY if and only if o N (U, x Oj) is open

i
in the Zariski topology of the affine variety Uy x 0 for any

J
1 <41 <1 and 1 < J < m

It is clear that this is a well-defined topology on XxY

Exercise 41. In the above topological space XxY

(1) Each U, x Oj is open in XxY
(2) A subset 0 in U, X Oj is open in U, x Oj if and only if O

is open in XxY .

Next let O be an open set of XxY , then we define Yy (O) to be
the set of all K-valued functions f of O©0 into K such that

flOﬂ(Uiij) € OUiij (0N (Uy x 04))

for all 1< 1< 1, 1¢<¢3j<m. It is clear that gXxY is a sheaf

of functions over K on XxY

(10.8) Theorem. Let (X,yx) and (Y,QY) be prevarieties over K

with finite affine open coverings
{Uillgigl) and {ojllsjsm}

respectively. Let yXxY be a sheaf of functions over K on XxY

defined as before. Then:

(1) (XxY, yXxY) is a prevariety over K with finite affine open
covering (Ui X Oj | 1 ¢ 1i<¢1,1¢<3 < m) .

(2) Let myiX x ¥ — X and matX X ¥ — Y be projections,
(ry:(X,y) — X) (ma:(X,y) — Y)

then L and T, are morphisms of prevarieties and are open

maps.
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(3) For any prevariety Z over K and morphisms of prevarieties
£:2 — X and n:z2 — Y
there exists a unique morphism of prevarieties
Xt14d — XXY

which makes the following diagramm commutative:
XxY

W}// 131\\§2
X ata Y

Proof. (1) It is enough to show that WXxY(O) = OUixoi(O) for any

open set O in U1 X O1 . It is clear that QXxY(O) cC o

from the definition of yXx

U,xoi(o)

Y

Now let f € 0U (0) and we shall show that
1 X0y
£ €0 (0N (U, x 0.))
Oﬂ(Uixoj) Uixoj 1 J
for any 1,3 . Since flOﬂ(Uiij) € 0U1x01 (on (Ui X Oj)) , for any
point v = (vl,vz) of onNn (Ui X Oj) there exists an open neigh-

bourhood UV of v in oOnNn (Ui X Oj) and g,h € K[Ul] ® K[Ol]

such that g(y) # 0 and

£y = g(y)

for all vy € UV . ILet h=3a®p and g =3 7 ® 6§ where

@,y € K[U;] and f,5 € K[0,] . Since a |

I
UlﬂUi

7'0 nu. € 0y, (U NU.) and B]o no. * 5|O no. € 05 (0, N oj) and

1 "1 1 1 ) 1 73 J

on (Ui b Oj) C (Ul X Ol) n (Ui X Oj) = (Ul n Ui) x (O1 n Oj) '
there exist an open neighbourhood U, of v in U, N U, and

1,v,y 1 1 1
Oj,vz of v, 1in Ol n Oj and ag o, € K[Ui], ﬁl,ﬁz € K[Oj] such
that az(x) # 0, Bz(x') # 0 and
= 21 (X)
o (x) s (X) for all x € Ul,V1 and

B(x') = B1OX) por 211 x' € o,
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Similarly there exist T4 € K[Ui]’ 61,62 € K[Oj] such that
= 11
T T2
on some open neighbourhood of v, in U, n U, and
6
= 91
i} 54
on some open neighbourhood of Vo in o, N Oj .
Since Ui,vi X Oj,vz is an open nelghbourhood of v = (vl,vz) in

U, x Oj (see Proposition 3.4), there exists an open neighbourhood

v 1

f(y) = 2y) _ (2a80) (v) _ Sa(yy) B(ys)

g(y) (2796) (y) ZY (Y1) 6(yz2)
3 oy (Vi) . Ba(Ya) 3 as®B,y (y)

0 of v 1n U, x Oj such that

az (Y1) Ba(ya) _ ax88, (y)
T )01 (Ya) 3 21854(¥)
T2 (Y1) 62(Y2) 72965 (Y)

for all y = (yl,yz) € o, - Hence

f'Oﬂ(Uixoj) € OUixoj (0N (U x Oj)) for any i,3j . Thus

VXxY(O) = OUixoi(O) for any open set O in U1 X O1

(2) It is enough to prove that my tXXY —— X 1is an open
(rei(x,y) — x

morphism. Let (U x Oj | 1 ¢i<¢<1, 1¢<3 <¢<m and

(Uy | 1 ¢ i < 1) be affine open coverings of XxY and X

respectively as above. Since 1rl(Ui X Oj) = Uy and

fo (m, | U, x oj) € 0 wxy (Uy

(U, x O,) =9 x O.)
Uixoj 1 J J

is a

for any £ € OUi(Ui) = yx(Ui) from Proposition 3.3, L

morphism of prevarieties from Proposition 10.7.

Now let O be an open set in XxY , i.e., 0N (Ui X Oj) is open in

Uy x Oj for any 1 and Jj . Hence m, (0N (Ui X Oj)) is open in

U, from Proposition 3.3. Thus
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iy, ..., 191, ...,1 (N (Uy x04))) =
J=1,...,m J=1,...,m
=7, (0N Uy 5 (Up x 05))=w (0N (Xx¥)) = m,(0)
j=1, ;T

is open in X

(3) Let Z be a prevariety over K and §:Z2 -» X and mn:Z =2 Y be
given two morphisms of prevarieties. Define
X2 = XxY
to be a map of 2Z into XxY which takes x € 2 t
1 m
(E(x), m(x)) € XxY . Since X = igl Ui and Y jg

i

1

-1 1 -1 . m
2 =t (it_l_lU ) =iL‘—'J'1§ (Ui) =1 (.U

i

1 1

Thus % = (U £ (U;)) N (U n (04)) =y
1 J !

1 1

Notice «x(E (Uu;) N n (oj)) C Uy x 0y . Since §:Z2 - X and n:Z > Y

are morphisms of prevarieties, we have
-1 -1
fo - - € g’ Uv n O'
(g ‘(g N om ‘<0j>) 7 (8 (U Nom T (04))
for any f € 9X(Ui) and

ge (WIE“i(Ui) n n'i(oj)) € 9)Z(Enl(Ui) n W—l(oj))

for any g € ¥,(0;) , because fo(flf_l(Ui)) € yz(f'l(ui)) and
g°(ﬂ|n—1(oj)) € yz(n_l(oj)) . Since
f ® ge OUiij(Ui b Oj) = S’XxY(Ui X Oj) , we have
(f © g)°(x|§—1(Ui) n n"(oj)) =
= Ele-twy) n n”<oj)"9°("'§"<vi) n (o))
€ v, (E7T(Uy) N nTh(og))

for any f € 9X(Ui) and g € VY(Oj) . Hence x 1s a morphism of

prevarieties from Proposition 10.7. The uniqueness follows from the
definition of x . 0.E.D.
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We call (XxY, gXxY) the product of prevarieties (X,QX) and
(Y,QY) over K

Exercise 42. Let (X,¢ and (Y,¥,) be prevarieties over K

x)

Let F and F' be closed subsets of X and Y respectively and O
and O' be open subsets of X and Y respectively. Prove the
following remarks.

(1) FxF' 1is closed in (XxY, yXxY)

(2) Let FxF' be the closed subprevariety of (XxY, ¢ and

XxY)
FxF' be the product of closed subprevarieties F (C (X,yx))

and F' (C (Y,¢ respectively. Then we have
’ Y p Y

Ypxrr = Tpxp:

(3) Ox0' 1is open in (XxY, S y)

(4) Let O0x0' be the open subprevariety of (XxY, ¢ and OxO'

XXY)
be the product of open subprevarieties 0 (C (X,WX)) and O

(C (Y,QY)) respectively. Then we have yOxO' = 90;0,

Exercise 43. Let (X,9

X) ' (Y,QY) and (Z,VZ) be prevarieties

over K . Show that the maps

(XXY)xZ — Xx(¥x2) and XxY —— ¥xX
((x,¥),2) = (%,(y,2)) (x,y) = (y.,Xx)
are isomorphisms of prevarieties.

Exercise 44. Let (X,wx) . (Y,QY) be irreducible prevarieties

over K . Show that (XxY, Sy is also irreducible.

