山形大学紀要(農学)第11巻 第1号:155-176. 平成2年1月 Bull. Yamagata Univ., Agr. Sci., 11(1):155-176. Jan. 1990

落葉果樹の樹冠内放射の減衰係数とその推定パラメータ

山本隆儀・上田仁悦*・小泉弘樹**・西沢滝太*** (山形大学農学部果樹園芸学研究室) (平成元年9月1日受理)

Several Extinction Coefficients of Radiations and Their Estimating Parameters in Several Diciduous Fruit Trees

Takanori YAMAMOTO, Zinetsu UETA, Hiroki KOIZUMI and Takita NISHIZAWA Laboratory of Pomology, Faculty of Agriculture, Yamagata University, Tsuruoka 997, Japan (Received September 1, 1989)

Summary

Based on the data from 9 species of deciduous fruit trees including 30 cultivars and artificially-made model equipments of fruit tree canopy, several parameters concerning light extinction coefficient were estimated to simulate the irradiation distribution in the fruit tree canopies. The parameters were used to estimate the extinction coefficients of parallel incident radiation in leaf system and stem system, and also in downward transmission and reflection. The results obtained were as follows:

1. The leaf inclination angle (α) were measured at monthly interval in the period of May to October. These data were used to estimate two parameters (λ, ν) of Beta distribution function which characterizes the probability density function of leaf mass distribution with respect to the leaf inclination angle $\overline{\Psi}(\alpha)$. The λ and ν are the parameters for calculating the extinction coefficient of paralell incident radiation (Kdl_{he}) in the leaf system. Curvatures, i. e. cupping and/or rolling of the leaves developed in summer in some species of fruit trees, i. e. apple, Japanese persimmon, chestnut, Japanese pear and peach. The leaf curvatures resulted in transformation of $\overline{\Psi}(\alpha) \sim \alpha$ curves and hence changed the values of the extinction coefficients of direct radiation in leaf system (Kdl_{he}) , and also significantly changed the distribution of radiational fluxes at leaf surface. The leaf angle even with occurrence of curvatures showed few seasonal changed in $\overline{\Psi}(\alpha) \sim \alpha$ curves, $Kdl_{he} \sim$ solar altitude (h_e) curves and also in the distribution of radiational fluxes except for the period just after leafing in many species.

2. The extinction coefficients (Kds_{ho}) in the stem system for the direct sunlight with solar altitude (h_o) were estimated by using multiple regression formula and two parameters, i. e. a (total area of longitu-

* 現在, 秋田県果樹試験場

Akita Fruit Tree Experimental Station

** 現在,大栄信用金庫

Taiei Credit Bank

*** 長野県松筑農業改良普及所

Nagano Prefectural Shochiku Agricultural Extension

dinal section of stem/total leaf area) and R_i (area of longitudinal section of stem with each class of inclination angle/total area of longitudinal section of stem). The data for the multiple regression formula was obtained from an artificially-made cylinder-model equipment. The two parameters, however, were obtained from many deciduous fruit trees. The $Kds_{ho} \sim h_o$ curves were almost similar in many species of fruit trees except for the trellis training grapes. The light intensity which was estimated by using the synthesized extinction coefficient ($Kd_{ho} = Kdl_{ho} + a \cdot Kds_{ho}$) decressed in a considerable extend as compared with that which was estimated by using the extinction coefficient in the leaf system (Kdl_{ho}) at low solar altitude and/or at high leaf area index.

3. The extinction coefficients for the downward-reflected and -transmitted radiation (second scattering radiation) in leaf canopies were measured by using an artificially-made model equipment. In a dark room, the leaves were arranged as similar as in the tree canopy with respect to leaf distribution and inclination angle as possible. The model tree canopy was exposed to parallel artificial beams irradiated from different altitudes (h_o) . The photosynthetically efficient downward-radiation (I) and reference radiation with no leaf (I_{o}) were measured at different depths, i. e. different leaf area indices along the parallel beam paths. The downward-reflected and -transmitted component of radiation (S_{ho}) is obtained by subtracting the direct radiation component (D_{ho}) from ratio, I/I_o . The extinction coefficients of the second scattering radiation (K_{ShoL}) were estimated from Lambert-Beer's law using S_{ho} and L. The values of K_{ShoL} varied with leaf characteristics inherent in the cultivars, but generally increased with raising h_e and decreased with increase of L like an exponentially decreasing curves. This indicates that in the fruit trees with weakly horizontally distributed leaves the more inclination angle of parallel beam may increase the downward-reflected radiation, and that the radiation around the leaves at lower layer may be less absorbed by them. The multiple regression analyses of $K_{Sho,L}$ with varied h_o and L showed that a well-fitted estimation formula was obtained in almost all the fruit species and cultivars. Furthermore, partial regression coefficients were used in the above model.

緒言

良品質多収の果実生産を行うには、

樹冠内葉層による 光エネルギーの効率的利用及び結果部周辺の日当りの改 善が要求される. また, このための具体的研究課題の一 つとして、日当り良好な樹形や葉群構造の検索がある. 著者らは上記の観点に立ってこれまで一連の研究を続け てきた. すなわち、空間的に極めて不均一な葉群分布を 有する果樹樹冠内の放射分布を明らかにする目的で,果 樹個体(群)全葉の葉面放射の瞬時分布を推定するモデル (以後,葉面放射分布モデルと記す)を作成し、良好な検 証結果を得た15).しかし、上記モデルに用いる葉量の空 間分布データを実際の果樹から入手することは、従来、 極めて困難であった. そこで, さらに, 二側面写真画像 を用いた果樹の樹形・葉群構造の簡易解析システム¹⁶⁾を 開発し、これを用いることにより、上記の葉量の空間分 布データの入手のための労力、時間を大幅に短縮させる ことができた(なお、上記システムはこれ以外の多くの 機能を有している¹⁰). したがって,現在,上記のモデ ルとシステムを活用することにより,実際の果樹の日当 り解析を従来より格段に効率良く行うことが可能になっ たといえる.

本報告の主目的は、上記モデルを広範囲の果樹に適用 させるべく、各果樹に特有なパラメータについて、多数 の落葉果樹を用いて測定入手し、これらを記載すること である.このパラメータは上記モデル内変数として用い られる種々の放射減衰係数を推定計算するためのもの で、いずれも果樹の種類・品種から経験的に調査するこ とが必要である.また、このパラメータの測定方法につ いては、既報では、紙面の関係から簡単に触れてきたが ¹⁵⁾、本報では詳細に示すと共に、併わせて、関連する減 衰係数の性格についても記す.

材料及び方法

1. 葉面放射分布モデル内の種々の放射減衰係数

群落内の放射を分類すれば次のものがある. すなわち,

群落に入射する太陽直射光と天空散乱光,この両者が植 被構成物(葉,枝など)による吸収,透過,反射の作用を 受ける結果生じる散乱光,地表面到達放射の地面反射部 分及びこれが再び植被構成物による吸収,透過,反射の 作用を受ける結果生じる散乱光である.葉量の水平方向 の分布が均一と見なせる耕種型作物群落内では,上記の 種々の放射は,植被頂部表面から地面に対して垂直方向 の累積葉面積指数と各放射の減衰係数とを用いて,ラン バート・ベールの法則により計算される.また,上記の 群落内散乱光の解析では便宜的にそれぞれを上向き及び 下向きの2成分に分けて取り扱う³.

三次元空間内に葉量が極めて不均一に分布する果樹で は、上記の比較的簡単な取扱いは不可能である、著者の 葉面放射分布モデルでは、任意の傾斜角度と方位角度を 有した斜方柱を新たに導入し,この斜方柱内における地 面方向への累積葉面積指数をランバート・ベールの法則 に用いた15). このためには、この斜方柱がグリッドを構 成する任意のブロックを切断する容積(及びこの切断さ れた部分の葉量)を立体解析幾何学を用いて計算すると いう厄介な作業を伴った.また、このような性格を有し たモデルだけに、そこで用いる放射及び減衰係数の性格 と取り扱いが、上記の耕種型作物群落の場合と異なった. 主に異なる点は、天空散乱光に独自の減衰係数を設定し なかったことであった.代りに、天球を多くの小区画に 分け、各区画の中心に小さい弱光の太陽を置き、そこか らの平行光線が重複投射するものとして、天空散乱光を 見なした. したがって、各区画からの平行光線の減衰係 数には、太陽直射光のそれと同じものを用いることがで きる利点が得られた. この取り扱いは、上記の利点のみ から行われたのではなく,三次元空間内の葉量分布の不 均一性を考慮する必要から生じたものである.他方、上 記モデルは一定の限界を有し、また、ある仮定を必要と した. すなわち. 取り扱う放射を下向きのものに限定し た点である.地面反射光などの上向き放射を三次元的に 扱うとすれば、それをモデルの骨格にどう取り入れるか という難しさ、プログラム量の膨張及び計算入口での オーバーヘッドが懸念される反面、これを仮に取り入れ た場合の結果に現れる効果が以下に示す理由から、さほ ど期待できなかったためである. すなわち、上記モデル の推定対象である葉面放射が上面(天空方向を向いた葉 面)の放射に限定したこと、また、反射マルチ材等を使 用した場合は例外として、どの放射を取って見ても下向 きの放射は上向きの放射に比べ断然強く、通常、光合成 の測定などでは上面放射のみを用いるのが多かったため である.なお、この点については今後のモデル改良の課 題でもある.散乱光の取り扱い上の仮定は植被外から入 射した放射が植被構成物により、吸収、透過、反射の作 用を受けて、散乱光に変る部分のうち、下向きの成分に ついて、その方向が入射した当初の方向を保持するとし た点である.この仮定は、三次元空間内の葉量分布の不 均一性を考慮するために、斜方柱を導入した解析方法か ら見て必須の要件であった.この近似的取り扱いは、耕 種型作物群落内の放射分布の研究における解析方法の制 約から、散乱光を鉛直軸に沿って下向き(及び上向き)の 成分に変えて解析作業を行う点に類似している.

157

したがって,上記モデルの中で変数として用いる減衰 係数は,直射光の減衰係数と上記の仮定を有した下向き 反射光・透過光の減衰係数の二つである.

減衰係数をモデル内で計算するためには、パラメータ が必要である.下向き反射光・透過光の減衰係数は、放 射の方向(傾斜角度と方位角度)の,あるいはこれに加え、 空間内に任意の点までの光路に沿った累積葉量の従属変 数であるという性格を有していた¹⁵⁾.一方、直射光の減 衰を計算するために、葉による場合と枝による場合にわ けてそれぞれの減衰係数を計算し、この両者を結合した いわゆる合成減衰係数を計算し、この両者を結合した いわゆる合成減衰係数を用いたので、複数のパラメータ を必要とした.以下、これらの減衰係数の推定計算方法 及びパラメータの測定方法について記す.なお、減衰係 数が同モデル内の計算にどのように組み込まれているか については、すでに報告した¹⁵⁾.さらに付言しておきた い点は、本報中の散乱光の減衰係数およびこのためのパ ラメータの値は光合成有効波長領域の放射に限定したこ とである.

2. 果樹葉の直射光減衰係数とその推定計算のための パラメータの測定方法

1) 葉面積の傾斜角度分布と直射光の減衰係数及び 葉面放射との関係

放射が気体または溶液の層を通過するとき,吸収また は散乱によって減衰する.入射光の強さを I_s ,透過光の 強さをI,物質層の厚さをd,物質の密度を ρ (一様と考 える)とすると, $I=I_{exp}(-s\rho d)$ なる関係がえられ,こ れがランバート・ベールの法則であり,sは減衰係数で ある⁵⁾.このランバート・ベールの法則は拡張して植被 層内での太陽光の減衰にも使用され,たとえば,植被の 上の太陽直射光(直達光)に対する,葉面積指数Lなる葉 (2)

層を通過した水平面上での日向部面積の割合は $exp(-Kdl_{ho} \cdot L)$ で表現される. Kdl_{ho} は葉の直射光の減衰係数である. 仮に,葉の傾斜角度(α)が一定であれば, Kdl_{ho} は(1)式で与えられる⁹.

