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Abstract 

Biological soil disinfestation (BSD) involves the anaerobic decomposition of plant 

biomass by microbial communities leads to control of plant pathogens. We analyzed 

bacterial communities in soil of a model experiment of BSD, as affected by biomass 

incorporation under various conditions, to find out the major anaerobic bacterial groups 

emerged after BSD treatments. The soil was treated with Brassica juncea plants, wheat 
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bran or Avena strigosa plants, irrigated at 20% or 30% moisture content, and incubated 

at 25-30oC for 17 days. The population of Fusarium oxysporum f. sp. spinaciae 

incorporated at the start of the experiment declined markedly for some BSD conditions 

and rather high concentrations of acetate and butyrate were detected from these BSD- 

treated soils. The polymerase chain reaction-denaturing gradient gel electrophoresis 

(PCR-DGGE) analysis based on the V3 region of 16S rRNA gene sequences from the 

soil DNA revealed that bacterial profiles greatly changed according to the treatment 

conditions. Based on the clone library analysis, phylogenetically diverse clostridial 

species appeared exceedingly dominant in the bacterial community of BSD soil 

incorporated with Brassica plants or wheat bran, in which the pathogen was suppressed 

completely. Species in the class Clostridia such as Clostridium saccharobutylicum, 

Clostridium acetobutylicum, Clostridium xylanovorans, Oxobacter pfennigii, 

Clostridium pasteurianum, Clostridium sufflavum, Clostridium cylindrosporum, etc. 

were commonly recognized as closely related species of the dominant clone groups 

from these soil samples. 

 

Keywords 

Anaerobic bacteria, Biological soil disinfestation (BSD), Clone library, Clostridial 
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group, Fusarium oxysporum 

 

Introduction 

Agricultural producers often apply some form of soil disinfestation before planting 

high-value cash crops, to reduce soil-borne crop pests including fungal, bacterial and 

nematode pathogens, weeds, and insects (Spadaro and Gullino 2005). For the last few 

decades, methyl bromide was the major fumigant used for pre-planting soil 

disinfestation, but it has been shown that gaseous methyl bromide may destroy 

stratospheric ozone (Prather and McElroy 1984). The search for alternatives to this 

effective soil fumigant has recently been emphasized in light of the phasing-out of 

methyl bromide (Ristaino and Thomas 1997), giving preference to non-chemical 

fumigation methods. Instead of the chemical disinfestants, steam disinfestation (Katan 

2000), soil solarization (Katan 1981) or flooding (Stover 1979) has been mentioned, but 

may have some practical limitations (Goud et al. 2004). 

Biological soil disinfestation (BSD) is one of the alternative methods of soil 

disinfestation using anaerobic decomposition of organic matter in soil, which has been 

developed in the Netherlands (Blok et al. 2000) and Japan (Shinmura 2004; Shinmura et 

al. 1999) as an environmentally friendly approach. BSD can be a promising alternative 

http://www.sciencedirect.com/science/article/pii/S0038071708001144#bib44#bib44�
http://www.sciencedirect.com/science/article/pii/S0038071708001144#bib33#bib33�
http://www.sciencedirect.com/science/article/pii/S0038071708001144#bib37#bib37�
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for all other fumigation methods due to its broad spectrum for suppression of soil-borne 

pathogens at various incubation duration, temperature, and location (Goud et al. 2004; 

Shinmura 2004; Messiha et al. 2007). The principles of BSD conducted in Japan include 

three steps: (1) incorporating the plant biomass into soil, (2) flooding the soil by 

irrigation, and (3) covering the soil surface with a plastic film to induce reducing soil 

conditions (Shinmura 2000, 2004). The process lasts for about three weeks and becomes 

suitable for crop cultivation soon after removing the plastic film followed by plowing 

the field. A number of plant biomass sources such as Brassica spp., wheat bran, rice 

bran, grasses, or other organic substances have been used successfully as BSD materials 

for controlling soil borne pests and diseases (Shinmura 2004; Goud et al. 2004; Momma 

2008). 

It has been reported that survival of many plant pathogens is significantly decreased 

under anaerobic soil conditions (Blok et al. 2000; Messiha et al. 2007), and the bacterial 

communities developed due to anaerobiosis may enhance the pathogen elimination 

efficacy. In a previous report, we analyzed the bacterial communities in soil of a BSD 

experiment using Brassica juncea plants or wheat bran (Mowlick et al. 2012). The BSD 

treatment with these plant biomass successfully decreased the population of the 

pathogen (Fusarium oxysporum f. sp. lycopersici, fusarium wilt pathogen of tomato) 
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incorporated in the soil before the treatment, and it was found by clone library analysis 

based on the 16S rRNA gene sequences that anaerobic bacteria including especially the 

members of the class Clostridia in the phylum Firmicutes became the major and 

dominant bacterial groups in the soil. The members in the class Clostridia are known to 

produce some harmful compounds to pathogens, such as skatole, indole, cresol or some 

phenolic compounds, by the fermentation of amino acids such as tryptophan and 

tyrosine under anaerobic conditions (Macfarlane and Macfarlane 1995). Besides, fatty 

acids like acetate or butyrate produced by these bacterial groups were supposed to 

contribute to pathogen inactivation (Momma et al. 2006). These acids were actually 

detected in the BSD soil (Mowlick et al. 2012), and it was strongly suggested that 

acetate, butyrate or other substances could be the products of the clostridial groups 

responsible for the suppression of some soil borne pathogens. Thus, it seems that 

proliferation of clostridial species in BSD treated soil may be important to make the 

treatment more effective. 