(10.9) Definition. Let (X,¥y) be a prevariety over K . We call
X a variety if the diagonal

A(X) = ((t,x) | x € X)
is closed in (XxX, Sexy) - We call a morphism of prevarieties of Y

into 2 a morphism of varieties when Y and 2 are varieties over
K
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(10.10) Remark. Let (x,yx) be prevariety over K . Then (X,WX)
is a variety over K if and only if for any prevariety (Y,QY) 6ver
K and morphisms of prevarieties ¢ and ¢y of Y into X

(Y €Y | o(y) =v(¥))
is closed in Y .
Proof. Assume that (X,QX) is a prevariety and
(y €Y | o(y) = ¥(y)) is closed for any prevariety Y and morphisms

p and Y . Since
A (X)

I

((x,x) | xex)y
(y € XX | m (y) = w,(¥)) ,

i

where :¥xX - X are projections, A(X) 1is closed in XxX

1!'1,77'2

Hence (X,Y) is a variety over K .

Conversely if A(X) 1is closed in XxX , then
-1
(Px¥) T (A(X)) = (y € ¥ | 9(y) =4(¥))
is also closed in Y , because the map

pxpY — XxX
(px¥v:y — (v (Y),¥(Y)))
is a morphism of prevarieties from Theorem 10.8.

(10.11) Examples.

(1) Let (v, 0,(V)) € A (K) be an affine variety, then (v,0,)

variety.

(2) Let (X,QX) be a variety over K and (F,VF)

prevariety of X and (U,VU) be an open subprevariety of X ,

then (F,¥g) and (U,¥ are varieties over K . We call

u!

(F,QF) a closed subvariety of X and (U,QU) and open subva-

riety of X

(3) . Let (X,VX) and (Y,¢ be varieties over K , then

y)
(XxY, P y) is also a variety over K .

.E.

is

a

be a closed sub-
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Proof. (1) It is clear that (V,0 is a prevariety with affine

v)
open covering (V} . Let x be a map of V into VxV which takes
v eV to (v,v) € VxV , then from Proposition 2.5

X (V) = 4A(V)
is closed in VxV . Hence an affine variety is a variety.

(2) Let (U,

i | 1 =1,2,...,m) be a finite affine open covering of

(X,yx) . Since (F,yF) is a prevariety with finite affine open co-

vering (Uy neFr i i=1,2,...,m) , we only have to show that

A(F) N ((U; N F) x (Uy N F))

I

A(F) N (Ug x Ug) N (FxF)
= A(X) N (U x Ug) N (FxF)
is closed in (Ui N F) x (Uj N F) for all 4i,j . Since
(Ui N F) x (Uj N F) 1is closed in U; x U, (see Proposition 3.4)

y
A(F) N ((U; N F) x (U; N F))

4

= {&(X) N (Uy x U5)} N ((U; N F) x (Uy N F))

is closed in (U; N F) x (Uj N F) (see Exercise 5 on P.9).

Now since (U,?U) is a prevariety with finite affine open covering

C = {Ul’fl,...,Ul,fr, U eee,U U } (see the

2,9, 2'gs,...,Um,hl,..., m, by

proof of Proposition 10.4), it is enough to show that

A(U) N (U, x U, is closed in U, x Ul for all

(©) ( 1,f J,g) i,f J.9g
U, .,U. € C . Since

1,£"77,9

A(U) N (Ui,f X Uj,g) = A(X) N (Ui,f X Uj,g) = A(X) N (Ui X Uj)f®g
and A(X) N (Ui x Uj) is closed in Ui x Uj , A(U) N (Ui,f X Uj,g)
is closed in (Ui X Uj)f®g = Ui,f X Uj,g (see Exercise 8 on P.13).

(3) Let (Z,yz) be a prevariety over K and ¢, ¥ be morphisms of

prevarieties Z into XxY . Since
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(z €2 | o(2) =V¥(2))
(z € 2 | miep(z) = w oy(z) and w,op(z) = w,o¥(z))

1l

(z € 2 | mogp(z) =wow(z)) N (z € 2 | myo0(2) = m,09(2))
is closed in Z , (XxY, S yxy) is also a variety over K from

Remark 10.10. Q.E.D.
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11. Projective varieties

In this section we introduce the notion of projective varieties and

show that they are varieties defined as in Definition 10.9.

A projective n-space P"” over K is defined to be the set of equi-

valence classes of

n+1
K - ((0,0,...,0))
n+1l
relative to the equivalence relation
(XOIX11'°'1Xn) ~ (yo’yl""’yn)
if and only if there exists a € K-{0) such that
a(xorxlr"'rxn) = (yo'yl""'yn) .
We write [xo,xl,...,xn] for the equivalence class in P"  which
. n+1

contains (Xo’xl"”’xn) € K - {(0,0,...,0)}

Assume that V is an n+l-dimensional vector space over K , then we

can identify the set of all l-dimensional subspace of V with p™

(kv | v € v-(0)) =L, ph

11 nn
AN is a K-basis of V . We write P(V) for the

-uol Y € > X X LY X
Where (V ’UJ".

set of all l-dimensional subspace of V .

n n 4 .
Now let P, = ([X_,;Xp,.--,% ] € P | X; # 0) , where i =10,1,...,n,
then we can identify W? with the affine n-space K" by the
following bijection 5
LN n
wi.Pi — K

v
X, X X
(wi:[xo,xl,...,xn] —_— (§T PP

where the is omitted. By the above identification we define

K[ x<
P—l' -

K[W?] to be
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v
X X, X
n o i n
K[W'] = K["— ' roxy P
i Xi Xi Xi
C R(X_ Xyreoer X))
* .
Justification. Let ¢, be the comorphism of ¢, , then we have

%
‘Pi(K[Xl,..-,Xn]) = K[XlO(pi',,,,Xno(pi] .

Let p be a map of K[XlOwi,...,XnOmi] into K(Xo,Xl,...,Xn) , the
quotient field of K[XO,Xl,...,Xn] , such that
PiR[X 00y, o X 00 ] — KX, Xp, oo o X))
Xy
(P:Xj°¢i — i Xi ) (3 =1,...,1
X‘
and p(onwi) = il (j = i+1,...,n) , then p 1is an injective
i
K-algebra homomorphism. Hence we have
v
n Xo Xy *n
K{Py] = Kz y T e o)
1 X5 X3 Rt
and - (.’-I)’"("‘»f)m(li’l"'“’ )Q
Xo *o ’#E ¥
T [xo,xl,...,xn] —_— — , fT H [xd;xl,...,xn] — g e
i i i i
X X
n n
X, (XgrXyreerXy) X
(11.1) lLemma. Let P" be a projective n-space over K , then
W? n W? is a principal open set in W? , where 0 ¢ i,j < n
n n, _ n
)
X'
i
n 1 n n n
Since PP = igo Wi and each (Wi, K[Wi]) € d(K) , it is natural to

define the following topology on "o
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A subset O of P" is open in P if and only if o N P? is open

in the Zariski topology of the affine varieties (P? | 0 ¢ i< n)

n

nooph Pn) and O be a subset of

OI ll"'l

(11.2) TLemma. Let W? € (P

n
Pi , then

n
il

O 1is open in (P K[W?])' if and only if

. . n
0 is open in P .

Proof. It is enough to show that 0O N W? is open in (P?, K[P?])

for any 0 ¢ j ¢ n when O 1is an open subset of (W?, K[P?])

Assume that O 1is open in (W?, K[P?]) , then ¢i(0) is open in
K" , 1.e., wi(O) is a finite union of principal open sets
n n n
(KM ,eve (K ) of K' . Let £€ (£;,...,f) , then
1 t
X X% X
-1 n n 0 i n
P (R g) = ([Xgreoeix ] € Py | E(greeizsreery,) #0)
i i i
Assume
v v
X X, X X m X, m, X m
0 i n . o, © i, i n, n
E(reeeryy 7)) = C () () T () +.
X X5 X; m_, Y, Xy X5 X5
and put
v Y%
mo+ . +mi+. .+m XO Xi Xn
F(XOI lel an) = Xi f(s{'—l 'IYT’ Ix)
i i i
m v m
= C i X T eveXiooeoX 4+ .
mo""’&’ ;m_ o i n
(m +..,&,..+mn)—(mé+..,%, .+mﬁ) mé v m'
+C & ' X P Xy X T
m_, rVor 'Imn 1 o] 1
Thus we have
T RY) L) = ([Xyeee, %] € P | F(X_,0ve Xy,eea,X ) # 0)
i f o """ n i o LA n

Hence
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P () ) e

J
n
= ([XgroeeriX, ] €F | Xg # 0, x4 # 0, F(XgreweiXgpeee X)) # 0)
n
= ([Xgreenxy] € P | Xy # 0 FXgreeerXyoeneyX)) # 0)
X, F(X _ ,e00,X_)
- n | i o
= ([Xgreeerxy] € W] | x. = 9 m .m0
j o
X
J
is open in W? Since
- -1, -1 Y
0= (), U...U (KY, ) = o7 (&Y. ) Ul o (@Y.,
1 f £ 1 £ i £
1 t 1 t
on P? is open in W? . Q.E.D.