 $Kdl_{ho} = \cos \alpha + \sin \alpha \cot h_o \cos(\beta - \phi_s)$ (1) ここで、 β は、葉の方位角度、 h_o は太陽高度、 ϕ_o は太 陽の方位角度である。 P_{ALMER} は α が45度または60度の 一定値の場合あるいは球面分布する場合に限定してリン ゴ果樹園 (ヘッジロウ仕立て)の光遮断率を計算した⁷⁷. しかし、実際の植物群落は、いろいろな傾斜角度、方位 角度を有した葉の集合体であるので、 Kdl_{ho} の計算は複 雑になる。 $H_{ORIE} \ge U_{DAGAWA}$ (1971)は傾斜角度に関する 葉面積分布の確率密度を $\overline{g}(\alpha)$ で与え、葉の方位角度分 布を均一と見なした時、任意の太陽高度(h_o)の時の Kdl_{ho}

$$Kdl_{ho} = \int_{0}^{\alpha *} \overline{\overline{\psi}}(\alpha) \cos \alpha \, \mathrm{d}\alpha + \int_{\alpha *}^{\pi/2} 2 \, \overline{\overline{\psi}}(\alpha) / \\ \pi (\cos \overline{\alpha} + \sin^{-1}u + \sin \overline{\alpha} \cot h_o \sqrt{1 - u^2}) \mathrm{d}\alpha$$

ただし、 $u = con \alpha tan h_o$, $\alpha^* = h_o である. \overline{y}(\alpha) d$, 通 常, ラジアンで表現した単位角度に占める葉面積の確率 密度であり、(3)式で表現される³.

$$\overline{\overline{T}}(\alpha) = Be(\lambda, \nu) = 1/B(\lambda, \nu) (2 \alpha/\pi)^{\lambda-1}$$

$$(1-2 \alpha/\pi)^{\nu-1}$$
(3)

ここで、 $B(\lambda, \nu)$ はベータ分布関数であり、そのパ ラメータ λ と ν との間に(4)式の関係がある³.

$$B(\lambda,\nu) = \int_0^{\pi/2} (2\alpha/\pi)^{\lambda-1} (1-2\alpha/\pi)^{\nu-1} d\alpha \qquad (4)$$

したがって,ベータ分布関数のパラメータλとνは葉 群の直射光減衰係数(*Kdl_w*)の推定計算のためのパラメー タも兼ねている.

パラメータ λ と ν は、植物群落を構成する多数の葉の 傾斜角度を測定して、その平均値 α と分散 σ^2 とを用い て、(5)式と(6)式により計算する³.

$$\lambda = \overline{\alpha} / \sigma^2 (\overline{\alpha} - 2 \,\overline{\alpha}^2 / \pi - 2 \,\sigma^2 / \pi)$$
(5)

$$\nu = \pi / 1 \,\sigma^2 (\overline{\alpha} - 2 \,\overline{\alpha}^2 / \pi - 2 \,\sigma^2 / \pi) (1 - 2 \,\overline{\alpha} / \pi)$$
(6)

なお,(2)式と(4)式の積分計算にはシンプソンの近似 積分法を用いた.

樹冠内の日向部面積割合の計算のほかに, 葉面の太陽 直射光強度の計算にも, 葉の傾斜角度と方位角度が不可 欠である. すなわち, 葉面の太陽射光の強度(*Id_i*)は(7) 式で与えられる⁹.

$$Id_{f} = Id_{o} |\cos \alpha + \sin \alpha \cot h_{o} \cos(\beta - \phi_{s})|$$
(7)

ここで, Id。は太陽直射光の水平面強度である.

葉面放射分布モデルは、このほかに太陽を除く天空からの直射光の減衰係数の計算、光が葉層を透過したり、 葉層により反射あるいは吸収される場合の、いわゆる、 二次散乱光の減衰係数の計算、あるいは、散乱光に起因 する葉面放射の計算にあたっても、この葉面積の傾斜角 度別分布を用いた¹⁵⁾.この場合にも、葉面積の傾斜角度 別分布表などを用いる代りに、これを近似したベータ分 布関数を利用した離散分布のモンテカルロシミュレー ション手法によりαとβを発生させていくので、ベータ 分布関数のパラメータであるλとνがあれば事足りると いうわけである。

上記のごとく,葉面積の傾斜角度別分布は,樹冠内の 放射分布と多方面にわたり密接に関係するので,その分 布の特徴や変動を詳細にわたり調査しておくことが必要 である.

2) 葉面積の傾斜角度別分布の季節的変化の測定方法

糸で錘をつけた分度器を葉の法線に対して垂直に当 て、葉面上に立てた法線と天頂とのなす角度を葉の傾斜 角度として測定した.ただし、普通は葉を平板状とみな して個葉の平均的傾斜角度を測定したが、明らかに湾曲 (屈曲)が見られた葉については、傾斜角度を大まかに二 つに分けて二回測定した.傾斜角度は6階級(90度を15 度毎に分割)にし、各階級に属する葉数を数え、このデー タをもとに α と σ ²を計算した.展葉直後から落葉期前 まで、月一度の割合で一度に約250枚の葉について、樹 冠内の高さと方角からまんべんなく選び測定を行った.

なお,葉の方位角度(β)は,葉の上面(天空方向を向 く葉面)の上に立てた法線の方角(南中から東回りに測る もの)であるが,果樹のβはほぼ均一分布することがわ かっているので¹⁴⁾,今回は測定せず,一連の推定作業で は一様乱数を用いてこれを発生させた.

3) 葉の湾曲(屈曲)を考慮した場合と考慮しない場合の比較実験

全体から見れば一部に葉に限られたとはいえ,明らか に無視できない顕著な湾曲(屈曲)が発生したもの(ここ では5樹種8品種)を取りあげ,8月に湾曲(屈曲)が見 られた葉について,最初に湾曲(屈曲)がないものとして 平均的な傾斜角度を一度測定した後に,湾曲(屈曲)に応 じて個葉が二つの平板から成り立つものと見なして二個 の傾斜角度を測定した.これらの二つの測定方法の違い が,全体の傾斜角度分布形に及ぼす影響を調査した.

158

158

4) 葉面積の傾斜角度別分布の変動が樹冠内葉面放 射分布に及ぼす影響の推定方法(葉面放射分布モ デルを用いた推定)

葉面積の傾斜角度別分布の変動,すなわち,その季節 的変動や葉の湾曲(屈曲)による分布形の変化が樹冠内葉 面放射分布形に及ぼす影響を評価するため,葉面放射分 布モデルを用いて推定計算を行った.この際,傾斜角度 に関する葉面積の確率密度関数を特徴づけるパラメータ (λとν)以外のデータとパラメータは同一のものを入力 した(これらは以前用いたもの¹⁵⁾から任意に選びそのま ま用いた).

果樹の枝の直射光減衰係数とその推定計算のためのパラメータの測定法

1) 枝の直射光減衰係数と Yim らの解析結果

植物群落では葉,枝などにより太陽直射光が遮断され 日陰部ができる.一般に葉によるものと比較して,枝に よる光遮断は無視されがちであるが,作物によってはこ の部分が大きいものもあり,たとえば,オオムギでは茎 の部分が全体の1/4~1/3にも及び,この部分の光合成 とともに重視されている¹¹¹.果樹の場合,この方面の調 査はほとんどなされていない.

さて,植被層内の太陽光の減衰の計算には,一般にラ ンバート・ベールの法則が拡張使用され⁵),植被の上か ら入射する太陽直射光(直達光, L)に対する,葉面積指 数Lなる葉層を通過した直射光(I)の割合(水平面上での 日向部面積の割合)の計算には(8)式が用いられている.

I/I_o=exp(-Kd_{ko}・L) (8) ここで, Kd_{ko}は直射光の減衰係数である.光遮断材の大 部分が葉であることから,葉による直射光の減衰係数 (Kdl_{ko})がKd_{ko}に代用されることが多い.果樹のKdl_{ko}の 測定・計算方法とその特徴については,すでに前項に記 したので,ここでは与えられたものとする.YIM ら(1969) は草本・低木を用いた測定と解析から,葉と枝の両者に よる直射光の減衰を(9)式を用いて一般化できることを 報告した¹⁴⁾.

I/I_o = exp{-(Kdl_{ho}+a·Kds_{ho})L} (9)
 ただし、I/I_oは日向部の割合、Kds_{ho}は枝(茎)のみによる
 直射減衰係数、a は葉面積に対する枝量の割合である.
 (9)式を(8)式に対比させると、Kd_{ho}=Kdl_{ho}+a・Kds_{ho}の
 関係が成り立つ.いわば、それぞれ別々に得たKdl_{ho}と
 Kds_{ho}から合成される減衰係数Kd_{ho}を用いて、直射光の
 減衰を表現できることがわかる.YIM らは自然状態、あ

るいは、葉を全部むしりとった状態での相対照度の垂直 分布を測定し、一連の解析から*Kds_{ho}やKdl_{ho}の*値をある いはこれらの*Kd_{ho}*に対する比率を計算した¹⁷.しかし、 シミュレーションモデル内の変数として、任意の太陽高 度に対応した*Kd_{ho}*値を与えていく場合、上記の経験的 な*Kds_{ho}*値の入手方法は適さない.

2) 円柱模型実験による Kdshoの推定方法

Kdlmが葉面積の傾斜角度別分布をあらかじめ知るこ とにより、理論的に求められたのに対して、太さと丸み を有する枝のKdshe値を求める理論的方法は提案されて いない.本報告では太陽高度別のKdshoの近似値を敏速 に推定する一方法として、枝の部分部分が直線状の回転 体(円柱もしくは細長い円錐台)であり、樹冠内の枝の方 位に関する分布が均一であると仮定したうえで、一、二 のパラメータと円柱模型実験とを組合せた方法を提案し たい.まず,透明樹脂板に多数の穴をあけ,工夫をこら し、一定の長さ、太さ及び傾斜角度7を有する円柱を16 方位になるように空間内に配列し, その傾斜角度を数段 階に変えることができる模型を作成した(Fig.1). 建物 の屋上にこの模型を置き、日の出と共に円柱のγを0° ~80°まで10°間隔に変えながら、各アごとに、水平面 上の白紙に投影された16本の円柱の陰を素早く描き、こ の測定を太陽高度の一定の増分ごと繰り返した、全ての 測定が終了後、プラニメータで円柱の陰の面積を測定し た. まれであるが、個々の円柱の陰が重なった場合には、 アウトラインに囲まれた面積をそのまま読み取った.16 個の円柱の総縦断面積をS.,任意のh。とγの時の陰の

Fig. 1. A diagram showing the equipment of measuring extinction coefficient of cylinders which arranged towards 16 directions at an inclination $angle(\gamma)$.

総面積を \overline{S}_{c} とすれば、この時の円柱の直射光減衰係数 は \overline{S}_{c}/S_{c} に等しい.以後、円柱直射光減衰係数を添字 h_{o} と γ をつけて、 $Kdc, h_{0.7}$ で表現する.模型実験では測定 しなかった γ が 90°の場合、すなわち、 $Kdc, h_{0.90}$ の値は coth。で与えた.これを加えた全ての $Kdc; h_{0.7}$ 測定値を対 象に、 h_{o} 、 γ 及びこれらの三角関数値などを独立変数と した重回帰分析(変数増減法)を行った.