Considering the facts stated, the aim of this study was to confirm the effects of 

various plant biomass sources and incubation conditions on the suppression of 

pathogens and to identify common bacterial groups that proliferated during the BSD 

treatment. We analyzed the bacterial communities of BSD-treated soils amended with 
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three types of biomasses, mustard (B. juncea L.) plants, wheat (Triticum aestivum L.) 

bran, and lopsided oat (Avena strigosa L.) plants under different incubation conditions 

(temperature and moisture content) of a model experiment using closed vessels. 

Molecular techniques such as polymerase chain reaction-denaturing gradient gel 

electrophoresis (PCR-DGGE) (Muyzer et al. 1993) and clone library analysis (Maidak 

et al. 1999) were mainly used to determine the changes in the major bacterial 

populations and detailed community composition in the BSD soil. To compare with our 

previous results (Mowlick et al. 2012), soil was obtained from a different district of 

Japan and a different pathogen was used in the experiment. 

 

Materials and methods 

 

BSD experiments using closed vessels 

 

The model experiment of BSD was carried out by using 640 ml plastic pots. Soil 

obtained from a field (gray lowland soil at pH 5.18) in the NARO Western Region 

Agricultural Research Center, Fukuyama, Hiroshima, Japan (34.5oN, 133.4oE) was 

air-dried and passed through a sieve with 2 mm opening. The nitrate-non utilizing (nit) 
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mutant of F. oxysporum f. sp. spinaciae cultivated in potato sucrose broth (PSB) 

medium (Takehara and Kuniyasu 1994) was incorporated into the bulk soil (5x105 

CFU/g) and mixed thoroughly to make uniformly pre-infested soil. The nit mutant strain 

(M2-1) was generated from the parent strain Spin-2 (wild type, the NIAS Genebank 

accession No. MAFF103060), by incubating mycelial plugs of the wild type strain on a 

chlorate-containing medium for 12 days according to the method described by Puhalla 

(1985). Strain M2-1 was comparable to strain Spin-2 in growth and pathogenicity. The 

pots were filled with the F. oxysporum infested soil (450 g dry soil per pot) and treated 

with three types of plant biomass, namely, mustard (B. juncea) plants, wheat bran, and 

lopsided oat (A. strigosa) plants. The incorporation amounts of plant biomass were 

determined based on the standard methods for BSD treatment (Goud et al. 2004; 

Shinmura 2004). Leaves of the B. juncea plants were taken from the field before the 

flowering stage, dried at 40oC for 2 days and incorporated into pot soil at the rate of 4.0 

g of dry matter/kg of soil (1.8 g/pot). Wheat bran was applied at the rate of 10.9 g /kg of 

soil (4.9 g/pot). Grass plants of A. strigosa were cut above the ground at the flowering 

stage, dried at 40oC for 4 days and incorporated into pot soil at a rate of 7.3 g of dry 

matter/kg of soil (3.3 g/pot). For the control treatment, none of plant material or any 

other substances was incorporated into the soil. 
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   The field capacity for moisture content (MC) measured for the original soil was 

24.5% (w/w of wet soil). Soil in each pot was irrigated at 20 or 30% MC and the pots 

were covered with lids tightly to avoid penetration of oxygen. The pots containing 30% 

MC soil were incubated at three different temperatures (25oC, 27.5oC, and 30oC) for 

each biomass condition as well as the control, while all pots with 20% MC soil were 

incubated at 30oC. Each treatment condition was applied in duplicate resulting 32 pots 

in total. The names of the treatments were designated considering the biomass (or 

control), incubation temperature, and MC, e.g., Br30-20 for Brassica-treated soil at 

30oC with 20% MC (Table 1). Soil samples were collected from all the pots using sterile 

spatulas after 17 days of incubation. In addition to these treated soil samples, the 

original field soil sample without any treatment was also collected in duplicates (Y1 and 

Y2). The oxidation-reduction potential (ORP) of soil was measured for all treatments by 

electrodes (Ag/AgCl)) inserting into the soil directly. The number of nit mutant of the 

pathogen incorporated into the soil was determined by the dilution plate technique using 

a selective medium for the mutant (CMP medium) (Takehara et al. 2003) for all soil 

samples. 

 

Determination of concentrations of volatile fatty acids in soil samples 
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A five g soil sample of each pot soil collected was suspended in 5 ml deionized water 

and shaken for 20 min with a reciprocating shaker. The slurry samples were centrifuged 

at 2,500 rpm for 10 minutes and the concentrations of volatile fatty acids (VFAs) and 

alcohols in the supernatants were analyzed by gas chromatography (Hitachi G-3500 and 

G-5000) as described previously (Ueki et al. 1986). Concentrations of VFAs and 

alcohols are expressed in the text as those determined in the supernatant of slurry 

samples. 

 

DNA extraction and PCR amplification 

 

About 1 g soil from each sample was taken and DNA was extracted using ‘Ultra 

CleanTM Soil DNA Isolation kit’ (MO BIO Laboratories, Inc., Carlsbad, CA, USA) 

according to the manufacturer’s instructions. Finally, 50 µl volume was extracted for 

each sample in which the DNA was eluted from the spin column at a concentration of 

48-72 ng/µl. For PCR-DGGE, the V3 region of 16S rRNA gene from DNA samples was 

PCR-amplified using a primer set B341fGC (5'- CGC CCG CCG CGC GCG GCG 

GGC GGG GCG GGG GCA CGG GGG GCC TAC GGG AGG CAG CAG- 3', with 
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underlined GC clamps) and 534r (5'- ATT ACC GCG GCT GCT GG-3') (Muyzer et al. 