Next let O be an open set of P , then we define ywn(o) to be

the set of all K-valued functions £ of O into K such that

. n
Elonpn € Opn (0 N Py)
i i ‘

for all i = 0,1,2,...,n . It is clear that gpn is a sheaf of
functions over K on PU
(11.3) Lemma. (Wn,ywn) is a prevariety over K with a finite

. . n . n n
affine open covering WO,Wl,...,Wn .
Proof. It is enough to show that

ywn(O) = OWn(O)
o
n

for any open set 0O in Poo. It is clear that
ywn(O) C OWn(O)
o
from the definition of Spn - Let £ € O,n(0) and we shall show that
o
£l

n
n € Opn(0 N PY)
1 1

ontk

for all i . Since 0N WE is open in Wg and

fI n € 0,n(0N W?) , for any v € 0N P?  there exists an open
onwi WO 1 1

neighbourhood U of v in o n PY and g,h € K[Wn] such that
v i o

g(y) # 0 and
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X x X
1 n
h(g2) Toreeer ) ()
£(y) = =2 2
&O Xl Xn
g(g;, ONARER y;)(Y)
for all y = [ Y /¥qr---/¥,] € U, Notice
X x X X X X
m o) 1 n m ) 1 n
XO h(ig, i;""’i;)’ XO g(ig, i;"..'_;) € K[(X ,Xl,. ,Xn] for
certain large numbers m € IN and
v v
h(zg Zl Zﬂ) ym h(zg z& zﬂ)
£(y) = Yo' Yo' """ Yo = ° Yo' Yo' "' Yo .
v v
Yo' Yo' "' Yo ° _Yo' Yo' "7 Yo
. n
Since vy € U, ¢ Pi , we have
m Yo Yy Yn 1 m &o Xl Xn 1
Yo h( T A ] __)/Yi Xo h(?~r 2“! ’ i‘ /Xi
£(y) = Y Yo Yo &o 0 (y) ,
Y Y y X X
m o) 1 n 1 m o 1 n 1
Yo g(YO’ Yo ’ §;)/yi Xo g(?;r i:r'°'l Xo)/xi
X x X X x X
= m, .o 1 R L m .o _1 -
where 1 = deg XO h(XO, XO,...,Xo) deg XO g(xo, Xo,...,XO) Hence
n m 1 ng ,.1
flomPg € owg(o N P.) , because X_ h/X;y and X_ ?/X; belong to
K[W?] . Q.E.D.

is a variety over K

with finite
n
n

(11.4) Proposition. (w“,wwn)

affine open coverings PS,W?,...,P

Proof. It is enough to show that
A (P™) n

n

is closed in W? X Pj for any O

1

n n n
s(PT) N (PY x PY)

X X .
and (Yl ® 1 - il
i i

for all 1 = 0,1,...,n if and only

n n
(P x P3)

< i,7 < n.

Since

n n
((x,%) | x € Py N wj)

!
® ig)(XlY) =0

if
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(x,y) € &™) n (P} x wg‘) ,

Ay noeR x PRy is closed in PR x PR . Q.E.D.
1 J 1 J
Exercise 45. Let A = (aij) € GL(n+1,K) and ¢ be a map of p"

into P™ which takes (% /% ,xn] e P! to [(xo,...,xn)A] e p .

l,o-n

Show that ¢ is an isomorphism of varieties of P" onto "

(11.5) Definition. We call a closed subvariety of (w“,wwn) a pro-

dective variety over K and an open subvariety of a projective va-

riety a guasi-projective variety over K

== n =
(11.6) lLemma. Let Vi = ([X_ /Xy,+..,%x ] €P | X, = 0) , where
i=0,1,...,n, then Vi is a closed subvariety of P  and iso-
morphic to ph—L
Proof. Since v, = w“—w? , it is clear that vy is a closed sub-

variety of P" with a finite affine open covering
n-1

(vy N w? | 9 =0,1,...,n) . Let ¢ be a map of IP into vy
which takes [xo,...,xn_l] e P o
[Xo’xl'""Xi—l’o'xi""’xn—1] € V.l .
P an—l > Vi
(w:[xo,...,xn_l] —_— [Xo""’xi—l'o’xi"'"Xn41]

It is clear that ¢ 1is well-defined and bijective. Since

n-1 n . .
P, =V, N P, 0 i-1) ,
v ( 3 ) i 5 (0 £ J K< )
n-1, _ n o . _
P ([Pj ) = Vi n [Pj"‘l (l S J S n l)
and wlwn—i is an isomorphism of affine varieties of W?—l onto
J
n n - 3 - . L] 3
Vi n Wj or V.l n Pj+1 for each 0 ¢ j { n-1 , ¢ 1is an isomorphism

of varieties from Proposition 10.7. Q.E.D.
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(11.7) Proposition. Let P" and P™ be projective n- and m-spaces
over K respectively. Let ¢ be a map of P™ x P™ into
p (ML) (A1) -1 hioh takes ([Xgre o Xp ]y [¥g,eee,y,]) € P x P® to

n+l) (m+1) -1
[(xoyo,...,xoym,xlyo,...,xlym,...,xnyo,...,xnym] € P( ) ( ) .

Then w(Pn X Pm) is a closed subvariety of plotmtn

isomorphism of varieties of P" x P™ onto @ (P x Pm)

and ¢ is an

Proof. Let g = (n+l) (m+1)-1 . Clearly ¢ is a well-defined in-
. . d _ pd . .
Jective map. Let Pij Pi(m+1)+j where 0 ¢ i {n and 0 ¢ j ¢ m ,
then we have
n m q
¢ (Py x PY) C PY,
. . * q _ n m

for any 1i,j . Since (wlmg ) Wm) (K[Pij]) = K[P;] ® K(Py1 ,

i
w(P? X P?) is closed in ng and the map

n

¢| L

PR x PR 1
1 J

is an isomorphism of affine varieties from Proposition 2.5. Since
n m a _ n m . . q .
e (P x P7) N Pij w(Pi % Pj) is closed in Pij for any 4i,3

m n m
x Py — ¢ (P, x PX
3 e Py x Py)

14

o (P x Pm) is closed in P9 . Thus w(Pn X Pm) is a closed sub-

variety of P9 ,

It is clear that ¢ is an isomorphism of varieties of P" x P™ onto
w(Pn b Pm) , because
n
wl s P,
PY x PN 1
1 J
is an isomorphism of affine varieties (see Proposition 10.7). Q.E.D.

m n m, _ n m q
x Py —— ¢ (P§ x PJ) = ¢ (P" x P™) n Py,

(11.8) Corollary. Products of projective varieties are projective

varieties.

Proof. Let X and Y be closed subvarieties of P® ana P® re-—
spectively. Since (XxY) N (P? x w?) = (XN m?) x (Y N w?) is closed

in P? X P? (see Proposition 3.4) for any i,j , XxY is closed in

n

P x Pm

Since ¢ (X x Y) is closed in ¢ (P" x P™) and lexY is
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an isomorphism of varieties of XxY onto ¢(XxY) , XxY is a pro-
jective variety. Q.E.D.

Now we introduce Grassmann varieties and flag varieties over K ,
which are examples of projective varieties. First we review the idea
of alternating products. Let R be a commutative ring with unity

element 1 and E and F be R-modules. We call an R-multilinear

r — 3 (3 . —
map of E (= Ex...xE) 1into F alternating if f(xl,xz,...,xr) 0
r
for any (Xl""’xr) € E° which satisfies X, = Xj for some i # j

(11,3 < r) . Weuse a_ to denote the submodule of T (E)
(

Il

E ®...8 E , the tensor product over R) generated by all elements
: . =
of the following form

X, ®...0 Xy 4 where Xy = Xj for some 1 ¥ j .

We define ATE = 'I‘r(E)/ar . Then we have a canonical alternating
R-multilinear map T of E° into AYE which takes

r r :
(Xl""’xr) € E to X, ®...0 xr+ar € AE . It can be easily shown

that for any R-multilinear alternating map £ of E' into an arbi-

trary R-module F there exists a unique linear map £% of A'E
into F which makes the following diagram commutative.

ATE
g
gt O Fog* |
RN
F
. r
We write X Ao e o AXL for T(Xl,. 'Xr) where (xl,...,xr) € E
(11.9) Proposition. Let E be a free R-module with a basis
{el,...,en} over R . Then ATE = (0) if r>n . If 1< r<n,

AYE is a free R-module with an R-basis

(e; A...ney | i

<...<ir) .
1 r

1

For a proof of the above proposition see Lang [1, Proposition 9.1 on
P.590].
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(11.10) Proposition. Let V be an n-dimensional vector space over

K and @d(V) be the set of all d-dimensional subspaces of V

(1 {<d<n) . Let ¢y be a map of @d(V) into P(AdV) which takes

dD € P(AdV) . Then

D € wd(V) to A
(1) ¢ 1is well-defined and injective and

(2) w(@d(V)) is closed in the projective variety P(AdV) .