実際の果樹の樹冠内の枝群は,種々の太さ,長さ,傾 斜角度の枝から成り立っている.また,枝の傾斜角度別 の枝縦断面積分布形は,樹種・品種に特有なものと考え られる.90°をn分割して,i番目の傾斜角度階級に属 する枝の縦断面積の全縦断面積に占める割合をR_i,その 階級の傾斜角度中央値をY_iとすれば,任意の太陽高度 h_oの時の枝群全体の直射光減衰係数Kdshoは(10)式で近 似的に表現できる.

$$Kds_{ho} = \sum_{i=1}^{n} R_i \cdot Kdc, \ _{ho}. \ \gamma_i \tag{10}$$

ここで、 $Kdc_{,ha,Yi}$ の値には、重回帰推定値を用いる.す なわち、任意の太陽高度 h_a の時の枝群全体の直射光減 衰係数は、枝群全体の総縦断面積Sに対する、その時の 水平面に投影する陰の総面積 \overline{S} の割合(\overline{S}/S)であるか ら、任意の太陽高度 $h_a \ge i$ 番目の傾斜角度階級の角度中 央値 Y_i の組合せにより重回帰推定される円柱群の $\overline{S_c}/S_c$ の値に、i番目の階級に属する枝の縦断面積割合 R_i を乗 じ、これと同じ計算を全階級にわたり行ない加算した値 に等しくなる.

なお,(9)式中に用いられる,もう一つのパラメータ a(葉面積に対する枝量の割合)は,この場合には,葉の 総面積に対する枝の総縦断面積の割合である.

R.とaの測定は、夏以降、1樹について数本の亜主枝 を選び、亜主枝、その上の全ての側枝、2年生枝及び新 しょうについて、糸で錘をさげた分度器により傾斜角度 を測定後、枝の基部直径、先端部直径及び長さを測定し、 台形面積公式を用いて縦断面積を算出した.この場合、 曲がった枝は直線上と見なして計算した.なお、枝の傾 斜角度階級数nは6とした(級間=90°/6=15°).また、 着葉数を数え、平均個葉面積を乗じて加算し、これに対 する枝の総縦断面積の比率aを算出した.この場合のa 及びR.の計算には、後述する理由から、主幹と主枝と 共に、亜主枝の縦断面積は含まれていない.

果樹葉群中の下向き二次散乱光(反射光・透過光)の減衰係数とその推定計算のためのパラメータの測 定法

1) 二次散乱光の減衰係数の性格

平行光線が葉面に当たり葉層の下方へ反射して出て行 く割合には、平行光線の傾きh。と葉の傾斜角度分布の 両者が密接に関係し、さらに、葉面の粗滑やクチクラの 発達程度も影響するものと考えられる.他方、平行光線 が葉肉組織を透過して、下方に出て行く割合には、上記 のh。や葉の傾斜角度分布と共に、葉の厚さやクロロフィ ル含量が密接に関係する.さらに、クロロフィルは特定 の波長領域の光を吸収するので、光が葉肉組織を透過す る割合はそこまで到達した光の波長構成にも影響され、

多くの葉層を透過した光ほど吸収されにくい(透過しや すい). すなわち,光路に沿った累積葉面積指数Lとも 関係するものと考えられる.下向きの二次散乱光の減衰 係数Kshelt,上記の各種要因の相互作用の結果決まる こと,並びに,これらの要因の多くは生物的要因である ことから,樹種・品種に特有なものとして経験的に求め ざるを得ない.

従来から報告されている葉の optical property (光学的 特質)^{126,13)}は、個葉に対して垂直に当てた光の透過率や 反射率を波長別に測定したもので、ここで問題にする、 種々の傾きを有した葉から構成される葉群の、任意の光 投射角度 h。及び光路に沿っての任意の葉面積指数 L に 対応した二次散乱光の減衰係数 K She.L を計算するための 素材としては役に立ちそうにない.したがって、次に示 すように、著者が独自に考案した装置と方法を用いた.

2) Ksho, Lの測定装置と計算方法

暗室内において、自然光に類似のランプ(東芝 DR 400 TL,メタルハライドランプ)の光を二枚のレンズを用い て、ほぼ平行光線に変え、この光路中に傾きを数段階に 変えられる5段の金網を設置した(Fig.2).金網を水平 にした状態で、底つきビニルパイプを随所に取り付け、 水を入れ、その中に葉のついた新しょうを短く切り、差 し入れることにより、金網上部に人工的な葉層を形成さ せた.この場合、ビニルパイプの傾斜角度と方位角度を アルミ針金を用いて調節しながら、水平に置いた時の各 金網上の葉の傾斜角度分布が供試樹種のそれに近付くよ うに務め、また、葉の方位角度分布が均一になるように 努めた.金網の傾斜角度を変えることと同じ状態を作るこ とになる.このように設定した数段階の h.のもとで、

Fig. 2. Diagrams showing the equipment (left), The course of the light senser on the guiderail (upper right) and the diagrams showing the installation of the light senser on the guiderail (lower right).

各金網の下の全領域の放射の水平面強度を試作した光合 成有効放射計(以後光センサと記す15))を用いて測定し た.金網の傾斜角度に対応したガイドレールを取り付け、 光センサを一定速度にして一定経路を移動し(Fig.2), ペン式記録計へ光センサ出力曲線を描かせた(Fig.3). なお, 葉身のみを除去後, 同様な測定を繰り返し, ブラ ンク測定とした.出力曲線をデジタルプラニメータで積 分し、葉のある場合をI、ブランクの場合をI。とした(I/ I_kの計算を行うことにより、新しょうの枝部分、葉柄及 び金網資材などによる光遮断の影響は以後のデータ解析 には現れない). h。は 20°から 90°の 8 段階(10°間隔)に し、金網最下段までの最大累積葉面積指数がほぼ5にな るように葉数を設定して、上記の測定を繰り返した.な お、この測定に先立って、金網が水平の時の各金網上の 全ての葉の傾斜角度 α と方位角度 β を一度測定した.ま た,全ての放射測定が終了後,各葉の葉面積を測定した

Fig. 3. Representative outputs on the chart of the recorder from the light senser. An output from blank test (in a case of no leaf) at h_o =90° and under the first wire-netting (upper), and that in a case of the installation of the leaves at same h_o and under the same netting (L was about 0.5, lower). I_o and I were given by the integrations of the upper output and the lower one, respectively.

(自動面積計使用).

さて,任意のh。の時のIの値は葉層を通り抜けた直射 光,下向き反射光及び葉肉組織透過光の各3者の水平面 強度の合計値である.任意のh。の時の水平面上の直射 光成分の割合をDhaとすれば, I/I。はDhaを用いて(11)式 で表現できる.

 $I/I_{o} = D_{ho} + (1 - D_{ho})S_{ho}$ (11)

ここで、 $S_{he}(<1)$ はこの葉層に突き当たる平行光線水 平面強度に対する下向き反射光と透過光の両成分の水平 面強度合計値の割合であり、(11)式を変形して(12)式で 表現できる.

 $S_{ho} = (I/I_o - D_{ho})/(1 - D_{ho})$ (12)

 D_{ho} を求めるには、通常、葉群の平行光線直射光の減 衰係数 KdI_{ho} をLと共にランバート・ベールの法則に代 入して計算する。多数の葉からなる葉群の KdI_{ho} を計算 するには、2に記したように、傾斜角度に関する葉面積 の確率蜜度分布関数 $\overline{v}(\alpha)$ を用いて、HORIE と UDAGAWA (1971)の方法((2)式)により計算することができる³⁾. しかし、本実験では、金網上に配列する葉数に限りがあっ たので(一段当たり10数枚あるいはそれ以下)、個葉の直 射光減衰係数から積み上げて計算する方法を採用した. すなわち、個葉の直射光減衰係数 Kd'_{ho} は個葉面積に対 する水平面上の投影面積の割合であるから、(13)式で与 えられた⁴.

 $Kd'_{ho} = |\cos \alpha + \sin \alpha \cot h_o \cos(\beta - \phi)|$ (13) ここで、 ψ は平行光線の方位角度である. 任意の金網の 段までの葉層全体の減衰係数 Kdl_{ho} は、そこまでのあら かじめ計算した個々の葉の Kd'_{ho} にその個葉面積がそこ までの葉層全体の葉面積に占める割合を乗じたものを全 て合計したものに等しい.

各 h_oの各金網段ごとの Kdl_{bo}とその段までの累積葉面 積指数 L とにより,該当する D_{bo} 値が計算され((14)式), 該当する I/I_o(実測値)と共に(12)式に代入され, S_{bo} が計 算された.

$$D_{ho} = \exp(-Kdl_{ho} \cdot L) \tag{14}$$

得られた Sho 値とLとの関係には、hoのレベルによっ て異なったものの、Lの増大に対して、指数減少曲線的 な関係が認められたので(結果及び考察を参照)、Shoの Lによる減衰にもランバート・ベールの法則を拡張使用 して、二次散乱光の減衰係数Kshot を計算した((15)式).

$$Ks_{ho}, L = -\ln S_{ho}/L \tag{15}$$

葉面放射分布モデル内で実際の樹冠を想定して,必要 に応じて任意のh。とLの組合せにより,Ksholを推定し ながら,計算を行なうために,ここで得られた多数組の Kshol,h。及びLのデータによる重回帰分析を行ない, 結果として得られた推定式をモデルのプログラム内に組 み込む方法がシミュレーションとしては都合がよい.

5. 供試材料と調査時期

山形大学農学部附属農場果樹園栽植の8年生(1985年 当時)のリンゴ,セイヨウナシ,ニホンナシ,モモ,カキ, クリ、ブドウ、クルミの8種合計26品種(ただし、リン ゴでは台木品種との組合せを含む)及び同農学部実験ほ 場の11年生(1985年当時)のオウトウ4品種を用いた.な お、上記2~4項の各実験に用いられた品種名(台木名) はそれぞれ、Tabel 2、Tabel 4、Tabel 6 に記載されてい る. 上記2の実験は1986年5月から11月まで行った. 上 記3の実験は1985年の夏以降に行った.また、上記4の 実験は1984年に測定装置(Fig. 2)を作製し,多くの落葉 果樹葉を用いて予備的調査を行った後、翌年、装置及び 測定方法の改良を行ったうえで、8月から9月にかけて 各品種共、1樹から数10本の発育枝を、あるいは短枝の あるものはそのおおよその比率で混ぜて、新しょうを採 取し、葉の大きさを考慮しながら、金網の段当たり数枚 から10数枚の葉を配列して、上記の測定を行った.

結果及び考察

- 1. 果樹葉の直射光減衰係数とその推定計算のための パラメータ
 - 1) 葉の湾曲(屈曲)が葉面積の傾斜角度分布などに 及ぼす髪響

トウモロコシやオオムギでは葉が細長いので曲がりや すく、湾曲(屈曲)が無視できないため、葉身を幾つかに

Japanese persimmon ---- 'Hiratanenashi' ---- 'Tanzawa' ---- 'Ibuki' Chestnut ---- 'Okubo' Peach ---- 'Kōyōhakutō' ---- 'Shinsui' ---- 'Chōjūrō' Japanese pear -D- Shinseiki'

162

Table 1. Comparisons of mean inclination angles ($\bar{\alpha}$ in degree) and the parameters (λ , ν) of Beta distribution function between the measuring α with regard to the leaf curvatures (cupping and rolling) and that without regard to the curvature in August.