1993). For clone library analysis, bacterial 16S rRNA genes were amplified using a 

primer set B27f (5'-AGA GTT TGA TYM TGG CTC AG-3') and U1492r (5'-GGY TAC 

CTT GTT ACG ACT T -3'). The PCR mixture (50 µl) contained 1.25 U of Taq DNA 

polymerase (Amplitaq Gold; Applied Biosystems, Foster, CA, USA), 15 mM Tris-HCl  

(tris(hydroxymethyl)aminomethane-HCl) (pH 8.0), 50 mM KCl, 1.5 mM MgCl2, 0.1% 

bovine serum albumin, each deoxynucleotide triphosphate mixtures (dNTPs) at a 

concentration of 200 µM, 0.25 µM of each primer, and 60-100 ng of template DNA. 

The amplification conditions for the primer set B341fGC and 534r or B27f and U1492r 

were followed as described in the previous study (Mowlick et al. 2012). Amplified DNA 

fragments were confirmed after agarose gel electrophoresis staining with ethidium 

bromide. 

 

DGGE analysis 

 

For the DGGE analysis, PCR products of the 16S rRNA gene were separated by DGGE 

using a DCodeTM system (Bio-Rad Laboratories, Hercules, CA, USA). A total of 10 µg 

DNA sample was applied in each lane representing the soil samples. The DNA samples 
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were loaded to 10% acrylamide gels with a urea-formamide denaturing gradient of 

30-60% (100% denaturant was defined as 7 M urea and 40% formamide) at an 

electrophoretic movement for 3.5 h and 200 V. The gels were stained in SYBR Gold 

solution and viewed by a UV transilluminator. The photographic images were 

transformed into digital data and the positions of major DNA bands in the DGGE 

profiles were numerically designated for performing cluster analysis. 

 

Clone library and nucleotide sequencing 

 

The following ten soil samples were selected based on the various data obtained (soil 

parameters, DGGE, etc) as representatives for the clone library analysis of the bacterial 

community in the soil samples: Br30-20 (pot no. A1), Br25-30 (B2), Br30-30 (E1), 

Wh25-30 (H1), Wh30-30 (K1), Av25-30 (M2), Av30-30 (P2), Co25-30 (R1), Co30-30 

(U1), and Orginal (Y2) (Table 1). The PCR products of DNA from these samples were 

purified using the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA, and USA) and 

cloned into Escherichia coli JM109 competent cells following the instructions of 

pGEM-T Easy Vector Systems (Promega, Madison, WI, USA). The vector-harboring 

clones containing an insert of appropriate sizes (about 1500 bp) were obtained in the 
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Luria-Bertani (LB) plates by the standard methods (Kaku et al. 2005). Sequence 

analysis (about 600 bp) was done for a total of 96 clones from each soil sample using a 

sequence primer U515f (5' GTG YCA GCM GCC GCG GTAA-3') according to the Dye 

Terminator method using a capillary sequencer at Takara Co. Ltd. 

 

Statistical analysis 

 

The major DGGE bands detected on the profiles were numbered and classified into four 

categories for the cluster analysis depending on their intensities (0 = no band; 1 = weak; 

2 = moderate; 3 = strong) (Watanabe et al. 2009). The cluster analysis with normalized 

data was carried out using the PAST program and Ward method (Hammer et al. 2001). 

Database searches for related 16S rRNA gene sequences were conducted using BLAST 

program and GenBank database (Altschul et al. 1997). The profile alignment function of 

ClustalW program was used to align the sequences. The phylogenetic trees were 

constructed by the neighbor-joining method (Saitou and Nei 1987) with Njplot program 

in ClustalW package (Thompson et al. 1994). Bootstrap resampling analysis for 1000 

replicates was performed to determine the confidence of the tree topology. An OTU 

(operational taxonomic unit) was designated as a phylogenetic group or unit consisted 
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of the resulting clones showing almost 97% similarity of nucleotide sequences. All the 

representative clones of the OTUs were analyzed to determine the taxonomic affiliations 

of the clones of all libraries. All 16S rRNA gene sequences obtained in the present study 

were checked for possible chimeras using the chimera check online analysis program 

(http://comp-bio.anu.edu.au/bellerophon/bellerophon.pl) of the Bellerophon server. 

Finally, non-chimeric clonal sequences were validly used for the analysis of the 

bacterial community for each soil sample. A rarefaction analysis of the 16S rRNA gene 

sequences in the clone libraries was carried out with the software aRarefactWin 

(http://www.uga.edu/strata/software/Software.html). The coverage of the clone libraries 

(C) was calculated (Good 1953) from the equation C= 1-(n1/N); where n1 is the number 

of clones that occurred only once (frequency 1), and N is the total number of clones 

examined. The richness (chao 1) was determined for all the clone libraries using an 

online grouping method ‘Fastgroup’ (http://biome.sdsu.edu/fastgroup/fg_tools.htm). 

Bacterial diversity was calculated using the Shimpson's diversity index (D) by the 

function, D = 1-∑n(n-1)/(N(N-1)), where n = the total number of clones of a particular 

OTU and N = the total number of clones of all OTUs.  Besides, Shannon-Wiener 

diversity index (H') was determined to compare the changes in diversity of bacterial 

communities within the libraries by the function: H= -∑Pi log Pi, where the proportion of 

http://comp-bio.anu.edu.au/bellerophon/bellerophon.pl�
http://www.uga.edu/strata/software/Software.html�
http://biome.sdsu.edu/fastgroup/fg_tools.htm�
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OTU i relative to the total number of OTU (pi) was calculated. All those diversity 

indexes were calculated using online biodiversity calculator 

(http://www.alyoung.com/labs/biodiversity_calculator.html). 

The nucleotide sequences obtained from the clone library analyses have been 

reported in DDBJ/GenBank under the accession numbers AB642681-AB643454 (774 

entries). 