Exercise 46. Verify that the variety structure of P(AdV) is

uniquely defined up to isomorphism (see Exercise 45 on P.127).

For the proof of the above proposition we need the following two

lemmas.

(11.11) Lemma. Let V be an n-dimensional vector space over a

field k and D,D' be two d-dimensional k-subspaces of V

(1 <d<n) . assume that A9 = A%' , then D = D' .

Proof. Since AdD = AdD' , we have DN D' # {(0) from Propo-

sition 11.9. Let (vl,vz,...,vd} be a k-basis of D such that

' =
DND kvr ... kvd
for certain 1 ¢ r { 4 , then D' has a k-basis of the form
(Ve VgrVprr oo 1Vaep—q) - Since
: 1___.' s - . 1
dlmk(D+D ) dlmkD + dlmkD dlmk(D nony ,

(Vyre e VarVaprr s« Vaer—-1) forms a k-basis of D+D' . Since

d,. _ e R
A"D = KV AV A AV = ATD' = erA...AVdA...AVd+r_l , we have D =D
from Proposition 11.9. Q.E.D.
(11.12) Lemma. Let (U,A), (V,B) be affine varieties over K and

¢ be a morphism of affine varieties of U into V , then

((u,o(u) | uewuv
is closed in (UxV, A ® B) .

Proof. Let x be a map of U into UxV such that
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x:U —  UxV
(x:u — (u,e(0))) ,
then from Proposition 3.3, x is a morphism of affine varieties.
UxV
Tr‘1/// \\K‘2

U O |xo v

1U ¢
U
* L}
Since x (A ® B) = A , x(U) = ((u,¢(u)) | u e U) is closed in UxV
from Proposition 2.5. Q.E.D.
Proof of Proposition 11.10. (1) 1is clear from Lemma 11.11.
(2) Let (vl,vz,.'.,vn} be a fixed K-basis of V , then AdV has a
K-basis (v, A...Av, | i, <...< i;) . Let U be an affine open set
i, 14 1 d
of P(AdV) which consists of points of P(AdV) whose homogeneous
coordinate relative to VAV, A AV g is non-zero. It is enough to

show that w(@d(V)) N U is closed in U . Let

D = Kv_+...+Kv

o 1 a € %qtv) and w7 be a projection of V onto Dj

which takes

01V1+'"+cdvd+cd+lvd+1+"'+cnvn (cl,...,cn € K)
to clv1+...+cdvd . Now let D € @d(V) and {v',.‘.,vé} be a
K-basis of D , then we have
n
1 —
YT 5 tigYy
where 1 ¢ i ¢(d and a,. € K Since
d n
' [ —
VA vy ((Jg1 aljvj)4(j£d+l aljvj)) A
d n
A ((j_E__l adjvj)+(j§d%1 adjvj))
d n
= (L2, a,.V.) A A (2. ALaVa) +
(J=1 1) J) (J=1 aj 5)
Apqreees a4
a a
_ 21 2d
= det . . le...Avd+... ’
PP 244
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CPPRRRR ajq
a a
v(D) € U if and only if det | .2t A L0, e,
CPPRREEE a34
T (D) = D0 .
Assume that (D) € U , i.e., w(D) = D, - Since
_l n
(| D) (Vi) = Vi + 5Zq41 G145
(i =1,2, ,d; cij € K) form a K-basis of D , V(D) is generated
by
-1 -1
(v |D) (vl)A...A(wlo) (Vq)
d n
= VA AV + igl(le...A (j£d+1 CijVj)A...AVd)+L ,
where I 1is a K-linear combination of the terms Vi Aeeon Ve such
1 d
that
|(vil,...,vid} N (vyre-aivgdl € d-2

Thus there exists a one-to-one correspondence between w(@d(V)) Nnu

and affine coordinates

(on Cygemmrens flees Cygena)ene)
—
d(n-4d)
where cij's are arbitrary d(n-d) scalars, and fk's are poly-
nomial functions on K3(P"9)  j.gependent of (D) . Hence
w(@d(V)) N U is closed in U from Lemma 11.12. Q.E.D.

We call these projective varieties @d(V) Grassman varieties over

K .

Now let V be an n-dimensional vector space over K as before. We
define % (V) to be the set of all sequences of K-subspaces
(0,V ..,Vn) of V such that

0 g V1 g V2 g...g Vn =V

1°
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i.e. din, Vv, ./V. =1, i=0,1,...,n-1) where O is the
K "1+1” "1

O-dimensional subspace.

(11.13) Proposition. Let 9 (V) be as.above and ¢ be a map of
g (V) into @l(V) X @Z(V) X.ooX @n(V) which takes

(0,Vy,«-+,V,) € F(V) to (V),V,,...,V)) €9 (V) x...x 6 (V) . Then

(1) ¢ 1is injective and
(2) ¢(F(V)) 1is closed in the projective variety
ﬂl(V) b3 @z(V) XwoX @n(V)

Proof. (2) We have the following embeddings
F (V) P » 9 (V) x...x 9 (V) G B(V) x P(A%V) x...x P(AT)
2 n

OCV,CV,C...CV — (Vi Ve,V — (VA VS, e AV )
Let (Vl,vz,...,vn) be a fixed K-basis of V . Ud denotes the
affine open set of P(AdV) which consists of points of P(AdV)
whose homogeneous coordinate relative to VAV A AV 4 is non-zero,
where d = 1,2,...,n . It is enough to prove that

e (F(v)) N (ul x v? x...x UM

is closed in U1 X 02 x...x yn

Now suppose that D(d) be an element of %d(V) such that

Adp(d) ¢ A (L < d ¢ n) , then from the proof of Proposition 11.10

D(d) has the K-basis as follows
n

Q

(vy + j£d+1 ci4Y5 | i =1,2,...,d) (c‘iij € K)
Assume that p(%) ¢ p(d*1) (9 - 1,2,...,n-1) . since
2 d , d : . .
(v, + j£d+l TENE | i =12,2,...,d4) (cij € K) 1is contained in the
K-subspace of V generated by
o d+1 : d+1
(Vi * 52q42 ©1j vy | 1 =1,2,...,d+1) (cj5~ € K)
n d . . - n a+1
vyt j£d+1 Cijvj is a K-linear combination of v, + j£d+2 Cij Vj
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n
d+1 ] —_—
and Va1 + jzd+2 cd+1,j vj , where i = 1,2,...,d4d . Thus we have
n n n
d d+1 d L. d+1 v.)

(%) 5241 ©i5Y5 T 52a+2 Ci3 V3 T Ci,a+1VaritiZarz Cav1,y V5
for 1 < i1 £ d . Conversely, D(d) C D(d+l) if (*) holds for
(*) can be written as certain polynomial condition

1 <1< d. Since
on (ng} which is independent of {c?j} '
e (F(V)) N (Ul X U2 X...x Un) is closed in Ul x U? x...x U .

flag varieties over K .

We call these projective varieties % (V)
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12. Complete varieties

Finally we define complete varieties and show that projective varie-
ties are complete. The idea of completeness of varieties is very im-

portant in the structure theory of algebraic groups.

(12.1) Definition. A variety V over K is said to be complete if

the projection map

w2:VxW -» W

is a closed map (i.e. T, maps a closed subset of VxW to a closed

subset of W ) for any variety W over K .

(12.2) Proposition.

(1) A closed subvariety of a complete variety is complete.

(2) Let V and W be varieties over K and ¢:V - W be a
morphism of varieties. If V 1is complete, then ¢ (V) is closed
in W and is a complete variety.

(3) Let V be a complete affine variety over K then V is a
finite set.

(4) If V and W are complete varieties over K , then VxW is

complete.
Proof. (1) and (4) are straightforward.
(2) Let ¢:V > W be a given morphism of a complete variety V into

a variety W . We define px1l, to be a map of VxW into WxW such

that
¢x1W:VxW — WxW
(px1t (v, W) > (p(V),w))

It is clear that px 1 is a morphism of varieties which makes the

following diagram commutative.
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Pi}/ Wx \Eiz
W
é P wxlw W
AN R
VxW
where Pr; :WxW — W and Pr, :WxW — W . Hence
(Pry:(x,y) — Xx) (Prz: (x,y) — Y)
(px1,) “T(((w,w) | w e W) = ((v,e(v)) | veV) is closed in VxW
Since V 1is complete,
T, (Ve (V) | v EV)) = w(V)

is closed in W . Hence ¢ (V) 1s a closed subvariety.