Fruit species Cultivars	Meast witho leaf c	uring a ut rega urvatui	rd to res	Measuring α with regard to leaf curvatures				
	α	λ	ν	ā	λ	ν		
Apple								
'G. D.' ^Z (M26)	29.4	1.52	3.13	36.6	1.98	2.89		
'Mutsu'(M26)	31.8	1.62	2.96	37.3	2.00	2.82		
'Tsugaru'(M26)	30.2	1.45	2.86	39.1	1.94	2.53		
Japanese persimmon								
'Hiratanenashi'	33.8	2.15	3.58	41.0	2.29	2.74		
Chestnut								
'Tanzawa'	35.0	2.72	4.27	37.8	3.14	4.34		
Peach								
'Okubo'	51.5	3.25	2.43	53.9	4.37	2.93		
Japanese pear								
'Shinsui'	55.5	3.44	2.14	56.6	3.85	2.27		
'Shinseiki'	43.7	2.50	2.65	46.7	2.78	2.59		

² 'Golden Delicious'

Fig. 5. Differences in $\overline{\Psi}(\alpha) \sim \alpha$ curves and Kdl_{ho} $\sim h_o$ curves between 2 measurings α of a Japanese persimmon in August. A: Measuring α with regard to the curvature. B: Measuring α without regard to the curvature.

区分して傾斜角度が測定されている^{10,12)}.本実験では, わずかな湾曲(屈曲)はいずれの樹種にも認められたもの の,オウトウ,セイヨウナシ,ブドウ及びクルミには年

Fig. 6. Effect of 2 measurings α on distribution of radiation flux at leaf surface of a Japanese persimmon in August. A ana B refer to Fig. 5. AV indicates the average, h_o=42,35°.

間を通して目立った湾曲(屈曲)は認められなかった.果 樹は単純な形をした平板状の葉を多数着生するので,上 記の4種の果樹では,個葉につき平均傾斜角度を一回測 定し,これを多く繰り返すことにより,その樹種・品種 の分布形を得ることができるものと思われた.上記以外 の樹種である,リンゴ,カキ,ニホンナシ,クリ及びモ モでは,一部の葉に目立った湾曲(屈曲)が認められ,そ

Fruit species		May			Iune			Iuly			August	+	S	eptemb	er		October	
Cultivars	$\bar{\alpha}$	λ	ν	ā	λ	ν	ā	λ	ν	ā	λ	ν	ā	λ	v	ā	λ	ν
Apple																		
'G. D.' ^z (M26)	37.7	1.55	2.16	38.8	1.85	2.44	38.1	2.23	3.04	36.6	1.98	2.89	36.2	2.10	3.13			
'Mutsu' (M26)	37.6	1.71	2.38	39.7	2.40	3.03	38.4	2.98	4.01	37.3	2.00	2.82	33.4	2.25	3.81	38.5	2.59	3.47
'Mutsu' (MM106)	41.4	1.58	1.85	45.7	3.61	3.51	36.7	2.65	3.84	36.1	2.07	3.09	34.6	2.09	3.33	34.1	2.20	3.60
'Fuji' (M26)	33.1	1.42	2.44	37.8	2.06	2.84	39.9	2.23	2.80	43.2	1.80	1.96	44.3	2.31	2.39	37.7	2.51	3.48
'Fuji' (MM106)	39.7	1.72	2.26	37.5	2.24	3.13	39.7	2.55	3.22	38.3	2.11	2.84	45.6	3.70	3.61	43.5	2.40	2.57
'Fuji' (Maruba) ^Y	35.9	1.54	2.31	44.3	2.61	2.70	47.7	3.42	3.04	42.8	2.36	2.60	40.4	1.94	2.38	36.7	2.50	3.63
'S. D.' ^x (M26)	33.8	1.55	2.58	35.9	2.16	3.25	37.1	3.36	4.79	35.9	2.10	3.16						
'S. D.' (MM106)	34.3	1.56	2.53	37.1	2.02	2.88	35.3	2.57	3.99	33.4	1.83	3.12						
'R. S.' ^W (Maruba)	32.5	1.23	2.18	42.9	2.84	3.11	39.8	3.32	4.18	42.0	2.25	2.58						
'Tsugaru' (M26)	43.9	1.82	1.91	39.7	2.26	2.86	40.7	3.01	3.65	39.1	1.94	2.53	36.4	1.86	2.74			
'Tsugaru' (Maruba)	40.0	2.22	2.78	38.4	2.33	3.13	35.5	2.45	3.76	32.8	1.64	2.87	33.3	1.84	3.14	34.8	1.76	2.80
'Jonathan' (Maruba)	39.9	1.88	2.36	38.6	2.27	3.03	38.4	3.03	4.07	42.3	2.57	2.90	39.6	2.80	3.57	37.7	2.48	3.44
'Ralls' (Maruba)	38.1	1.67	2.28	36.2	2.28	3.38	38.7	3.00	3.97	38.8	2.38	3.13	36.0	2.18	3.28	32.0	1.96	3.55
Japanese persimmon																		
'Hiratanenashi'	35.3	1.41	2.18	35.7	1.94	2.96	38.0	2.84	3.89	41.0	2.29	2.74	43.9	3.02	3.18	45.2	3.22	3.20
Chestnut																		
'Tanzawa'	33.9	2.35	3.90	41.1	2.69	3.21	37.7	2.66	3.70	37.8	3.14	4.34	36.6	2.78	4.06	42.3	3.39	3.83
'Ibuki'	36.2	2.07	3.08	46.4	2.48	2.33	45.9	2.91	2.80	44.0	3.11	3.26	48.1	3.86	3.36	46.4	4.00	3.77
'Tsukuba'	44.9	3.82	3.83	50.9	5.00	3.84	46.0	4.34	4.15	48.0	3.82	3.34	45.4	3.42	3.37	47.8	3.42	3.01
Walnut																		
'Banshun'	47.9	3.85	3.39	45.4	4.00	3.93	38.1	2.27	3.03	39.1	2.34	3.05	46.0	2.70	2.59			
'Shinrei'	38.8	2.66	3.51	40.2	2.95	3.65	39.9	2.78	3.48	48.4	3.48	2.99	45.2	2.97	2.94			
'Yōrei'	41.4	2.92	3.42	43.3	3.72	4.00	44.1	2.95	3.07	47.3	3.33	3.01	42.3	2.94	3.32			
Peach																		
'Ōkubo'	32.5	1.63	2.89	55.4	5.52	3.45	50.7	3.40	2.63	53.9	4.37	2.93	51.7	3.24	2.41			
'Kōyōhakutō'	52.3	2.50	1.80	56.6	5.15	3.04	50.9	3.22	2.47	44.8	2.19	2.22	45.2	2.76	2.74			
'Hakuhō'	46.9	2.65	2.45	54.0	4.90	3.26	51.1	4.85	3.70	52.3	3.43	2.47	53.1	2.59	1.80			
Cherry																		
'Rockport'	50.4	2.94	2.31	47.4	3.30	2.96	46.4	3.90	3.66	51.0	4.24	3.24	47.9	2.46	2.16	44.8	2.43	2.45
'Satōnishiki'	47.2	1.83	1.66	52.0	3.04	2.22	44.7	3.45	3.50	46.2	3.24	3.07	45.5	2.76	2.70	47.5	3.13	2.81
'Napoleon'	37.3	1.57	2.22	39.5	2.69	3.45	41.5	2.85	3.33	48.7	3.94	3.52	38.5	2.66	3.55	40.7	3.01	3.65
Japanese pear																		
'Shinsui'	42.6	2.52	2.81	59.5	4.16	2.13	55.0	3.78	2.41	56.6	3.85	2.27	57.8	4.02	2.24	57.8	4.38	2.44
'Chōjūrō'	39.0	1.79	2.34	51.8	2.68	1.98	46.0	3.12	2.98	48.2	3.43	2.98	48.5	2.07	1.77	45:1	2.36	2.34
'Shinseiki'	47.6	2.12	1.88	52.4	3.44	2.46	48.7	2.24	1.90	46.7	2.78	2.59	48.5	2.71	2.32	47.2	2.38	2.16
Pear																		
'Bartlett'	39.3	1.72	2.23	46.9	2.81	2.58	49.2	2.75	2.28	47.4	2.64	2.37	49.6	3.04	2.47	50.1	2.70	2.15
'La France'	50.2	2.58	2.05	53.7	3.73	2.53	53.1	4.07	2.83	54.4	3.14	2.06	55.6	3.75	2.32	54.1	4.04	2.68
'Grand Champion'	40.8	1.50	1.81	50.7	2.79	2.16	49.6	2.88	2.35	48.7	2.74	2.33	50.2	3.88	3.08	50.7	3.70	2.87
Grape																		
'Delaware'	55.5	5.27	3.28	39.4	3.25	4.17	49.5	3.01	2.47	63.3	5.06	2.14	44.9	3.27	3.28			
'Neo Muscat'	57.5	3.92	2.22	34.9	3.21	5.06	53.6	4.78	3.25	63.4	4.50	1.89	56.8	4.13	2.42			
'Stuben'	44.9	3.40	3.42	34.2	2.85	4.65	44.3	3.06	3.16	59.7	3.89	1.98	45.1	2.76	2.75			
 'Ökubo' 'Köyöhakutö' 'Hakuhō' Cherry 'Rockport' 'Satōnishiki' 'Napoleon' Japanese pear 'Shinsui' 'Chōjūrō' 'Shinseiki' Pear 'Bartlett' 'La France' 'Grand Champion' Grape 'Delaware' 'Neo Muscat' 'Stuben' 	$\begin{array}{c} 32.5\\ 52.3\\ 46.9\\ 50.4\\ 47.2\\ 37.3\\ 42.6\\ 39.0\\ 47.6\\ 39.0\\ 47.6\\ 39.3\\ 50.2\\ 40.8\\ 55.5\\ 57.5\\ 44.9\\ \end{array}$	$\begin{array}{c} 1.63\\ 2.50\\ 2.65\\ 2.94\\ 1.83\\ 1.57\\ 2.52\\ 1.79\\ 2.12\\ 1.72\\ 2.58\\ 1.50\\ 5.27\\ 3.92\\ 3.40\\ \end{array}$	2.89 1.80 2.45 2.31 1.66 2.22 2.81 2.34 1.88 2.23 2.05 1.81 3.28 2.32 2.42	$55.4 \\ 56.6 \\ 54.0 \\ 47.4 \\ 52.0 \\ 39.5 \\ 59.5 \\ 51.8 \\ 52.4 \\ 46.9 \\ 53.7 \\ 50.7 \\ 39.4 \\ 34.9 \\ 34.2 \\ \end{array}$	5.52 5.15 4.90 3.04 2.69 4.16 2.68 3.44 2.81 3.73 2.79 3.25 3.21 2.85	$\begin{array}{c} 3.45\\ 3.04\\ 3.26\\ 2.96\\ 2.22\\ 3.45\\ 2.13\\ 1.98\\ 2.46\\ 2.58\\ 2.53\\ 2.16\\ 4.17\\ 5.06\\ 4.65\\ \end{array}$	$50.7 \\ 50.9 \\ 51.1 \\ 46.4 \\ 44.7 \\ 41.5 \\ 55.0 \\ 46.0 \\ 48.7 \\ 49.2 \\ 53.1 \\ 49.6 \\ 49.5 \\ 53.6 \\ 44.3 \\ $	3.40 3.22 4.85 3.90 3.45 2.85 3.78 3.12 2.24 2.75 4.07 2.88 3.01 4.78 3.06	$\begin{array}{c} 2.63\\ 2.47\\ 3.70\\ \hline 3.66\\ 3.50\\ 3.33\\ 2.41\\ 2.98\\ 1.90\\ \hline 2.28\\ 2.83\\ 2.35\\ \hline 2.47\\ 3.25\\ 3.16\\ \end{array}$	$53.9 \\ 44.8 \\ 52.3 \\ 51.0 \\ 46.2 \\ 48.7 \\ 56.6 \\ 48.2 \\ 46.7 \\ 47.4 \\ 54.4 \\ 48.7 \\ 63.3 \\ 63.4 \\ 59.7 \\ 100000000000000000000000000000000000$	$\begin{array}{r} 4.37\\ 2.19\\ 3.43\\ 4.24\\ 3.24\\ 3.94\\ 3.85\\ 3.43\\ 2.78\\ 2.64\\ 3.14\\ 2.74\\ 5.06\\ 4.50\\ 3.89\end{array}$	2.93 2.22 2.47 3.24 3.07 3.52 2.27 2.98 2.59 2.37 2.06 2.33 2.14 1.89 1.98	$51.7 \\ 45.2 \\ 53.1 \\ 47.9 \\ 45.5 \\ 38.5 \\ 57.8 \\ 48.5 \\ 48.5 \\ 49.6 \\ 55.6 \\ 50.2 \\ 44.9 \\ 56.8 \\ 45.1 \\ 1000 \\ $	3.24 2.76 2.59 2.46 2.66 4.02 2.07 2.71 3.04 3.75 3.88 3.27 4.13 2.76	$\begin{array}{c} 2.41\\ 2.74\\ 1.80\\ 2.16\\ 2.70\\ 3.55\\ 2.24\\ 1.77\\ 2.32\\ 2.47\\ 2.32\\ 3.08\\ 3.28\\ 2.42\\ 2.75\\ \end{array}$	44.8 47.5 40.7 57.8 45:1 47.2 50.1 54.1 50.7	$\begin{array}{c} 2.43\\ 3.13\\ 3.01\\ 4.38\\ 2.36\\ 2.38\\ 2.70\\ 4.04\\ 3.70\\ \end{array}$	2.45 2.81 3.65 2.44 2.34 2.16 2.15 2.68 2.87