 

Results 

 

Status of the treated soil samples 

 

The incorporated pathogen (the nit mutant of F. oxysporum) was enumerated at 5 x 105 

CFU/g of dry soil at the start of the incubation. Densities of the pathogen in all treated 

soils after 17 days of incubation were determined along with the measurements of ORP 

and concentrations of VFAs and alcohols (Table 1). A high density of the fungal 

pathogen (higher than 1 x 103 CFU/g) was detected from all the control soil samples 

(without plant biomass), indicating inability to kill the pathogen effectively without 

biomass incorporation. In contrast, the Fusarium population was eliminated completely 

http://www.alyoung.com/labs/biodiversity_calculator.html�


 15 

from all wheat bran-treated soil irrespective of the soil conditions. For Brassica- and 

Avena-treatments, the pathogen was not detected at all from soil treated at 30oC for both 

20% and 30% MC, while it was still alive in soil treated at 25oC and 27.5oC. 

The ORP values for all biomass-treated (BSD) soil dropped considerably as 

compared to the values of the original or the control soils. The results indicated the 

development of much reduced condition for all BSD-treated soils compared with the 

control soil. No VFAs was detected from the control as well as the original soil samples, 

while considerable amounts of acetate were detected from all conditions of BSD-treated 

soils followed by butyrate (for wheat bran-treated soils mainly) together with traces of 

propionate. In case of wheat bran-treated soil, when compared with other BSD soils, the 

concentrations of acetate were almost double and those of butyrate were much higher. 

Small amounts of ethanol (3.2-4.0 mmol/l) were detected from some BSD conditions. 

 

PCR-DGGE analysis 

 

The PCR-DGGE analysis was carried out to know the differences in the bacterial 

community profiles of these differently treated soil samples. The DGGE banding 

patterns and cluster analysis of the Brassica-treated soils showed almost similar 
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community profiles between duplicate samples with an exception (B1 and B2 for 

Br25-30), indicating that similar bacterial communities usually developed in soil treated 

with the same condition (Fig. 1). The differences of incubation temperature or MC, 

however, clearly resulted in distinct profiles. 

  The DGGE profiles for other soil samples (wheat bran-treated, Avena-treated and 

control soils) with the cluster analysis (Fig. 2) revealed that banding patterns for soil 

samples treated at 25oC and 27.5oC were rather similar for each treatment, while those 

were distinctive from soil treated at 30oC for all cases irrespective of MC. This indicates 

that the rise in the incubation temperature from 27.5oC to 30oC affected the bacterial 

communities more strongly as compared with the rise from 25.0oC to 27.5oC. 

The DGGE analysis was carried out for selected soil samples including the original 

soil to know the effects of different plant biomass sources and MC on the bacterial 

community compositions (Supplementary Fig. 1). Clear changes were shown in the 

profiles for all treated soil as compared with the original soil. Amendment with Brassica 

plants or wheat bran resulted in greater differences from the control soil than the 

amendment with Avena plants. Although the variation in plant biomass sources resulted 

in rather different DGGE profiles, the difference of MC (20% or 30%) for each biomass 

condition did not bring about such clear differences in the profiles (Supplementary Fig. 
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1b). 

 

Clone library analysis 

 

Soil samples treated at 25oC and 30oC under 30% MC as well as the original soil were 

selected for the clone library analysis. In addition, for Brassica-treated soil, the soil 

sample treated at 30oC under 20% MC (Br30-20) was also selected, because it 

effectively eliminated the pathogen. One of soil samples from the duplicate pots was 

selected for each treatment based on all results shown above. 

The clones from all libraries appeared to be assigned to at least six major phyla of 

the domain Bacteria, namely Firmicutes, Proteobacteria, Acidobacteria, Actinobacteria, 

Bacteroidetes, and Chloroflexi. However, the phylogenetic compositions and 

proportions of the major phyla or classes varied markedly depending upon the type of 

biomass used and the treatment conditions applied. The affiliations of clone sequences 

from each soil sample are shown in Fig. 3 in relation to the percentages of number of 

clones belonging to each phylum or class. Out of the phylogenetic trees constructed for 

all ten libraries, those for Br30-30 (E1) and Wh25-30 (H1) were selected as 

representative trees from the soil samples that eliminated the pathogen completely (Fig. 
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4). In addition, major OTUs (consisting of more than two clones) and their closest 

relatives are presented in Table 2 for each library. 

 

Phylogenetic groups in the original and the control soil 

 

The clone library for the original soil (Y2) showed much diversified populations of 

different phylogenetic groups. The most abundant taxonomic group of the original soil 

was allocated to the phylum Proteobacteria (about 48% of the total number of clones) 

(Alpha- and Gammaproteobacteria classes mainly). Other clone sequences belonged to 

the phyla Firmicutes (7% from the Clostridia and 8% from the class Bacilli), 

Actinobacteria, Acidobacteria, Planctomycetes, etc. 

In case of the control library Co25-30 (R1), diversified bacterial populations were 

detected. An OTU relating to the unique clade “Symbiobacterium”, a facultatively 

anaerobic group in the Firmicutes, at about 90-91% of sequence similarity was the most 

dominant (24%), and a few clones were retrieved from the Bacilli and Clostridia (Fig. 

3). Other phylogenetic groups detected were almost similar with those from the Original 

clone library. For another control library Co30-30 (U1), the “Symbiobacterium” related 

bacterial groups were also dominant with a few number of clostridial clones. Besides, 
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Rhodanobacter terrae in the Gammaproteobacteria was assigned to the closest relative 

of the major OTUs commonly appeared in both control libraries as well as in the 

original soil (Table 2).  