Now let W' be an arbitrary variety over K and wé:w(V) X W' - W'

be the projection. Let S be a closed subset of ¢(V) x W' . Since
-1
mi(8) = m, ((ex1y,) 7 (S))
where is the projection of VxW' onto W' , vé(S) is closed
in W' . Hence ¢ (V) 1is complete.

(3) Let (V,K[V]) be a complete affine variety over K and
(K,K[X]) be the affine l-space. Let f € K[V] . Since the closed set
S = ((v,X) € VxK | (£ ® X -1 8 1)(v,x) = 0)

does not contain any point of Vx{0} and V 1is complete, WZ(S) is

a proper closed subset in K . Hence wz(S) is a finite set. Thus
f(V) is also a finite set for any £ € K[V] . Therefore, V is a
finite set. : Q.E.D.
(12.3) Corollary. Let ¢ be a morphism of an irreducible complete

variety V over K into an affine variety W over K , then ¢ is

a constant.

Exercise 47. Prove Proposition 12.2.(1) and (4).

(12.4) 'Theoremn. A projective variety over K 1is complete.
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Proof (see Humphreys [2, §6]). From Proposition 12.2 we only have
to prove that P?  is complete, i.e., the projection map
vzzwn X W->W

| 1< 3 < my

is a closed map for any variety W over K . Let (Oj

be a finite cover of affine open sets of W . Assume that F is a
closed subset of P™ x W . Since
_ n
Ty (F) N Oy = wy(F N (P7 x 05))

J
n

and vz(P X Oj) = Oj for any Jj , it is enough to show that
n
T, | P x 0j
is a closed map for any Jj . Thus we only have to show that
rzzwn X V>V

is a closed map for any affine variety V over K . Let

Vl’Vz""’Vl be the irreducible components of V and F be a

closed subset of P" x V . Since w2((wn X Vi) NF) =w,(F) NV, for

any 1 , we can also assume that V 1is irreducible.

Now let U, = P? xV (i=0,1,...,n) be the affine open covering of
P™ x V . Then we have
K(U;] = K[xo/xi,...,%i/xi,...,xn/xi] ® K[V]
+ * 3 L 3

Since (vzlui) tK[V]) — K[X_/X;,...,X /X;] ® K[V] is injective and

*

((raly ) s £ > 19 f)
i
t t
C =3 (X /%X,) oo (x/%x,) "0 g_ =0
& o1 o1 t

in K[U,] if and only if 1 ©® gg = 0 for all t , K[U,] can be
considered as a polynomial ring K[V][XO/Xi,...,Xn/Xi] in
n-variables {Xo/Xi,...,Xn/Xi) over K([V]

Let 7 be a closed subset of P x V and v be any point of
v - vz(Z) . In order to show that WZ(Z) is closed in V it is

enough to find an element £ in K[V] - mv({v)) such that

f(vz(Z)) = (0) , i.e., veEV_ CV - wz(Z) . Since fow

£ 2lZ
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such an f , we have

fovzl € 4

U, v, (20 Uy)
1 1

for all i . Now let Im be the set of all homogeneous polynomials

Xn) € K[V][XO,...,Xn] of degree m such that

f(Xo,Xll...,
f(XO/Xi,...,Xn/Xi) € ?Ui(z n Ui)
for all 0 < i {(n . Let I = mﬁo Im , then I 1is a homogeneous
. — Q 1 = —
ideal of K[V][XO,...,Xn] = méo Hm , Where Hm is the set of all ho

mogeneous polynomials of degree m . Let

f € yui(z N Uy (C RIVITX/Xyr e X /%00)

where 0 < i ¢ n , then

m
X;£ € H o (C K[VI[Xg -« X 1)
X1 E
for all m > deg £ . Since ;ﬁ— € K[V][XO/Xj,...,Xn/Xj] and
J

X3 £ X3 £
—_ = 0 and —— = 0 for all
X? zZ N Uj n Ui X? (z N Uj) Ui

0<Jj < n, X?f € I, for any m > deg £ . Since Z N U, and

W? x {v) are disjoint closed subsets of U, , we have

WU.(
i

.

) n
in(z nuy) + aUl(wi x {(v}))

— ) N , n
= in(ﬂUi(z nug) N in(yui(wi x (v)))

= (2 N Uy N (W? x (v)) =@

) g n
Hence 5U.(Z n Ui) + 3U'(Pi

1 1

x {(v)) = K[V][Xo/Xi,...,Xn/Xi] for any

v €V - wz(Z) , because

JfUi(z nu,) + in(wz x (V}) = in(Q) = R[VI[X /Xy eo o X /%]

from the Hilbert's Nullstellensatz. Since

» n — d
JUi(Pi x (v)) = PGV DX/ X e e X/XGT
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there exist fi € ?Ui(z n Ui) ' cij € ?V((v}) and
gij € K[xo/xi,...,xn/xi] such that

for each 0 ¢ 1 < n . Since lel‘fi €I, for any m > deg fi , there
exists a natural number Ni > 0 for each 0 ¢ i ¢ n such that

X o= xMe, o+ x? S e

i LEy € I+ 9,((v)) H

13915 m
for any m > Ni . Therefore, there exists a natural number N > 0
such that for all m > N
M eI + 9 ((v)) H
i m A\YARS m '

where 0 ¢ i ¢ n .

m m m

Now assume that m > (n+1)N and deg XO0 Xll...Xnn =m , i.e.
m 4m,+...+4m_ = m , then there exists m, such that m, > N . Since
o 1 n 1 1
i Mo T
X," € Imi~+ fv({v)) Hmi r Xy ...Xn € Im + ?V((V}) Hm . Hence
H o= I+ 2,((v)) H

for all m > (n+1)N . Thus we have a finitely generated K[V]-module
Hm/Im which satisfies the condition

ﬁv({v})(Hm/Im) = Hm/Im (m > (n+1)N)
Hence from the Nakayama's Lemma there exists f£ € K[V] - yv((v))
such that f*H /I =0 , i.e.,

m’ Tm

£H C I (m > (n+l)N) .

Since X?f € I, (m > (n+1)N) where 0 < j < n ,

(x?f)(xo/xi,...,xn/xi) € $, (3N Uy) for each 0 < i ¢ n . Hence for
1

all 0 ¢ j ¢ n we have

m
£ (X,/X, € 9 Z N U,
(g% " € 9y, (2005
which implies (1 ® £)(z N Uj) = f°(1r2|U )(Z N Uj) = 0 for all
J

0 ¢ J ¢ n . Therefore f(vz(Z)) = 0 as desired. Q.E.D.
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13. Dimension and tangent spaces in general

(13.1) Proposition. Let (X,¢ be an irreducible prevariety over

x)

K and U,V be affine open sets of X , then U and V are irre-

ducible and

K(U) & K(V)
as fields, where K(U) and K(V) are the quotient fields of the co-
ordinate rings of U and V respectively.

Proof. Since X is irreducible, we have U =V = X and U,V are
irreducible from Proposition 5.4. Since
9. (UN V) =0,(UNV) =0,(UN V)

from the definition of affine open set, we have
xunv KUy (x) = x@unv ¥V (x)

from Proposition 9.6. Hence K(U) is isomorphic to K(V) as field.
Q.E.D.

(13.2) Definition. Let (X,¢ be an irreducible prevariety over

x)
K and U be an affine open set of X . We write K(X) for K(U)
and call it the function field of (X,¥Y

We define the dimension

x) -

of (X,¥,) to be dim U . In case (X,¢ has more than one irre-

x)
ducible components

X =X, U...U X,

we define dim X to be the maximum of (dim X 1 <k¢<1).

k|

Exercise 48. (1) Let (X,¥ be a prevariety over K . Then

x)
dim X = 0 if and only if X is a non-empty finite set.

(2) Let (X,¥ be an irreducible prevariety over K and Y be a

x)
proper non-empty closed irreducible subset of X , then we have
dim ¥ < dim X
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(13.3) Proposition. Let (X,¥y) be a prevariety over K . Let
x € X , then we have
K[U]fu(x) = K[V]yv(x)
as K-algebras for any affine open sets U and V of X which con-
tain x |
Proof. Let 6x = ((U,, L) | U, 1is an open neighbourhood of x in

A
| I— o * .
U and f € 0,(U))) and 0} = ((V,,£) | vV, is an open neighbourhood
of x in V and £ € 0,(V,)) . From Proposition 9.5 it is enough to

prove that 8X/~ and 8§/~ are isomorphic as K-algebras.

Let { be a map of 6X/~ into 8§/~ which takes (UX,f) to

(VN Ux’ £l then it is clear that ({ is well-defined and also

vnu ) e
X

a K-algebra isomorphism. Q.E.D.