Table 2. Seasonal changes in mean inclination angles ($\bar{\alpha}$ in degree) and the parameters (λ , ν) of Beta distribution functions of the deciduous fruit trees.

^Z'Golden Delicious' ^YM. prunifolia ^X'Starking Delicious' ^W'Red Spur'

164

山形大学紀要(農学)第11卷 第1号

の割合は総じて夏に最高になった(Fig.4).また,その 多くが中肋を境に上面方向に折れ曲がるものが多かった.

8月時,明瞭な湾曲(屈曲)が発生した葉に関して,そ れが無いものと仮定して測定したもの,及び中肋を境に 二度測定したものの両者の傾斜角度の分布形を比較した ところ,両者間に明瞭な違いが認められ,後者は傾斜角 度が高い方にずれていった.しかし,湾曲(屈曲)の発生 しなかった葉がかなり多かったので,平均値 $\overline{\alpha}$ の差は数 度であった(Tabel 1).この測定方法の違いが大きく現 れたものの一つ,カキの'平核無'に関する $\overline{v}(\alpha) \sim \alpha$ 曲線及びKdl_{ho}~h。曲線をFig.5に示した.また,パラメー タ $\lambda \geq v$ のみが異なり,他のデータ及びパラメータを同 ーにして,樹冠内の葉面放射分布を推定した結果Fig.6 に示した.湾曲(屈曲)による傾斜角度分布形の変化は直 射光の減衰係数((2)式)の変化及び葉面の太陽直射光強 度((7)式)の変化をもたらし,全体に樹冠内の葉面放射 分布形の変化をもたらしたものと考えられる.

2) 各果樹の葉面積の傾斜角度別分布の特徴とその 季節的変化

展葉直後から落葉期前までの月毎の,各果樹のパラ メータ(λ とν)及び平均傾斜角度 α を Tabel 2 に示し た. なお,これらの値は湾曲(屈曲)を考慮した調査結果 に基づいて計算されたものである.

各樹種一品種について、7月時の $\overline{y}(\alpha) \sim \alpha$ 曲線と *Kdl_{ho}~h_o曲線をFig.7に示した*. Tabel 2も合わせて参 考にすると、リンゴは30~40度にαを有し、水平に近い 葉が多く、これとは対照的にモモは50度付近にαを有し、 直立に近い葉が多かった.他の樹種はこの中間に属し、 中でもカキとクルミはリンゴに近かった.著者は以前に、 上記の品種と同じものを用い, 展葉直後の時期と真夏の 二回, 葉の湾曲(屈曲)を無視して, 葉面積の傾斜角度分 布を調査した.この時の結果を用いて、これらの分布形 を以下のように、すなわち、リンゴは強い水平型、カキ は弱い水平型、クリ、クルミ、ニホンナシ、セイヨウナ シは弱い水平型~中間型、ブドウは中間型、オウトウは 中間型~弱い直立型及びモモは弱い直立型に分類した ¹⁴⁾.この分類結果は各果樹の葉の発生角度の特徴を良く 反映しているものと考えられるが、今回の調査のように、 時期的変化を細かく調査したものではなく、また、夏期 にかけて顕著になる湾曲(屈曲)の影響を考慮したもので もなかった、今回の調査結果は上記の分類ほどはっきり したものでもなく、また、季節的変化を考慮すると、分 類しにくい. さらに、同一樹種内でも品種により分布形 が幾分異なるものもあった、今回の調査は樹全体の分布 形に限定したが、新しょうの性格・種類(傾斜角度・発

Fig. 7. Representative Ψ (α) ~ α curves (right) and Kdl_{ho}~h_o curves (left) of several deciduous fruit trees. Apple : 'Mutsu' (MM 106) , Japanese persimmon : 'Hiratanenashi', Chestnut : 'Tsukuba', Wallnut : 'Banshun', Peach : 'Ōkubo', Cheery : 'Satōnishiki', Pear : 'Bartlett', Grape : 'Delaware'

育枝・短枝など)あるいは樹冠内の高さにより分布形は 幾分異なることも否定できない¹⁴⁾.いずれにしても、こ のパラメータλとッを測定・入手することは簡単である ので、品種、時期及び樹冠内高さによる違いが予想され る場合には直接測定するのが良い.

ここでは調査全品種について触れないが、傾斜角度別 葉面積分布の季節的変化(Table 2)の大まかな特徴とし ては、展葉直後のものとその後とでは分布形に明瞭な違 いが認められ、前者のαは小さかったことである。初夏 から落葉前までの期間では、主として湾曲(屈曲)の発達、 果実の荷重による枝全体の下垂現象、及び、恐らく測定 誤差により、αの増減等の影響が見られたが、その変化 は全体に小さかった.ただし、カキの'平核無'では時 期が遅くなるほど^αが増大した.また、ブドウでは、3 品種とも^αが5月から6月にかけて減少し、7月、8月 に増大し、9月に再び小さくなった.恐らく、誘引作業 の影響が出たものと考えられる.なお、リンゴの'スター キング・デリシャス'と'レッド・スパー'では斑点性落 葉病発生のため9月以降の測定は行わなかった.

次に,葉の傾斜角度別分布の季節的変化が大きかった 品種の一つ,リンゴの'ふじ'(マルバ台)を例にその変化 が樹冠内の葉面放射分布などに及ぼす影響を示す. *更* (α)~α曲線の季節的変化(Fig.8右)に対応した Kdl_h~ h。曲線の季節的変化(Fig.8左)から, この6カ月間の Kdl_{ho}値にあらわれた最大の差を見ると、たとえば、太 陽高度30度では0.124、太陽高度60度では0.033であっ た(いずれも5月と8月の間の差であった). この差をも たらす Kdl_{ho} 値を $exp(-Kdl_{ho} \cdot L)$ に代入して日向部葉 面積割合の差を計算すると、葉面積指数(L)が1の時、 前者 $(h_s=30^\circ)$ で3.4%、後者 $(h_s=60^\circ)$ で1.4% というわ ずかなものであった.次に、パラメータλとν以外の条 件を不変のまま(つまり、各月の葉量、その空間分布、 光投射条件が同一と仮定して),葉面放射分布モデルを 用いて各月の樹冠内葉面放射分布を推定、その分布形を 比較したところ(Fig.9), 5月あるいは10月と6~9月 との間には明らかな違いが認められた、上記のごとく、 日向部葉面積に現れた差が極めて小さかったことを考え ると、この差は葉の傾斜角度分布の変化に伴う葉面の太 陽直射光強度の変化によるものが大きいものと考えられ る.しかし、6~9月では微妙な違いが認められたにす ぎず、また、葉面放射相対値の平均値の違いは全体を通 じて大きくなかった(最大7%).

ここでは一例しか示さなかったが、大なり小なり、他 の品種でも同様な傾向であり、総じて傾斜角度別葉面積 分布の季節的変動が葉面放射分布に及ぼす影響は小さい ものと考えられた.いずれにしても葉面放射分布モデル

Fig. 8. Effects of seasonal changes in λ and ν on $\overline{\Psi}(\alpha) \sim \alpha$ curves (right) and $Kdl_{ho} \sim h_o$ (left) of cv. 'Fuji' on *M. prunifolia* apple.

Fig. 9. Effects seasonal chages in λ and ν on distributions of radiation flux at leaf surface (relative radiation flux to horizontal plane) of cv. 'Fuji' on *M. prunifolia* apple. *AV* indicates the average. $h_o = 61.7^{\circ}$.

を広範囲の果樹に活用していくためには、今回調査した ように、湾曲(屈曲)を考慮しながら、月一回の程度に、 パラメータ λ と ν を調査・入手しておけば無難であるも のと思われる.

なお,葉の傾斜角度分布の変動要因は上記のもののほ かに風があり,これについて著者らは一部調査し,その 影響が大きくないものと推定したが(未発表),なお,よ り詳細な調査が必要である.

果樹の枝の直射光減衰係数とその推定計算のためのパラメータ

1) 円柱模型実験の結果

模型実験結果を用いて計算された円柱群の減衰係数 Kdc, he y と円柱傾斜角度 Y との関係を Fig. 10 に示した. Kdc, he y は太陽高度が上昇するにつれて急速に減少した (Fig. 10). この Kdc, he y ~ ho 曲線には, すべての Y で ho がおおよそ 25° ~35°の間に変曲点が見られ, 太陽高度

the cylinders at several inclination angles (γ) and solar altitudes (h_{\circ}) .

Table 3.	The result of multiple regression analysis of
	extinction coefficients for direct sunlight of
	cylinders (Kdcho) with variables, solar altitude
	(h_a) and inclination angle (γ) of cylinders.

Formula of	$Kdc_{ho,\gamma} = 0.1467 \gamma - 7.806 \sin \gamma + 5.507$									
regression $\cos \gamma + 0.325 \tan h_o + 0.354 \sin \gamma$ or $-0.000000594 \tan \gamma - 4.641$										
Coefficient o	of multiple correlation (R)	0.9485*** ^Z								
Coefficient d	letermination ($\mathbb{R}^2 \times 100\%$)	89.98%								
Variance rat	tio (F)	188.6								
n		122								
Residual		0.4757								

² Significant at 0.1% level in F-test

の上昇に伴う $Kdc_{,he,\gamma}$ の減少は γ が大きいほど急速で あった.このことは円柱が水平に近いものよりも,垂直 に近いものが,朝夕には陰が大きくなり,真昼には小さ くなることを示す.この極端な場合,すなわち, γ が 90°の時は,真横から平行光線が射すと,その陰は無限 に長くなり($Kdc_{,he,\gamma} \rightarrow \infty$),真上から射す場合には円柱 の横断面積に等しくなる($Kdc_{,he,\gamma}$ はほぼ0に近くなる),

Table 4. Parameter a (total area of longitudinal section of stems/total leaf area) and R_i (ratio of area of longitudinal section of stems of each class of inclination angle γ to the total area) of several deciduous fruit trees.