 

Phylogenetic groups in the BSD-treated soil 

 

Clone libraries for all BSD-treated soil samples showed substantial differences as 

compared with those of the original and control libraries (Fig. 3). The BSD libraries 

irrespective of the treatment conditions showed the presence of exclusively dominant 

bacterial taxonomic groups in the communities. In case of the Brassica-treated libraries, 

about 80% clones were assigned to the phylum Firmicutes, of which the majority 

belonged to the class Clostridia (strictly anaerobic spore-formers), with relatively minor 

clones in the class Bacilli (aerobic or facultatively anaerobic spore-formers). The clone 

libraries for the Brassica-treated soils, that is, Br30-20 (A1), Br25-30 (B2), and Br30-30 

(E1), contained 54%, 50%, and 75% clostridial clones, whereas, 41%, 27%, and 6% 

clones from the class Bacilli, respectively (Fig. 3). The other clones were mainly 

affiliated with the different classes of the phylum Proteobacteria. 

The compositions of the major Firmicutes groups for the Brassica-treated three 
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clone libraries were compared (Table 2). The clones closely related at high similarities 

(about 99%) to Clostridium saccharobutylicum occupied major portions of those clone 

library, especially for the Br30-20 library. A number of clones related to diverse species 

in clostridial groups such as Oxobacter pfennigii, Zymophilus raffinosivorans, 

Clostridium xylanovorans, Clostridium cylindrosporum, Clostridium sufflavum, etc. 

increased with the rise of MC and temperature (Fig. 4). The clones closely related to 

Bacillus azotoformans and Bacillus niacini in the class Bacilli were also the dominating 

OTUs in both Br30-20 and Br25-30 libraries. 

For the wheat bran-treated two clone libraries Wh25-30 (H1) and Wh30-30 (K1), 

about 76% and 58% clones were detected from the class Clostridia with a few number 

of clones from the class Bacilli (Fig. 3). Other phylogenetic groups retrieved from the 

two libraries were placed in the phyla Proteobacteria and Actinobacteria mainly. The 

closely related species of the major bacterial OTUs in the wheat bran-treated clone 

libraries showed that the lower temperature (25oC) stimulated the clostridial ratios as 

well as diversification consisting of Clostridium pasteurianum, Clostridium 

acetobutylicum, C. xylanovorans, C. saccharobutylicum, Clostridium tetanomorphum 

etc (Table 2, Fig. 4) in the community. Instead, higher temperature (30oC) induced two 

dominant groups closely related to B. niacini and Azotobacter chroococcum as well as 
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diversified clostridial clones (Table 2). 

For the Avena-treated clone libraries, members of the Firmicutes also occupied the 

dominant position. From the library Av25-30 (M2), 51% clones belonged to the 

Firmicutes phylum (43% from the Clostridia and 8% from the Bacilli) (Fig. 3). Clones 

relating to C. saccharobutylicum, C. cylindrosporum, C. xylanovorans, and B. niacini, 

detected in other BSD libraries, were also the most dominant groups in the library. A 

number of clones from the phyla Proteobacteria and Bacteroidetes were also detected. 

On the other hand, the Av30-30 (P2) library contained the classes Clostridia and Bacilli 

in the Firmicutes at almost the same percentage. Clones closely related to Veillonella 

rogosae in the Clostridia and Streptococcus parasanguinis in the Bacilli occupied 

extraordinarily dominant positions in the library, respectively (Table 2). 

 

Bacterial diversity in the clone libraries 

 

Rarefaction analysis based on the OTU clustering (97% sequence similarity cut-off 

level) (Fig. 5) suggests that the curve for the Original library was far from the saturation. 

Among the rarefaction curves for the BSD-treated libraries, the curves for Br30-20 and 

Av30-30 seemed to almost reach the plateau, whereas others were far from it and 
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showed similar curves as those for the Co25-30 and Co30-30 libraries. The results 

suggest that bacterial richness in these samples was not fully recovered in these clone 

libraries with some exceptions. 

   Table 3 shows estimated bacterial richness and diversity for each clone library. A 

total of 49 OTUs were recognized in the Original library, whereas the numbers 

decreased for all the treated soil libraries. The estimates of richness and diversity in the 

communities suggest that the original soil harbors the most diverse communities. All 

treatments reduced the diversity as compared with the original soil, and especially the 

bacterial diversities in the libraries Br30-20 and Av30-30 were decreased considerably. 

However, high bacterial diversities were still maintained for other BSD treatments, 

especially in case of Br25-30, Br30-30, and Wh25-30 communities. The result suggests 

that although the BSD treatment increased the percentages of clostridial clones 

considerably, bacterial diversity at the species (97% sequence similarity) level was not 

usually reduced so much. 

 

Phylogenetic diversity of clostridial groups after BSD 

 

Based on the suppression of F. oxysporum population incorporated, compositions of 
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clostridial groups retrieved from the four libraries, Br30-20, Br30-30, Wh25-30, and 

Wh30-30, were further analyzed phylogenetically to identify the major common 

clostridial species and to compare the clostridial diversities among the BSD samples. 

A phylogenetic tree consisting of all OTUs assigned to the class Clostridia from 

these BSD samples was generated (Fig. 6). All OTUs related to the clostridial groups 

were divided into six clusters (Collins et al. 1994) including Oxobacter, Caloramator 

and Pelotomaculum groups, indicating occurrence of extraordinarily diverse species in 

the class under these BSD conditions. Majority (63%) of the clostridial clones from the 

four libraries were classified into the cluster I (Clostridium sensu stricto) including the 

Oxobacter and Caloramator groups, and the remaining clones (37%) were affiliated 

with other miscellaneous clusters (Cluster III, IV, VI, IX, and XIVa). For the wheat 

bran-treated libraries, almost two thirds (66%) of the clostridial clones were assigned to 

the cluster 1 group. On the other hand, clostridial groups in the Brassica-treated soil, 

especially for the Br30-30 library, were distributed to cluster 1 and other clusters almost 

in an equal proportion. The result indicates that the phylogenetic composition of 

clostridial communities changed with the influence of biomass and treatment 

conditions. 