We write ¥, for the above local ring K[U], at x

b (%)

Now let (V,0 be an affine variety over K and v be any fixed

v)

point of V . Since ?V(v) is a maximal ideal of K[V] and

K[V]/#v(v) % K , we can consider :I’V(v)/(d’v(v))2 to be a K-vector
space from Lemma 7.12. Let 1y be a tangent vector to VvV at v ,
i.e., 7 1s a K-linear map of K[V] into K such that
7 (ab) = a(v)y(b) + 7v(a)b(v)
2

for any a,b € K[(V] , then 7(($V(v) ) = 0 and we can define a
K-linear map ¢ (7) of J'V(v)/J'V(V)2 into K as follows.

)? —— K

? (1) 19, (V) /9 (v

(0(1) ¢ £+ 9,(v)% — ()

(13.4) Lemma. The map w:T(V) - HomK(yv(v)/yv(v)z,K) is a bi-

jective K-linear map.
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Proof. It is clear that ¢ 1is well-defined and K-linear. Let
A € HomK(fv(v)/ﬁv(v)z,K) . We define ¢ (A) to be the tangent vector

to V at v which takes £ € K[V] to
A(E-E(V) + yv(v)z) )
It can be easily checked that ¢ (A) is well-defined and the map
. , 2
ViHomy (9, (v) /4 () 5 K) > T(V),
is K-linear. Since w(w(k))(f+$v(v)2) = y(A) (£) = N(E-£(v) + QV(V)Z)
= , 2
= AN(f + 5V(v) ) , where f € fv(v) and
V(0 (1)) () = v (1) (g-g(v) + #,(v)%) = 1(9) , where 7 € T(V), and

g € K[V] , ¢ 1is a bijective K-linear map. Q.E.D.

Now let (X,¥ be a prevariety over K and x be any fixed point

x)
of X . Assume that U is an affine open set of X containing x .
Since

)2

T(U), ¥ Hom($(x)/9,(x)?, K) = HomK(AX/Ai, K)

as K-linear spaces from Lemmas 13.4 and 7.12, where ﬂx is the
unigue maximal ideal of QX , it is reasonable to define the tangent
space T(X)X of X at x to be

2
Hom, (A /45, K)

(13.5) Definition. Let (X,¢ be a prevariety over K and

%)
X € X . Let ﬂx be the unique maximal ideal of the local ring wx

at x . Then we define the tangent space 'I‘(X)x of X at x to be

2
HomK(MX/ﬂX, K) .

(13.6) Definition. Let (X,¢ be an irreducible prevariety over

x)
K . A point x € X is said to be sgimple or non-singular if

dlmKT(X)x = dim X

If all points of X are simple, we call X smooth or non-singular.
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Now let (X,¢ and (Y,QY) be irreducible varieties over K and

X)‘

¢:X » Y be a dominant morphism of varieties, i.e., ¢ is a morphism

of varieties and ¢(X) = Y . Let 0, and o, be open subsets of X
and Y respectively such that ¢(Ol) C o, then

""oi’ 9,29,
is also a dominant morphism of varieties. Assume that O and O

1 2

are affine open subsets, then

*
(plg, ) * K[02] — K[O4]
*
((elp ) 2 £ ——— fou)
is injective and we have got the following embeddings:

K[0,] G K[0 ], K(0,) G K(O,) and K(Y) G K(X)

(13.7) Theorem. Let ¢:X » Y be a dominant morphism of irreducible

varieties (X,9y) into (Y,QY) , 1.e., ¢(X) 1is dense in Y . Let

= dim X - dim Y . Let W be a closed irreducible subset of Y and

r
Z be an irreducible component of ¢_1(W) such that ¢ (2) = W , then

dim 2 2 dim W + r .

Proof (see Humphreys [2, Theorem 4.1]). We first prove the Theorem
in case Y 1is affine. Let s = codim W , i.e., S = dim Y - dim W ,
and assume that s > 1 . Then W 1is an irreducible component of

WY(K[Y]fl+...+K[Y]fS) for some £ ...,fS € K[(Y] from Corolla-

17
ry 7.9.5. Let g; = £;°0 € QX(X) (L ¢ 1 < s) and

Yy (9y,evrgy) = (x € X | g(x) =0 for Vg € 9 (X)g +e ety (X)g)
Since Vx(gl,...,gs) D Z and Wx(gl,...,gs) is closed in X , 2
is contained in some irreducible component Zo of Wx(gl,...,gs)
Since W = ¢(2) C w(ZO) C WY(fl,...,fs) and W 1is an irreducible
component of WY(fl,...,fs) , Wwe have W = ¢(2) = w(zo) . Hence

2, C w—l(W) . Since 2 is an irreducible component of w—l(W) and

Z C ZO , we have 7 = Z, - Therefore, 2 1is an irreducible component

of Vy(dyr---,9g)

=4
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Now let O be an element of finite affine open covering of X such
that 0N 2 # ¥ . Since dim Z = dimo (Z N 0) and

Z Noc Wo(gllo,...,gslo) and 2 N O is an irreducible component of

hﬂo(gliol"'lgslo) = yx(gll...’gs) ﬂ O
from Exercise 14 on P.32, we have

codim Z = codimO (z N o) s

(see Corollary 7.9.4). Hence dim X - dim Z = codim 2 { s
=dim ¥ - dim W , i.e.,
dim W + r ¢ dim 2 .

Next we show that the general case can be resolved into the affine
case. Let U be an element of affine open covering of Y such that
UNW#®P . Let X' = ¢_1(U) , then X' 1is an open subvariety of X

and ¢|X,: X' - U is a dominant morphism of irreducible varieties.

It is clear that W N U is irreducible and closed in U (see
Exercise 14 on p.32) and dim W = dimU (W N U) . Since

WNU=¢9(2) NUD e(2 N X" ,
¢|X,(Z N X') =WNU in U . Since 2z N X' 1is irreducible and

closed in X' , we only have to show that 2 N X' is an irreducible
component of (wlx,)_l(U N W) and dim Z = dimx,(z N X') . Since
ZNX'"#9® , 2NX' 1is an irreducible component of (wlx,)—l(U n w)

from Exercise 14 on p.32 Let V be an element of affine open cove-

ring of X such that 272 N X' N V # @ . Then there exists a principal

]

open set V in V (f € K[V]) such that X' N V23V and

f f
Ve N 72 # @ from Remark 2.9. Since Ve is an affine open set of X
(see Corollary 10.5), we have
dim 7z = dimvf(z n Vf) = dimx,(z n x')
Q.E.D
(13.8) Corollary. Let ¢:X > Y and r be as in the theorem, then

dim ¢ Y(y) > r for any y € ¢(X)
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(13.9) Lemma. Let X,X' and Y be irreducible varieties over K
and y:X - X' , ¢':X' > Y be dominant morphisms. Assume that
dim X = dim X' = dim Y . Let U and U' be non-empty open sets in
X and X' respectively. Let ¢ = ¢p'oy , U, = Uun ¢~1(U') ,
-1 -1
= Y- | J— ' ] - — '
D=3X-U , Ul =U'"Ng (Y- (D)) and U_ = U, Ny ~(U}) , then
U, is a non-empty open set in X such that u,cu, ¢(UO) c u
and ¢ T(p(u)) C U for any u € U,
]
¢ : X L > X! 4 > Y
U U U
U U Y-¢ (D)
U U
U, =U Ny ' (U') Ul =U'"Ne' *(¥-p(D))
U
Uo = Uy Ny~ ' (U])
1
(¢ ¢ u . > ¥ (u) £ > 9 ()
Proof. Since ¢ 1is dominant, we have ¢—1(U') # @ . Hence

dim D < dim X (see Exercise 48 on p.140). Therefore,
dim ¢ (D) ¢ dim D < dim Y (see Exercise 40 on p.113) and we have
Y - ¢(D) # @ . Since ¢' 1is dominant, we have w'_l(Y—w(D)) # 9

Hence U] # @ . Since ¢ 1is dominant, w-l(Ui) # @ . Hence U_ # )

Let u € U and x € ¢ Y(p(u)) . Assume that x € U , then x € D ,

which implies ¢ (%) = ¢(u) € ¢ (D) . Since w(UO) C Ui and

w(UO) = ¢'°¢(UO) C ¢'(Ui) C Y-¢ (D) , we have got a contradiction. It
is clear that w(UO) cu'. Q.E.D.
(13.10) Lemma. Let (X,QX) and (Y,yy) be irreducible varieties

over K , and ¢:X » Y be a dominant morphism of varieties. If
K(Y) = K(X) , then there exists a non-empty open subset U in X
such that ¢(U) is open in Y and ¢ induces an isomorphism of va-

rieties of U onto ¢ (U)

Proof (see Springer [1, Lemma 4.1.2]). Let 0, C X and 0, C Y be

affine open subsets such that w(ol) co, . Then since
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(pl .0, =2 O
O1 1 2

is a dominant morphism and K(Ol) = K(X) = K(Y) = K(Oz) , we can

assume that X and Y are affine varieties.