Fruit species	Similar species $a = \frac{R(i=1\sim6)^{Y}\times10^{3}}{R(i=1\sim6)^{Y}\times10^{3}}$							
Cultivars(Rootstock)		R_1	R_2	R_3	R_4	R_5	R_6	
Apple								
'G. D.' ^Z (M26)	0.0261	175	355	298	58	71	43	
'Fuji' (M26)	0.0198	127	260	201	195	97	120	
'Fuji' (MM106)	0.0267	231	314	168	198	48	41	
'Fuji' (Maruba) ^X	0.0293	260	279	211	137	90	23	
'Mutsu' (MM106)	0.0338	323	373	131	107	49	17	
'Ralls' (Maruba)	0.0345	139	195	331	127	41	167	
'Jonathan' (Maruba)	0.0563	281	241	166	158	70	84	
'Red Spur' (Maruba)	0.0254	91	331	353	148	71	6	
Japanese persimmon								
'Hiratanenashi'	0.0262	316	257	150	114	81	82	
Chestnut								
'Tanzawa'	0.0184	225	255	163	141	181	35	
'Ibuki'	0.0195	57	236	174	202	178	153	
'Tsukuba'	0.0190	71	217	199	190	186	137	
Walnut								
'Banshun'	0.0430	363	211	189	153	70	14	
'Shinrei'	0.0337	332	193	262	125	75	13	
'Yōrei'	0.0379	244	319	197	88	133	11	
Peach								
'Ōkubo'	0.0341	203	238	239	149	100	71	
'Kōyōhakutō'	0.0308	183	227	253	264	37	36	
'Hakuhō'	0.0420	261	232	239	207	41	19	
Cherry								
'Van'	0.0264	172	227	145	138	188	130	
'Satōnishiki'	0.0392	62	198	343	241	143	13	
'Napoleon'	0.0365	164	247	97	277	48	167	
Japanese pear								
'Shinsui'	0.0416	70	271	92	156	191	220	
'Chōjūrō'	0.0430	207	182	254	141	198	18	
'Shinseiki'	0.0452	413	355	117	86	100	84	
Pear								
'Bartlett'	0.0922	105	197	99	145	245	209	
'La France'	0.0322	329	136	134	142	159	100	
'Grand Champion'	0.0508	342	122	37	99	363	37	
Grape								
'Delaware'	0.0418	761	103	76	42	14	4	
'Muscat Baily A'	0.0478	731	189	37	29	8	5	
'Neo Muscat'	0.0164	731	114	94	26	13	22	

^Z'Golden Delicious'

^{γ} Ranges of inclination angle (γ) of stems were 0°~15,15°~30°,30°~45°,45°~

 $60^{\circ}, 60^{\circ} \sim 75^{\circ}$ and $75^{\circ} \sim 90^{\circ}$ for R_1, R_2, R_3, R_4, R_5 and R_6 , respectively.

^X M. prunifolia

ただし、本実験では Y =90°の時は測定せず、coth。の値 で与えたので、円柱の横断面積の分だけ誤差になった. 我が国のほとんどの地域では、夏至でも太陽の日南中高 度はおおよそ 80°を越えない⁴⁾ので、それ以上の h。では 測定しなかった.

γ, h_o及びこれらの三角関数値などを独立変数として 行った重回帰分析の結果 (Table. 3) はおおむね良好で あった.

上記のような枝の直射光減衰係数を半理論的(半経験 的)に求める方法はこれまで報告されていない.ただし, PALMER (1977)はリンゴ園(ヘッジロウ仕立て)の光遮断 率を太陽高度別に推定するモデルの中で,枝群を水平枝 と垂直枝の二つから構成されると仮定し,単純な三角関 数により枝の陰を計算した⁷⁾.しかし,実際の枝群は種々 の傾斜角度の枝から構成されることから,PALMERの方 法では単純化のきらいがある.

2) 各落葉果樹の a および Ri

Table 4 に各果樹の a 及び R_i の値を示した. aの値は セイヨウナシの 'バーレット' の約0.09を除けば,約 0.015から約0.055の範囲にあった. Fig. 11 は枝の種類 別に見た R_i の分布の例である. 立ち木仕立てのリンゴ の 'ふじ'(マルバ台)では(Fig. 11下),なだらかな分布形 が見られ、ブドウを除く他の樹種・品種の場合もこれに ほぼ似ていたが、棚仕立てのブドウでは、水平部分が断 然多かった(Fig.11).たいていの樹種で、亜主枝の縦断 面積を加えてaを計算し直すと、約10数%ほど割り増し になった.a及びRiの計算に亜主枝以上の太い枝の縦断 面積を用いなかった理由は、葉と枝が植被内に均一に分 布し、この二つの器官量の間に空間的に見てほぼ連続的 な増減の関係があることが(9)式の減衰式の真実味を高 めるということに留意したためである.亜主枝以上の太 い枝は本数が少ないうえに、通常、葉の存在する位置よ り低く離れて存在し、太陽高度がかなり低くても、これ らの陰は葉に投影しない場合が多い.

3) 各果樹の枝の直射光減衰係数の特徴

実験に供試した各果樹一品種ずつ, Kds_{ho} ~ h_o 曲線を Fig. 12 に示した. 各樹種おおまかに見て, h_o の増大に 伴う Kds_{ho} の減少はクリ, オウトウ, セイヨウナシ, モモ, ニホンナシ, クルミ, リンゴ, カキ, ブドウの順に急で あった. しかし, ブドウを除く他の樹種の Kds_{ho} の値は 互いに似かよっており, これらの代表値は h_o が約 10°で 約 3.3, h_o が約 50°で約 1, h_o が約 80°で約 0.7 であった (Fig.12).

Fig. 11. Representative relative frequencies (R_i) of area of longitudinal section of stems with respect to inclination angles (6 classes) of fruit trees. ^sM. prunifolia

Fig. 12. Representative $Kds_{ho} \sim h_o$ curves of several deciduous fruit trees. ²M. prunifolia

Fig. 13. Changes in 3 extinction coefficients $(Kdl_{ho}, Kd_{sho} = Kdl_{ho} + a \cdot Kds_{ho})$ for direct sunlight to solar altitude and changes in ratios of sunlit area which were estimated using Kdl_{ho} only (solid line) and Kd_{ho} (broken line), of 4 leaf area indices (L) of cv. 'Mutsu' (MM 106) apple.

4)葉の減衰係数と枝の減衰係数の差異及び合成減 衰係数

葉の直射光減衰係数はすでに同じ実験材料を用いて調 査した(上記1を参照). これから作られる $Kal_{ho} \sim h_o$ 曲 線と今回の $Kds_{ho} \sim h_o$ 曲線を一,二の品種で比較すると (Fig. 13, 14),両者間に大きな違いが認められた.また, ブドウでは両曲線が交叉せず(Fig. 14),そのほかの全て の樹種では両曲線が交叉したことも特徴であった(Fig. 13).

この両図には葉と枝の両者からなる,いわば、合成減 衰係数 Kd_{ho} (= Kdl_{ho} +a· Kds_{ho})の変化も描かれている.aの値が小さかったので Kdl_{ho} ~ h_o 曲線と Kdl_{ho} ~ h_o 曲線と の違いは僅かであった.しかし、樹冠内葉面放射分布を 推定する際、僅かといえどもこの違いは次に示すように 無視できない.

5) 枝要因を用いて計算した場合の日向部の減少割 合

Fig. 13, 14に葉面積指数Lを0.5, 1, 2, 3の4段

Fig. 14. Changes in 3 extinction coefficients and ratios of sunlit area of cv. 'Neo Muscat' grape. Explanations of the figure refer to Fig. 13.

階に分け, Kdl_{he}のみをあるいは合成減衰係数Kd_{he}を使 用して計算した,各L段階2本ずつの太陽高度~日向部 の割合曲線を示した.この場合にも,両曲線の差はわず かなように見える.しかし,この差の日向部に占める割 合,いいかえれば枝の陰を含むことによる日向部の減少 割合を(16)式を用いて計算するとかならずしも低くなら ない.

 $[\exp(-Kdl_{ho} \cdot L) - \exp\{-(Kdl_{ho} + a \cdot Kds_{ho})L\}]/$

(16)

$$\exp(-Kdl_{ho} \cdot L) \times 100$$

全品種について h。が 6°, 30°及び 75°の 3 段階, L が 0.5, 1, 2, 3 の 4 段階として, 枝の陰を含む場合の日向部 の減少割合を計算した. Table 5 はその結果の一部を示 した(ただし, Kdlheの値は夏期のものを用いた). いず れの品種でも, he が 6°でL が 3 の場合には, この減少 割合は数10%にも達し, he が 75°でL が 3 の場合にも 数%から約10%になり, he が 75°でL が 0.5 の場合には 1%前後であった. したがって, 昼間の時刻では枝の陰 はさほど影響しないものの, 朝夕のように, 太陽高度が 低い時とか, 葉量が多い場合には枝の陰の占める割合が 高くなり, 枝の陰を無視して放射分布を推定すると, 太 陽直射光だけでも無視できない誤差を生じることにな

Table 5. Representative extinction coefficient values (Kds_{ho}) for direct sunlight of stems at 3 solar altitudes (h_o) and percentages of loss of sunlit area in estimation by using synthetic extinction coefficients $(Kd_{ho}=Kdl_{ho}+a \cdot Kds_{ho})$ against to that by using extinction coefficients leaves (Kdl_{ho}) at 3 solar altitude and 4 leaf area indices (L) in several deciduous fruit trees.

			3	Percentages of loss of sunlit area (%) calculated ^{Z}											
	Rep	resenta	ative		$h_o = 6^\circ$				$h_{o} = 30$	°		h	<i>"</i> =75	0	
Fruit species	valu	ues of <i>H</i>	Kdsho	L =	L =	L =	L =	L =	L =	L =	L =	L =	L =	L =	L =
Cultivars (Rootstocks)	$h_o=6^\circ h$	$h_o = 30^\circ$	$h_{o} = 60$	°0.5	1	2	3	0.5	1	2	3	0.5	1	2	3
Apple															
'Fuji' (MM106)	5.45	1.49	0.90	7.0	13.7	25.3	35.4	1.9	3.9	7.6	11.4	0.9	1.8	4.2	5.8
'Mutsu' (MM106)	5.02	1.48	0.95	8.5	15.7	28.8	40.2	2.4	4.8	10.1	13.9	1.5	2.9	6.7	9.2
'Ralls' (Maruba)	5.48	1.44	0.84	9.4	17.3	31.6	43.4	2.3	4.8	9.5	13.8	1.2	2.3	4.6	6.8
Japanese persimmon															
'Hiratanenashi'	5.32	1.48	0.91	6.4	13.0	24.4	34.2	1.8	3.7	7.5	11.1	1.0	1.8	4.0	10.5
Chestnut															
'Tsukuba'	5.81	1.43	0.78	5.3	10.4	19.8	28.2	1.3	2.7	5.3	7.8	0.5	1.1	2.3	3.4
Walnut															
'Banshun'	5.21	1.46	0.90	10.6	20.1	36.3	49.1	3.0	6.0	11.9	17.1	1.6	3.3	6.6	9.8
Peach															
'Ōkubo'	5.47	1.45	0.85	9.2	17.4	31.2	43.0	2.4	4.5	9.5	13.8	1.1	2.3	4.3	6.8
Cherry															
'Satōnishiki'	5.66	1.40	0.77	10.5	19.9	35.9	48.6	2.7	5.4	10.4	15.2	1.1	2.2	4.6	6.8
Japanese pear															
'Shinsui'	5.78	1.43	0.79	11.3	21.5	38.2	51.5	3.0	6.0	11.2	16.5	1.3	2.6	5.3	7.5
Pear															
'Bartlett'	5.90	1.44	0.78	23.8	42.2	66.5	80.5	6.4	12.6	23.4	33.2	2.8	5.6	10.6	15.5
Grape															
'Delaware'	4.69	1.51	1.04	9.4	17.8	32.5	44.6	3.0	6.2	11.9	17.3	1.8	3.9	7.4	10.6

^Z[exp(-Kdl_{ho}·L) - exp{-(Kdl_{ho}+a·Kds_{ho})L}]/exp(-Kdl_{ho}·L)×100(%)

Y M. prunifolia

る. 落葉後の樹体を遠くから観察する時, 枝群が黒々と 見える. 上記の解析は, 落葉前においても, この黒々と 見える分だけ, 枝が樹冠内を暗くすることを言っている にすぎないが, これを太陽高度や葉面積指数との関係で 数量的に評価したものと言えよう.