From the combined clostridial phylogenetic tree, it was revealed that OTUs closely 
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related to C. saccharobutylicum (about 99% sequence similarity) or C. xylanovorans 

(about 95-96%) were recognized in all four libraries as the dominant groups, and the 

clones relating to C. cylindrosporum, O. pfennigii or Pelotomaculum shinkii were also 

detected commonly as relatively minor groups. The clostridial clones assigned to the 

cluster III (e.g., C. sufflavum) appeared only in the Brassica-treated libraries (Table 2). 

The rarefaction analysis for the clostridial clones (Supplementary Fig. 2) almost 

corresponded with it for all communities (Fig. 5), and also did not reach the plateau 

except for the Br30-20 library. The result of richness and diversity estimates of OTUs 

(Supplementary Table 1) suggests that diversities of clostridial groups were higher in 

the Br30-30 and Wh25-30 BSD samples, and the diversity was much reduced in case of 

Brassica-treated soil of lower MC (Br30-20) and wheat bran-treated soil at higher 

temperature (Wh30-30). 

 

Discussion 

 

Achieving a reducing state or a decrease in ORP in soil is the most important aspect 

during BSD (Shinmura et al. 1999; Blok et al. 2000). Microbial activities can affect soil 

ORP by influencing redox couples including NO3
–/NO2

–, Fe3+/Fe2+, H+/H2, SO4
2–/HS–, 
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and CO2/CH4 along with the partial or complete consumption of oxygen by soil 

microbes under the higher moisture content (Peters and Conrad 1996; Savant and Ellis 

1964). In this study, the ORP decreased for most of BSD treatments as compared with 

the soil without biomass incorporation (control) and it should stimulate growth and 

multiplication of anaerobic bacteria in the BSD soil. In fact, a large number of bacterial 

species relating to the strictly anaerobic clostridial groups were detected as the closest 

relatives for the clone libraries of the BSD-treated soil samples. 

The antagonistic activity of some soil microorganisms may be involved during BSD 

against soil-borne pathogens (Bailey and Lazarovits 2003; Kubo et al. 2005; Larkin and 

Griffin 2007). It has been pointed out that accumulation of VFAs such as acetate and 

butyrate would be the important factors for killing the plant pathogens during the 

process of disinfestation (Momma et al. 2006). In our study, rather high amounts of 

acetate were detected from all BSD soil samples together with butyrate especially for 

the wheat bran-treated soils, while no VFAs was detected from the control soils. Since 

the incorporation of plant biomasses to the soil strongly enhanced growth of clostridial 

species as shown by the clone library analysis, VFAs might be produced by these 

anaerobic bacteria through decomposition of the biomass. These results coincided with 

the results of our previous study (Mowlick et al. 2012). As mentioned below, we have 
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already isolated many strains of anaerobic bacteria from both B. juncea- and  

wheat-bran-treated soil used in this study and confirmed formation of acetate and 

butyrate as fermentation products for many of the isolates (data not shown). 

It is reported that BSD using Brassica plants, wheat bran, grasses or molasses 

effectively killed a wide range of soil-borne pathogens including Botrytis cinerea, 

Fusarium spp., Rhizoctonia solani, Phomopsis scleroides, Verticillium dahliae, 

Ralstonia solanacearum, Meloidogyne incognita, etc. (Shinmura 2000, 2004; Takeuchi 

2004; Messiha et al. 2007). Although the incorporated pathogen seemed to be 

completely eliminated from the wheat bran-treated soils for all conditions in this study, 

the effects of BSD on the pathogen were different depending on the incubation 

conditions for Brassica- and Avena-treatments. For these Brassica- and Avena-treated 

soils, the variations in the incubation temperature greatly influenced the suppression of 

the pathogenic population during BSD. The result indicates that temperature control is 

very important to conduct the BSD treatment successfully. However, the temperature 

effect should be verified in the further studies by considering other factors including the 

amount of plant material incorporated. 

Soil harbors highly diverse bacterial communities with up to 50,000 (Sandaa et al. 

1999) or even up to millions (Gans et al. 2005) of different 16S rRNA gene sequences 
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or of different phylogenetic groups at the phylum or class level (Janssen 2006). The 

clone library for the original soil showed that the soil contained diversified bacterial 

groups of different phyla or classes. The bacterial compositions of both control libraries 

(Co25-30 and Co30-30) were somewhat similar with that from the original soil in 

containing clones relating to the Proteobacteria as major groups. The similarities of 

DGGE banding patterns between the original and the two control soils coincided with 

the results of the clone library analysis. We tried to know the differences in the recovery 

of the bacterial diversities among treatments analyzing the rarefaction curves. Based on 

the results, we think that, in the future studies, we need to analyze more number of 

clones for most of the soil samples to know the saturation point of the bacterial 

diversities.  