We shall write £ for fop where f € K[Y] . Since
0 IK[Y] G  K[X] and K[X] C K(X) = K(Y) , we can take
* *
(p @ £ —— £ =foy)

f .,fr € K(Y) such that

Lo
K[{X] = K[Y][£ .-/ E]

Let f* € K[Y]-(0) (C K[X]) such that f*fi € K[Y] for each

1 ¢ i< r , then the map
K{Y] — K[X]g*

*
a

(£

3
?

Halm
jo!

is a K-algebra isomorphism. Hence

: X

(pIX* .‘k—————)Y

£ f £
is the desired isomorphism from Lemma 2.4. Q.E.D.
(13.11) Lemma (see Springer [1, Lemma 4.1.3]). Let (X,K[X]) and

(Y,K[Y]) be irreducible affine varieties over K and ¢:X =2 Y be a
dominant morphism. Assume that there exists a in K[X] such that
K[X] = K[Y][a] . If a is transcendental over K(Y) , then

(1) ¢ 1is an open map, i.e., ¢ maps open sets onto open sets;
(2) for any irreducible closed subset W of Y , w—l(W) is irre-
ducible and closed in X and
aim ¢ (W) = dim W + 1

Proof. Since a 1is transcendental over K(Y) ,

K{Y] ®K Kl{a] 2 K{Y][a] = K[X]
(x ® y —— Xxy)
as K-algebras. Hence we can consider X to be Y¥xK and ¢ to be

the projection T VXK o Y The assertion follows from Propo-

sition 3.3, Proposition 5.7 and Corollary 7.9.2. Q.E.D.
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(13.12) Lemma (see Springer [1, Lemma 4.1.4]). Let (X,K[X]) and
(Y,K[Y]) be irreducible affine varieties over K and ¢:X =2 Y be a

dominant morphism. Assume that there exists a in K[X] such that
K[X] = K[Y¥][a] . If a 1is separably algebraic over K(Y) , then X

contains a non-empty open set U such that

(1) ¢lU is an open map and morphism of varieties of U into Y ;

(2) 4if W 1is an irreducible closed subset of Y and 2 is an ir-

reducible. component of w_l(W) such that 2 N U # @ , then we

have dim Z2 = dim W ;

(3) for any x € U we have |9 T(p(x))]| = [K(X):K(¥)]
Proof. Let K[Y][T] be the one variable polynomial ring over
K[Y] . Let

VIK[Y][T] — K[X]
(V:F(T) —— F(a))

be a surjective homomorphism of K[Y][T] onto K[X] such that
v(T) = a , then

K[Y][T] / Ker v E K[(X]
(F(T)+Ker v — F(a))

as K-algebras. Let £(T) be the irreducible polynomial in K(Y)([T]
with leading coefficient 1 such that f(a) = 0 . Let b be a non-
zero element of X([Y¥] such that bf(T) € K[Y¥][(T] , then all the co-
efficients of f£(T) 1lie in K{Y]y,

Since a 1is separably algebraic over K(Y) , £(T) = 0 has no mul-
tiple roots. Let Xqpeee X be the roots of f£(T) in the algebraic
closure of K(Y) . Let
_ _ 2
be the discriminant of £(T) . Since c¢ 1is a symmetric polynomial of
Ryreoon Xy from Lang [1, Theorem 9.1 on p.204] we have c € K[Y]b
Let c = QE , where d € K[Y] and t > 0 1is an integer, then we
b
have
(Xp)o = Xpq and (Yo = Ypq

. —1 . — —

Notice that (de) = de ' K[de] = K[X]bd = K[Y]bd[a]

= K[de][a] and a 1is separably algebraic over K(de) = K(Y) . Now
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we shall write X' for X and Y' for de , then a € K[X']

bd
and all the assumptions of the Lemma hold for WIX,: X' - Y' and

further we have the following additional properties:

a) Ker v' = (K[Y'][T])f(T) , where wv': K[Y']J[T] — K[X'] ;
(v':F(T) — f(a))
n '
b)  assume that £(T) = ,3, fiTl NG S S AP E |
€ K[¥Y], C K[Y]_ 4= K[Y']) , then for all y €Y' (= (¥.),)

n .
£(y) (T) = 3, E£4(N)T

has distinct roots.

We shall show that the Lemma holds for ¢|X,: X' > Y' on U=X'

We shall write ¢' = wlx,

(1) Corresponding to the sequence of K-algebra homomorphisms
1
(0¥t K[Y'] 6 K{Y'][T] —2— K[X'] ,
F(T) —— F(a)
there exists a sequence of morphisms
et X! Ly oy g Ty oy
(Ylt) — Y

such that the map po: X' — p(X") is an isomorphism of varieties
(po: X — p(x))

(see Proposition 2.5). From Proposition 2.5 we have
p(X') = ¥(Rer v') = ((y,t) € ¥'x K | £(y)(t) = 0)

Let O be the principal open set in p(X') defined by
g € RK[Y']J[T] , i.e.,
0= ((y,t) € p(x") | g(¥)(t) # 0)

Let g(T) = q(T)£(T) + r(T) , where q(T),xr(T) € K[Yt][T] and
deg r(T) < deg £(T) . Let

r(T) = iéo riT '
n-1
— g 1 ' ! 1
where n deg £(T) , then we have wl(o) C igo Yr. , Wwhere Yr. is

1 1

the principal open set in Y' defined by ry € K[Y']
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Conversely let y € Yé for some O ¢ i ¢ n-1 . Since y € Y' ,

i
n . A
r — 1 ' : 1
f(y)(T) = iéo fi(y)T has . n distinct roots tl’tz"°"tn . Since
g(Y)(tj) = iéo ri(Y)tj
and r(y)(T) = 0 has at most n-1 distinct roots, there exists tj
(1L < 3 £ n) such that g(y)(tj) A0 , i.e., (y,tj) € 0 . Hence
n~1 )
T (0) = Yo Yy,
i
and ¢' is an open map.
(2) ILet W be an irreducible closed subset of Y' , then
-1 -1, -1 -1
(Pl ) (W) = p T(r T (W) = p T((WxK) N p(X'))

= p M(((y,t) € xR | £(y) (E) = 0))

Since WxK is an irreducible closed subvariety of Y'xK with co-
ordinate ring

K[WxK] = | « € K[Y3[(73) ,

(“IWxK

all the irreducible components of ((y,t) € WxK | £(y)(t) = 0) are
of dimension dim(WxK)-1 = dim W from Theorem 7.8. Hence all the ir-

reducible components of (wlx,)—l(W) have the same dimensioﬁt,

dim W A
N Dv(i.‘/,y)
(3) Now let W = (¢(u)) for some u € X' , then from (2) we have
-1 -1 -1
P (p(u)) = (W) = (ply.) T(W)
-1
=p T(((e(u),t) | t €K and f(s(w))(t) =0) ,
because w_l(Y‘) = X' . Hence |w~1(w(u))| is the number of distinct
roots of f(p(u))(T) = 0 . Thus we have |¢ “(p(u))| = [K(X'):K(Y')]
= [K(X):K(Y)] . It is clear that the assertion of the Lemma holds for
p:X > Y on U= X' . Q.E.D.
(13.13) Lemma (see Springer (1, Lemma 4.1.5]). Let (X,K[X]) and

(Y,K[Y]) be irreducible affine varieties over K and ¢:X = Y be a

dominant morphism. Assume that there exists a in K(X] such that
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K[X] = K[Y}[a] . If the characteristic of K 18 p > 0 and
aP e K(Y) , then X contains a non-empty open set U such that:

(1) wlU is an open map and morphism of varieties of U into Y

and the map U — ¢ (U) is a homeomorphism;
(0 — ¢ (u))

(2) for any irreducible closed subset W of Y there exists at
most one irreducible component 7 of ¢ L(W) such that
Z2NU#%@ . For such a 272 we have

dim 2 = dim W .