6) 果実の直射光減衰係数(補遺)

葉と枝以外に果実の陰が存在する.葉要因に枝要因を 加えていく YIM らの解析方法^{ITD}に従い,延長解析すると, 樹冠内に果実が均一に分布しておれば,果実による光遮 断を含む直射光の減衰は(17)式で表現できるものと考え られる.

 $I/I_o = \exp\{-(Kdl_{ho} + a \cdot Kds_{ho} + b \cdot Kdf_{ho})L\}$ (17)

ここで, Kdf_{ho}は果実の直射光減衰係数, bは果実総縦 断面積/葉の総面積の値である.果実を単純な球と仮定 すれば, Kdf_{ho}は 1/sinh_oに等しい.本実験では果実の測 定は行わなかったが,今後調査していきたい.ただし, 果実の陰の影響は成熟期のわい台リンゴのような場合を 除き,さほど大きいとは思われない.

7)まとめ

本実験により、模型を用いた方法と枝や葉を計測して 得られるパラメータとを組合せて、太陽高度別の枝の直 射光減衰係数を推定することが可能になった.本報告中 では、枝による減衰を太陽直射光(直達光)に限定して述 べてきた.実際の樹冠内では、上記の5)で評価した、 枝による日向部の減少のほかに、枝による天空散乱光の 遮断が加わるから、さらに暗くなる.葉面放射分布モデ ル内での天空散乱光(一次散乱光)の取り扱いは、天球を 多くの区画に分け、各区画の中心から弱い平行光線が重 複投射する散乱光の場として見なした¹⁵⁾.したがって、 天空からの一次散乱光の、枝による減衰にも、本実験で

Fig. 15. Relations between rates of downwardreflect transmit radiation (S_{ho}) , altitudes of the parallel beams (h_o) and leaf area indices (L) of cv. 'Hiratanenashi' of Japanese persimmon.

得られた*Kdsho*値(ただし,添字hoは各区画中心の仰角) をそのまま使用している.

果樹葉群中の下向き二次散乱光(反射光・透過光) の減衰係数及び推定計算のためのパラメータ

1) 葉層の下向き反射光・透過光の割合 Sno に及ぼ す投射角度 h。及び累積葉面積指数 Lの影響

供試品種の一つ,カキの'平核無'を例として,下向 き反射光・透過光の割合 S_{ho}に及ぼす光投射角度 h_o及び 累積葉面積指数Lの影響を Fig. 15 に示した.対数 日盛 りに取った S_{ho} はLの増大に伴い直線的に減少した.た だし, h_oにより, S_{ho}のレベルが異なった.このことから, 下向き二次散乱光の減衰現象にはランバート・ベールの 法則が拡張使用されることが確認できた.加えて,光投 射角度により, S_{ho} 値の大きさは左右され,概して, h_o が小さいほど,すなわち,平行光線が葉層に対して斜め に射し込むほど,S_{ho} 値が大きかった.これは,葉の傾 斜角度が水平に近い部分の多い果樹の葉群では,斜めに 光が射し込むほど,下向きに反射して出て行く部分が多 いことを示唆している.反対に,光が真上に近い角度か

Fig. 16. Relations between the extinction coefficients of downward-reflect and transmit radiation $(K_{S_{ho,L}})$, altitudes of parallel beams (h_o) and leaf area indices (L) of cv. 'Hiratanenashi' of Japanese persimmon.

ら射し込む場合には、Shoが激減した(Fig. 15).

ShoとLとの関係を(15)式に当てはめて、二次散乱光 の減衰係数Ksha,Lを算出して示したものがFig.16であ る. さらに、このKshol をhoとLのべきを用いて重回帰 分析(変数増減法)を行ない、得られた推定式により、 Ksho,L~L曲線をh。別(10°間隔)に描いたものがFig. 17で ある.両図から、さらにもう一つの傾向、すなわち、い ずれのh。の場合でも、Lの増大に伴い、Ksha,Lが急速に 減少したが、次第に一定値に漸近したことである. Lの 増大に伴う Ksho,L の急減は多くの葉肉組織を透過した光 ほど透過しやすい(吸収されにくい)ことを示している. 一般に葉の光透過率が約400~500 nm と約680~700 nm の波長領域で低いのに対して、その中間領域の主として 緑色帯では高い.この緑色光が多くなっても、葉は吸収 しない. 他方, Lが約2~3になる所から, Kshal の減 少は次第に鈍くなり、中にはわずかに増大に転じていた. この原因としては、恐らく、葉量の増大に伴う葉層間隙 の減少により、下向き反射光が漏れ出てくる度合が低下 したものと考えられた.

Fig. 17. $K_{S_{ho,L}} \sim L$ curves estimated by the multiple regression formulas at 8 altitudes (h_o , 10° interval) of the parallel beams of cv. 'Hiratanenashi' of Japanese persimmon.

2) 各落葉果樹の重回帰分析結果及び各落葉果樹間の Ksnal 値の比較

供試全品種のKshal 値の重回帰分析結果をTable 6に 示した. また、各樹種一品種ずつ、h_a=20°とh_a=70°の 場合の Ksho, L~L曲線を比較したものが Fig. 18 である. 重回帰分析の結果,多くの樹種・品種の重相関係数は 0.9以上でほぼ良好な結果を得たが(Table 6), 中には 0.8台のものもあった. 光源ランプの光は二枚のレンズ を通して調整した後も、数度のビームの開きを有し、厳 密な意味での平行光線ではなかった. さらに、金網資材 は3.5 cm 角目であったため、たとえば、5 段目の下あ るいはh。が小さい時(金網の傾斜が急な時)には、光路 中の金網資材の占める割合が高くなり,全体に暗くなり, 記録計の増幅率を高めたので、ノイズの影響が生じた. さらに, 葉形質の軟らかいものでは, 金網の傾斜を急に すると、当初の姿勢が若干変化するものもあった.これ らはいずれも、測定誤差源として働いたものと考えられ る.

各樹種・品種のKshol とLとの関係には、これらに特 有な葉の傾斜角度分布、葉厚、クロロフィル含量及び葉 面クチクラ形成程度が総合的に反映したものと考えられ

173

Fig. 18. $Ks_{ho,L} \sim L$ curves estimated by multiple regression formulas at 2 altitudes (h_o) , 70° (upper) and 20° (lower), of the several deciduous fruit trees.

るが,いずれの品種にも上記のカキ '平核無' に見られ た傾向が認められた (Fig. 18).

Table 6 右端の h_o が70°の時の, $L=1 \ge L=3$ の場合 の $K_{Sho,L}$ 値及びFig. 18を参考にすると、リンゴとオウト ウは他の樹種に比較して $K_{Sho,L}$ が全体に大きく、ニホン ナシ、セイヨウナシ、モモは小さかった.また、クリと クルミの $K_{Sho,L}$ はLが1の時は他の樹種に比較して大き く、Lが3の時は逆に小さかった。恐らく、葉面の反射 が盛んなため、葉量が多くなっても、下方に漏れる割合 が高いことによるものと考えられた.カキの $K_{Sho,L}$ の大

Fruit species	Formulas of multiple regression using	R^{Z}	F Es	timated <i>k</i>	Sho, LV.
Cultivars	powers of h_o and L		Value ^Y	L=1	L=3
Apple					
'S D'X	$K_s = 0.0412h + 0.2542L + 2.356L^{-1} - 2.546$	0.9260	50.14	2.9	1.9
'Fuii'	$K_{\rm S} = 0.0002733h^2 + 0.1708L + 1.989L^{-1} - 1.302$	0.9264	68,60	2.2	1.2
'Mutsu'	$K_s = 0.0003385h^2 + 0.1687L + 2.504L^{-1} - 1.501$	0.9297	72.25	2.8	1.5
'Ralls'	$K_{\rm S} = 0.0004067h^2 + 0.3534L + 2.572L^{-1} - 2.246$	0.9413	88.12	2.7	1.7
'Ionathan'	$K_{\rm S} = 0.0003853h^2 + 0.4730L + 3.070L^{-1} - 2.667$	0.9095	52.67	2.8	1.7
'Tugaru'	$K_s = 0.03977h + 2.479L^{-1} - 1.836$	0.9064	75.97	3.4	1.8
'Red Spur'	$K_s = 0.0003799h^2 + 0.1583L + 1.297L^{-1} - 1.029$	0.9524	107.59	2.3	1.7
lapanese persimmon					
'Hiratanenashi'	$K_s = 0.000003033h^3 + 0.1052L + 1.425L^{-1} - 0.6880$	0.9585	135.80	1.9	1.5
Chestnut					
'Rihei'	$Ks = 0.0001969h_{0}^{2} + 0.1363L + 3.001L^{-1} - 1.239$	0.9264	72.67	2.9	1.1
'Tanzawa'	$K_s = 0.0002289 h_s^2 + 0.2914 L + 4.020 L^{-1} - 2.313$	0.8842	37.03	3.1	1.0
'Ibuki'	$K_s = 0.000002564h_s^3 + 0.3419L + 3.477L^{-1} - 2.359$	0.9228	68.90	2.3	0.7
Walnut					
'Shinrei'	$Ks = 0.0001871h_{o}^{2} + 0.1316L + 2.195L^{-1} - 1.015$	0.9351	76.62	2.2	1.0
'Yōrei'	$K_s = 0.000002021 h_a^3 + 0.2640 L + 3.672 L^{-1} - 1.993$	0.9190	65.27	2.6	0.7
'Banshun'	$K_s = 0.000002463h_a^3 + 0.0004458h_a^2 + 0.9547L^{-1} - 0.0859$	0.9544	109.27	2.3	1.6
Peach					
'Ōkubo'	$Ks = 0.000002898h_{o}^{3} + 0.2261L + 2.407L^{-1} - 1.454$	0.9303	77.23	2.2	1.0
'Köyöhakutö'	$K_s = 0.01091h_a + 0.06166L + 1.346L^{-1} - 0.6813$	0.9124	59.63	2.3	0.7
'Hakuhō'	$Ks = 0.000001737 h_o^3 + 0.9197 L^{-1} - 0.006004$	0.9645	246.92	1.5	0.9
Cherry					
'Rockport'	$Ks = 0.00001979 h_{o}^{3} - 0.001114 h_{o}^{2} + 1.623 L^{-1} + 0.3446$	0.9766	186.04	3.3	2.2
'Satōnishiki'	$K_s = 0.02372h_a + 1.7166L^{-1} - 0.9354$	0.8559	39.75	2.4	2.1
'Napoleon'	$Ks = 0.0002809h_{a}^{2} + 0.1920L + 1.975L^{-1} - 1.442$	0.9328	73.70	2.1	1.2
Japanese pear					
'Shinseiki'	$Ks = 0.000002365 h_o^3 + 1.210 L^{-1} - 0.4102$	0.9161	94.04	1.6	0.8
'Shinsui'	$Ks = 0.000002423h_o^3 + 0.2844L + 2.574L^{-1} - 1.680$	0.9353	76.85	2.0	0.9
'Chōjūrō'	$K_s = 0.000001944 h_o^3 + 0.1846 L + 1.889 L^{-1} - 1.120$	0.9563	128.39	1.6	0.7
Pear					
'Bartlett'	$Ks = 0.0002484 h_o^2 + 0.6202 L^{-1} - 0.1954$	0.9450	154.46	1.6	1.2
'La France'	$Ks = 0.03596h_o + 0.8475L^{-1} - 1.194$	0.9269	112.87	2.2	1.6
'G. C.' ^W	$Ks = 0.02022h_o + 0.5330L^{-1} - 0.5574$	0.9016	80.43	1.4	1.0
Grape					
'Delaware'	$Ks = 0.0004240 h_o^2 - 0.0264 h_o + 0.2019 L^{-1} + 0.5333$	0.9721	201.00	1.0	0.9
'Stuben'	$Ks = 0.00000198h_o^3 + 0.2247L + 3.349L^{-1} - 1.875$	0.9323	79.81	2.4	0.6
'Neo Muscat'	$Ks = 0.0000009043h_{o}^{3} + 0.08555L + 2.343L^{-1} - 0.6431$	0.9476	105.71	2.1	0.7