In both control soils, a group relating to Symbiobacterium thermophilum, a very 

deep group within the Firmicutes or, possibly, a novel phylum (Beppu and Ueda 2009), 

proliferated, however, the strict anaerobes relating to the typical clostridial groups did 

not occupy a major position. In the BSD-treated libraries, clones affiliated with the 

general Firmicutes were exceedingly dominant and the ratios of the clostridial clones 

(50-75%) and Bacillus group (6-50%) varied considerably. Soil microbial communities 

can be influenced by many factors like temperature (Pietikänen et al. 2005), water 
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availability (Fierer et al. 2003), ORP status, and others. In this study, it appeared that 

both temperature and MC contributed to the changes in bacterial communities in the 

BSD-treated soils. As shown in Fig. 3, increase in the incubation temperature stimulated 

the clostridial proliferation, but decreased the Bacillus group for Brassica-treated soil, 

while the opposite results were obtained for wheat bran- and Avena-treated soils. The 

effect of MC was very distinct in case of Brassica-treated soil, where the ratio of clones 

related to the class Bacilli was declined markedly with an increase in MC. Most of the 

species in the Bacilli produce spores and they should be alive as spores even in dry soil. 

Although they might start to grow under the humid condition immediately after the start 

of the treatment, earlier exhaustion of oxygen under the higher MC should suppress 

aerobic growth. 

It was found that the members related to the Clostridia class appeared as major and 

important taxonomic groups in the bacterial communities in the BSD soils. The results 

agreed well with our previous results (Mowlick et al. 2012). Among the plant biomass 

incorporated in this study, Brassica or wheat bran was considered to stimulate the 

development of clostridial community during BSD. The clones assigned to the 

Clostridia class actually contained phylogenetically diverse members and it was 

indicated that the growth of abundant clostridial species might contribute to the total 
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diversity of the bacterial communities in the BSD soil. Diverse species related to the 

class Clostridia should be also present as spores even in the aerobic field soil, and start 

to grow using plant biomass as growth substrates soon after the development of reduced 

condition. The result indicates that field soil, even when the soil has been maintained 

under the aerobic condition for a long time, harbors exceedingly diverse, strictly 

anaerobic, clostridial species, and the introduction of reduced condition to the soil 

induces drastic changes in the bacterial community composition in the soil along with 

their active growth. 

In case of the five clone libraries (Br30-20, Br30-30, Wh25-30, Wh30-30, and 

Av30-30), where the pathogen was effectively eliminated, the abundance of the 

members of the Firmicutes was almost 70-90% of the total clones, of which the 

majorities were related to the strictly anaerobic, clostridial species. Therefore, it seems 

likely that the dominant clostridial groups in these treatment conditions might have an 

important role to suppress the pathogen during BSD. Bacterial groups related to C. 

acetobutylicum, C. saccharobutylicum, C. xylanovorans, C. sufflavum, C. pasteurianum, 

O. pfennigii, Z. raffinosivorans, C. cylindrosporum, Caloramator mitchellensis, V. 

rogosae, etc. seemed to be commonly proliferated anaerobes by the BSD treatment. 

It is known that most of the closely related clostridial species of the clones detected 
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in this study produce various products including acetates, butyrate, alcohol, and H2 gas 

as well as indole or skatole (Krumholz and Bryant 1985; Rainey et al. 2009; Wiegel 

2009; Schleifer 2009). Since the similarity levels of 16S rRNA gene sequences between 

the major clone groups and their closest relatives are different depending on the clones, 

physiological properties and fermentation products of the species in the BSD soil 

represented by the clone sequences should be different from those of the related species. 

However, some species such as C. acetobutylicum, C. saccharobutylicum, C. 

pasteurianum, and C. xylanovorans were closely related with the major OTUs at 

considerably high similarity values (95-99%), respectively, suggesting that bacterial 

groups represented by the clones have similar properties as these recognized species. 

Besides the clostridial population, the clones of the classes Bacilli and 

Gammaproteobacteria also proliferated in the BSD soils. The major Bacillus species 

included B. azotoformans (nitrogen-forming bacterium) and B. niacini (nicotinic 

acid-metabolizing) (Logan and Vos 2009; Priest 2009), and the Gammaproteobacteria 

group contained A. chroococcum (nitrogen fixer) (Kumar and Singh 2001). B. niacini 

and A. chroococcum were also detected as the closest relatives for the clones in our 

previous BSD soils (Mowlick et al. 2012). Thus, it is possible that species relating to 

these species might contribute partly for changing the soil status during BSD. In 
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addition, in our previous study, nitrogen-fixing bacteria such as C. acetobutylicum, C. 

pasteurianum, and A. chroococcum were also appeared as the closely related species of 

the major groups in the BSD communities. It is of interest to know their roles in 

nitrogen supply to the soil microbial communities. 

We have isolated many clostridial strains relating to the clone sequences shown 

above from the BSD-treated soil samples examined in this study. We are now 

investigating the physiological properties of these isolates to confirm the effects of 

clostridial species on the pathogens during the BSD treatment. Especially it should be 

important to clarify the products to suppress the pathogens or to find out some other 

effective functions during the BSD treatment for these anaerobes. We have used F. 

oxysporum (fusarium wilt pathogen of tomato or spinach) as pathogenic agents in the 

present study as well as in our previous study (Mowlick et al. 2012). Other plant 

pathogens including fungi, bacteria, etc. should be also considered in the future studies. 

Moreover, BSD experiments should be applied in field conditions to confirm the 

suppression of plant pathogens and proliferation of clostridial communities. 
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FIGURE LEGENDS 

 

Fig. 1. (a) DGGE patterns of bacterial populations in soil treated with Brassica juncea 

plants under different conditions. (b) Cluster analysis of DGGE band pattern for 

similarity index. V3 region of bacterial 16S rRNA gene was PCR-amplified with a 

primer set of B341fGC/B534r. Amplified products were separated on a gradient gel of 

30-60% denaturant. The lanes A1 and A2 are from soil samples at 30oC and 20% MC; 

whereas others are from samples treated at 30% MC under different temperatures: 25oC 

(B1, B2); 27.5oC (C1, C2); 30oC (E1, E2). The numbers appearing aside of bands 

indicate the band numbers and positions for performing cluster analysis. The numbering 

was done chronologically starting from the upper position of the left sided DGGE lane. 