Proof. Let aP =b = % for some c¢,d € K[Y] such that ¢ # 0 .
Let X' =X_ and Y' =VY_, then ¢ '(¥') = X' and

b € K[Y], = K[Y'] . Notice that K[X']) = K[X], = K[Y] [a] = K[Y'][a]

X,:X' > Y' . We

shall show that the Lemma holds on U = X' . We shall write
(pl=(pIX' .

and all the assumptions of the Lemma hold for |

(1) Corresponding to the sequence of K-algebra homomorphisns
* '
(¢') :K[Y'] G K[Y'][T] — K[X'] ,
F(T) — F(a)
there exists a sequence of morphisms

(P':X' ._L) Y'xK ﬂ_) Yl
((y,t) — y)
- such that the map PotX' — p(X") is an isomorphism of varieties
(Poix — p (X))
(see Proposition 2.5). From Proposition 2.5 we have
p(X') = V(Ker v') . Let £(T) be the non-zero minimal polynomial in
K[Y'][T] such that f£(a) = 0 . Since £(T) | TP-aP in &K(Y')[T]
and for any 1 { m < p
1

m m

(T-a)™ = TM-maT™ “+...+(-1)"a™ € K[Y'][T]

if and only if a € K[Y'] , we have

£(T) = TP-aP or T-a

1l
il

Hence p(X') = {(y,t) € Y'xK | £(y)(t) = 0}

1
((y,t) € Y'xk | t = b(y)P) .

Il
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Therefore ¢' is bijective. Let 0 be the principal open subset in
p(X') defined by g € K[Y'][T] , i.e.,
1 1
o= ((v,b(mP) € x'xx | g(y) (P # 0) .
o 1
Let g(y)(T) = i3, 9;(y)T" , then we have g(y) (b(y)P) # 0 if and
only if
1 s
P i
(o) PP = ;3 g b # 0 .
s . X
Since iéo glib:L € K[Y'] , wl(o) is open in Y' . Hence ¢' is an
open map.
(2) Let W be an irreducible closed subset of Y . We can assune
that U N w—l(W) # © . Since W N ¢(U) is irreducible and
-1 -1
(¢ly) "W N @) = “(W) NU,.
Un ¢ YW is also irreducible . Since wlU is a homeomorphism of

U onto ¢ (U) , we have
dim W = dim(W N ¢ (U)) = dim(e T(W) N U)
from Corollary 7.9.1.

Now let Z be an irreducible component of w-l(W) such that
ZNUG#® , then Z N U is an irreducible component of w—l(W) nu
from Exercise 14 on p.32. Hence 2 N U = w_l(W) N U . Since

Z = ¢ > (W)NU , we have at most one such 2 . Q.E.D.
(13.14) Theorem (see Springer [1, Theorem 4.1.6]). Let ¢:X 2 Y Dbe
a dominant morphism of irreducible varieties (X,QX) into (Y,QY)

and let r = dim X - dim Y . Then X has a non-empty open set U
such that:

(1) ¢ is an open map and morphism of varieties of U into Y ;
U p

(2) if W 1is an irreducible closed subset of Y and 2 is an ir-

reducible component of w_l(W) such that 2 N U # @ , then we

have dim 2 = dim W + r
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(3) if K(X) is algebraic over KX(Y) , i.e., r = 0 , then for all
x € U we have |¢ “(p(x))| = [K(X)_:K(Y)] , where
K(X) g = (o € K(X) | @ is separably algebraic over K(Y))
Proof. Let O be an affine open set of Y and V be an affine

open set of X contained in ¢"1(0) , then
¢|V:V — 0
(olyrx = @(x))

is also a dominant morphism of affine varieties.

Assume that K(X) is algebraic over K(Y) , i.e., dim X = dim Y
Let D = ¢ T(0)-V , then dim D < dim ¢~ 1(0) (see Exercise 48.2 on
p.140). Hence

dim 9T_"% o, (D) £ dim D < din ¢"1(0) = dim 0 ,

where ¢lw—1(o)(D) is the closure of wlw-1(o)(D) in 0 (see

Exercise 40 on p.113). Let O' be an affine open set in O0O-¢(D) ,
then ¢ 1(0') C V and

(wlv)_l(u) = ¢ 1(u) for all ue o' .

Suppose that the theorem holds for V,0 and wIV:V > 0 . Let U be

a non-empty open set of V which satisfies the conditions (1), (2)
and (3). Then U satisfies (1) and (2) as an open subset of X .
Further if r = 0 , then we take a new non-empty open subset

U =UnN w—l(O') of V instead of U . Clearly, (1), (2) and (3)
hold for U' and ¢|V:V -» 0 , and thus U' =satisfies (1), (2) and

(3) as an open subset of X

Hence it is enough to prove the theorem in case X and Y are

affine varieties.

(1) and (2). Let ¢ = ¢'oy be a factorization of ¢ by dominant
morphisms of irreducible affine varieties

YiX 2> X' and ¢':X' » Y .
Let U and U' be open subsets of X and X' respectively which
satisfy (1) and (2) for ¥ and ¢' respectively. Let
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u,=1un w—l(U‘) , then U, satisfies (1) and (2) for ¢:X = Y
'
p:X ¢> xt L5y
U U
U u'
U

Up = Uny~t(u') .
Since K[X] 1is finitely generated over K[Y] , i.e.,
K[X] = K[Y][a,,...,a.]
for sone PR € K[X] , we have a sequence of finitely generated
K-algebras with trivial nilradicals:
K[Y] C K[¥][a;] C K[Y¥][a,;,a,] C...C K[X]

In case ch K =p >0 and ay is algebraic over the quotient field

for some 1 ¢ i { r there exists an in-

1

teger p 2 0 such that a? is separably algebraic over the

of K[Y][al,az,...,ai_l]

quotient field of K[Y][al,a (see Lang [1, Propo-

2,...,ai_l]
sition 4.3 on p.283]), then we can refine the sequence by adding the

new terms:
pu =1
K[Y][al"’°’ai—l] C K[Y][al,...,ai_l,ai ] C K[Y][al””’ai—l’ai ]

p
C...C K[Y][ay,---,8;_;,a5] C K[Y][ay, -+ a5 5,2 ]

Thus from Theorem 6.10 and Lemma 8.3 we get a seugnce of dominant
morphisms of irreducible affine varieties each step of which satis-
fies the condition of one of the Lemmas 13.11, 13.12 and 13.13. lence
(1) and (2) hold for affine varieties.

(3) First we assume that ch K= p > 0 . Let K[X] = K[Y]fa,,-.-,a.]

for some s € K[X] , then from Lang [1l, Proposition 4.3 on

a -

p.283] there exist integers "y 2 0 for each 1 ¢ i1 ¢ r such that
Ni
p

ay is separably algebraic over K(Y) . Thus we have got a sequence

of finitely generated K-algebras with trivial nilradicals:

1 i

1 r

K[Y] C K[Y][aﬁ ,...,ag ] € K[X] .

From Lang [1, Proposition 7.2 on p.292] we have
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n n
r

p

r 1

1
K(X) g = K(Y)[ag ..,

.

From Theorem 6.10 and Lemma 8.3 we get a seguence of dominant
morphisms of irreducible affine varieties corresponding to the above

sequence of K-algebras:

!
(p!XLX'-—(—P—)Y,

1 ",
1 r
where K[X'] = K[Y][ag ,...,a? ] . Since K[X] = K[Y][a;,...,a.]
Hq M,
and K[X'] = K[Y][ag ,...,ag ] , we can embed X and X' into
yxK" . Let K[¥xK"] = K[Y] ®, K[X,,...,X.] , then
K[Y] Oy K[Xl,...,Xr] % R[Y][Xy,e--rX]
( a®b » ab)
as K-algebras and we have the following commutative diagrams:
p 2 p T
K[Y][ay,---,a.] & K[¥][a; ,...,ap ]
Hi %
a, a?
i i
C [ e K[Y]
Xy ' X4 7
K[Y][Xy,eoe, X ] € KIYI[X e s X ]
TR
o
X.l ¢ X,
X L » X!
M'
o (i//” Y
yxkE —B 5 yxk* Y
p 2 p ¥
(lell"rxr) — (Yle I"Ixr )

Hence + is injective, because pn 1is injective.
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Now we decompose ¢' into a sequence of dominant morphisms each step
p q

on which satisfies the condition of Lemma 13.12.

¢ ¢ ¢
. 1. R r
p'iX! > Xy Y, e X Y
* * *
" cr My Cr~l M My (1
0! :K[Y] G K[Y][ali 1 G K[Y][ai’ , ag ]G ...G K[X'] .

From Lemma 13.9 and Lemma 13.12 we can find a non-empty open set UO

in X' on which (1), (2) and (3) hold for

pt:X' »Y .
Let U' be a non-empty open set of X on which (1) and (2) hold for
Y:X = X' . Since ¢y is injective (1), (2) and (3) hold for ¢:X = Y

Yy .

on U=1U'nNy" o

Similarly we can show the characteristic O case. Q.E.D.
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