Table 6. Results of multiple regression of Ks_{ho} , ι using of several powers of beam altitude (h_o) and leaf area index (L) along the beam as the variables and representaive values of Ks_{ho} , ι of several deciduous fruit trees.

² Coefficient of correlation of multiple regression, ^Y F test : Significant at 0.1% level in all cuiltivars, ^X 'Starking Delicious', ^W 'Grand Champion', ^V $h_o = 70^{\circ}$

きさが中間的であったのは,恐らく,葉も厚いが葉面の つやもあることによるのだろう.ただし,この樹種間の 傾向はおおまかな判断によるものであり,同一樹種内で も,品種によっては大きな違いが認められた.これは同 一樹種内でも品種により葉形質や葉の傾斜角度分布の違 いなどが存在することを反映している.なお,ブドウの デラウエアの値(Table 6)は、測定時期(9月)が緑の葉 色の退色し始めた頃であり、他の二品種よりもKshel 値 がかなり小さかった.このことは、Kshel 値が生育時期 の影響を多分に受けること、特に、展葉期や落葉前のク ロロフィル含量の低い時期には別途測定せねばならない ことを示唆している. 3)まとめ

果樹葉の optical property に関する報告例は少ない が、リンゴ2品種の葉の可視光線の反射率と透過率の調 査報告によると⁶,前者は約8%,後者は sun leaf で約 1%, shade leaf で約3~4%であった. これらの数値 はいうまでもなく, 葉面に光を垂直に当てて測定したも ので($\alpha = 0^{\circ}, h_{a} = 90^{\circ}, L = 1$),本実験結果との直接的 照合はそもそも無理である.しかし、ここではこの反射 率と透過率を単純に加算して、葉に吸収されない光の割 合を約9~12%と見なせば、すなわち、Sm=0.09~ 0.12とすれば、この場合の二次散乱光の減衰係数は約 2.1~2.4になる.また、透過率のみで減衰係数を計筆 すると, sun leaf で約4.6, shade leaf で約3.4であった. 本実験結果のうち、リンゴの全供試品種の、h_a=90°、L =1の時のKsho,Lの平均値は約3.9であった.本実験に おいて、葉の傾斜角度が種々のものからなる葉群を用い ていること及び反射光の大部分を占める上向きの反射光 を光センサーが補足しないことを考慮すると、この3.9 の値は上記の葉の optical property の測定のものにかな り近いことが考えられる.加えて、葉の optical property の測定では得られないh。=90°, L=1以外の場合の 葉群の二次散乱減衰係数の変化を把握できたことの意義 は大きいものと思われる.

5. 葉面放射分布モデルに使用するパラメータ

緒言で記したように、本論文の主目的は葉面放射分布 モデルを広範囲の果樹に適用して日当りの解析を進める べく、本モデルに必要な各果樹特有なパラメータを調査 収集し、記載することであった.このパラメータは Table 2の各時期の $\lambda \geq \nu$, Table 4のa, R₁, R₂, R₃, R₄, R₅, R₆ 及び Table 6の K_{Shel}の重回帰推定式の各項の偏 回帰係数であり、モデル運用に当たって、このまま用い ればよい.このうち、 $a \geq R_i(i=1-6)$ 及び偏回帰係数 のわずかな違いは全体の葉面放射分布に大きな影響を及 ぼさないので、これらの季節的変化まで入手していない. ただし、必要とあれば、測定そのものは比較的簡単なも のであるから、今後、未調査の品種のパラメータと合せ て調査することもできる.

摘 要

果樹の樹冠内の葉面放射分布推定モデル内の重要な変 数である樹冠内の種々の放射の減衰係数を計算するため の、各果樹に特有なパラメータを、9種合計約30品種の 落葉果樹から測定入手した.これらは,葉層中の直射光 減衰係数,枝群による直射光減衰係数及び葉群中の下向 き二次散乱光(反射光・透過光)の減衰係数を推定計算す るためのパラメータである.各実験結果の要約を順に示 すと以下の通りであった.

1. 5月から10月まで一カ月おきに葉の傾斜角度(α) を測定した.これらを用いて,傾斜角度に関する葉面積 分布の確率密度関数($\overline{v}(\alpha)$)を特徴づけるベータ分布関 数,及び葉による直射光減衰係数を推定計算するための 共通のパラメータ($\lambda \ge \nu$)を得た.特に夏において,リ ンゴ,カキ,クリ,ニホンナシ及びモモの一部の葉に生 じる湾曲(屈曲)は,この $\overline{v}(\alpha) \sim \alpha$ 曲線,葉による直射 光の減衰係数(Kdl_{ho})及び葉面放射分布形に一定の影響を 及ぼした.また,この湾曲を考慮した測定の結果,展葉 直後を除けば,多くの樹種において $\overline{v}(\alpha) \sim \alpha$ 曲線, $Kdl_{ho} \sim 太陽高度(h_o) 曲線及び葉面放射分布形の季節的変$ 化はわずかであることが見出された.

2. 円柱模型実験より得られた円柱の直射光減衰係数 の重回帰推定式と,各果樹に特有なパラメータa(枝の 総縦断面積/総葉面積)とR_i(数段階に分けた傾斜角度に 属する枝の縦断面積の割合)とを用いて,太陽高度別の 枝群の直射光減衰係数Kdshcを近似的に計算した.また, パラメータaとR_iを広範囲の落葉果樹から測定収集し た.これらを用いて計算して得たKdshc~ho曲線には棚 仕立てのブドウを除く他の樹種で類似性が認められた. また,葉の直射光減衰係数(Kdlko)のみを用いて計算した 日向部に対する,葉と枝の両者を含んだ,いわば,合成 減衰係数Kdko(=Kdlko+a・Kdshc)により計算した場合の 日向部の減少割合は,太陽高度が低いときや葉面積指数 が大きい場合には数10%にもなった.

3. 葉群中の下向き反射光・透過光の減衰係数(二次 散乱光減衰係数)を特殊な装置により測定した. 暗室内 で,実際の樹冠内の葉の傾斜角度分布に近似させて配列 した葉群に,投射角度h。を数段階に変えて,平行光線 を当てた. 平行光線に沿った葉層における数段階の深さ の,下向き反射光・透過光の光合成有効放射量(1)及び 葉を配列しない場合のブランク値(I_e)を測定した. 両者 の比(I/I_e)から,直射光成分(D_{he})を除去し,残りの下向 き反射光・透過光成分(S_{he})を算出した. S_{he}とLとをラ ンバート・ベールの法則に当てはめ,二次散乱光減衰係 数Ks_{he,L}値を計算した. このKs_{he,L}は,品種の葉形質に 影響されながら,全体として,h_eの増大と共に増大し, Lの増大と共に指数減少曲線的に減少した. この傾向は, 葉の傾斜角度が水平に近い部分の多い果樹葉群にとっ て、斜めに射し込む光ほど下方に反射されること及び下 層ほど葉により吸収されてない光が多くなることを示唆 している.また、h。とLのべきを用いて、KShelの重回 帰分析を行なったところ、ほとんどの樹種・品種におい て、良好な推定式が得られた.この推定式の偏回帰係数 はKShelの推定計算のためのパラメータとして用いるこ とができる.

謝辞

本研究の実施にあたり,本学部附属農場栽植果樹の多 数品種を利用させて頂いた.栽培管理をして頂いた果樹 部門の山本長保,高山光男両技官及び農場関係者に記し て謝意を表したい.

引用文献

- BILLINGS, W. D. and J. MORRIS, ROBERT. 1951. Reflection of visible and infrared radiation from leaves of different ecological groups. Amer. J. Bot. 38: 327-331.
- 2) 広田 修・秋山 侃・武田友四郎・松井 健・相賀 一郎. 1974. トウモロコシ個体群における吸光係数 の構成要素としての単葉の光透過率と草型の検討. 日作紀. 43:283-288.
- HORIE, T. and UDAGAWA, T. 1971. Canopy photosynthesis of sunflower plants. Its measurements and modeling. Bull. Nat. Inst. Agr. Sci., Ser. A. 18:1-56.
- MONSI, M. and SAEKI, T. 1953. Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für dis Stoffproduction. Jap. Bot. 14: 22-52.
- 5)日本農業気象学会農業気象用語編集委員会編. 1986. 農業気象用語解説集.技研プリント株式会社.
- 6) PALMER, J. W. 1977. Light transmittance by apple

leaves and canopies. J. appl. Ecol. 14: 505-513.

- PALMER, J. W. 1977. Diurnal light interception and a computer model of light interception by hedgerow apple orchards. J. Appl. Ecol. 14:601-614.
- 8) 東京天文台編集. 1974. 理科年表. 丸善株式会社.
- 9) 坪井八十二. 1974. 新編農業気象ハンドブック. 養 賢堂.
- 内嶋善兵衛・宇田川武俊・伊藤綾子.1966.トウモ ロコシ植被内の微気候に関する研究.農業気象.21 :21-125.
- 宇田川武俊. 1980. 作物個体群の葉群構造とそのモデル化. 農技研報. D.31:127-202.
- 12) 宇田川武俊・内嶋善兵衛. 1969. 作物群落内におけるエネルギーとガス交換に関する研究(5). 大麦群落の幾何学的構造と直達光の透入. 日作紀. 38: 364-376.
- WOOLLEY, JOSEPH T. 1971. Reflectance and transmittance of light by leaves. Plant Physiol. 47: 656-662.
- 14)山本隆儀.1985. 果樹の日当たりに関する研究(第 1報)葉の傾斜角度分布から算出した各果樹の直射 光の減衰係数.園学要旨.昭60春:88-89.
- 15) 山本隆儀. 1988. 果樹における葉面放射の樹冠内分 布推定シミュレーションモデル. 山形大学紀要(農 学). 10(3):583-612.
- 16) 山本隆儀・山口恵理. 1989. 果樹の樹形・葉群構造の簡易解析システム――二側面写真面像を用いた新システムの開発――・山形大学紀要(農学). 10(4): 869-901.
- YIM, Y., OGAWA, H. and KIRA31T. 1969. Light interception by stem in plant communities. J. Jap. Ecol. 19:233-238.