 

Fig. 2. (a) DGGE patterns for control (U1, S2, R1, Q2), Avena-treated (P2, N2, M2, L1), 

and wheat bran-treated (K1, J1, H1, G2) soil samples at different conditions. (b) Cluster 

analysis of DGGE band pattern for similarity index. The lanes Q2, L1, and G2 represent 

samples treated at 30oC with 20% MC, whereas others were treated at 30% MC under 

different temperatures: 30oC (U1, P2, K1); 27.5oC (S2, N2, J1); 25oC (R1, M2, H1). 

Other notifications of DGGE were similar as described in Fig. 1. 
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Fig. 3. Phylogenetic composition (phylum or class) of bacteria based on 16S rRNA gene 

sequences from different clone libraries. The compositions are represented as relative 

abundances in relation to the percentages of number of clones belonging to each phylum 

or class. Clone libraries: A1, Br30-20; B2, Br25-30; E1, Br30-30; H1, Wh25-30; K1, 

Wh30-30; M2, Av25-30; P2, Av30-30; R1, Co25-30; U1, Co30-30; Y2, Original. 

Symbols: , Alphaproteobacteria; , Betaproteobacteria; , 

Gammaproteobacteria; , Deltaproteobacteria; , Acidobacteria;   , 

Bacteroidetes; , Planctomycetes; , Firmicutes (Clostridia); , Firmicutes 

(Symbiobacterium); , Firmicutes (Bacilli); , Actinobacteria; , Chloroflexi; , 

Others. 

 

Fig. 4. Neighbor-joining trees showing the phylogenetic relationships of all OTUs 

derived from Brassica-treated (30oC-30% MC) and wheat bran-treated (25oC-30% MC) 

soil samples based on 16S rRNA gene sequences. Bootstrap values (n = 1,000) above 

70% are indicated at branch nodes. The scale bar represents 2% estimated difference in 

nucleotide sequence position. The abbreviation C. indicates the genus Clostridium. The 

name of each clone starts with the pot number for each treatment (E1 for Br30-30 and 
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H1 for Wh25-30). As the outgroup, Sulfolobus acidocaldarius (D14053) (the domain 

Archaea) 16S rRNA gene sequence was used. Accession numbers of the species are 

shown in the parentheses. Numbers in the parentheses aside each clone name denote the 

number of clones assigned to the OTU. Each clone name without parenthesis represents 

one OTU with one clone. Abbreviations: α-, and γ-Prot, Alpha-, and 

Gammaproteobacteria, respectively; Actino, Actinobacteria; Acido, Acidobacteria. 

 

Fig. 5. Rarefaction curves for the bacterial communities from all clone libraries. A1, 

Br30-20; B2, Br25-30; E1, Br30-30; H1, Wh25-30; K1, Wh30-30; M2, Av25-30; P2, 

Av30-30; R1, Co25-30; U1, Co30-30; Y2, Original. 

  

Fig. 6. Neighbor-joining tree showing the phylogenetic relationships of clostridial 

clones from some effective BSD samples based on 16S rRNA gene sequences 

(according to the clostridial cluster analysis by Collins et al. 1994). As the outgroup, 

Bacillus subtilis DSM10 16S rRNA gene sequence was used. The abbreviation C. 

indicates the genus Clostridium. The name of each clone starts with the pot number for 

each treatment: A1, Br30-20; E1, Br30-30; H1, Wh25-30; K1, Wh30-30. Accession 

numbers of the species are shown in the parentheses. Numbers in the parentheses aside 
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each clone name denote the number of clones in the OTU of each library. Tree 

construction and other notifications are similar as described in Fig. 4. 
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Table 1. Status of soil as affected by biomass incorporation and treatment conditions 
Designation Pot No. Plant biomass   Incubation conditions                                            After 17 days of incubation 
of treatment (Duplicates) incorporated No. of Fusarium ORP (mV) Ethanol

Temp. (oC) MC (%) (CFU/g dry soil) Acetate Propionate Butyrate
Br30-20 A1, 2 Brassica juncea 30 20 nd  -232 ± 4 7.0 ± 2.0 tr tr nd
Br25-30 B1, 2 25 30 (7.75 ± 10.0) x 10  -173 ± 16 5.9 ± 0.6 1.0 tr nd

Br27.5-30 C1, 2 27.5 30 (2.70 ± 0.32) x 102  -170 ± 1 5.2 ± 0.7 1.0 tr nd

Br30-30 E1, 2 30 30 nd  -169 ± 6 8.0 ± 0.7 tr tr tr
Wh30-20 G1, 2 Wheat bran 30 20 nd  -56 ± 64 17.3 ± 2.2 nd 8.1 ± 0.8 nd
Wh25-30 H1, 2 25 30 nd  -35 ± 105 14.6 ± 0.1 nd 6.3 ± 1.1 nd
Wh27.5-30 J1, 2 27.5 30 nd  -149 ± 69 12.1 ± 0.4 nd 4.8 ± 0.7 nd
Wh30-30 K1, 2 30 30 nd  -201 ± 7 13.4 ± 1.8 nd 5.5 ± 1.7 4.0 ± 0.4
Av30-20 L1, 2 Avena strigosa 30 20 nd  -268 ± 4 8.4 ± 0.6 tr 1.0 nd
Av25-30 M1, 2 25 30 (1.02 ± 5.02) x 10  -164 ± 16 6.6 ± 0.6 tr tr nd
Av27.5-30 N1, 2 27.5 30 3.50 ± 4.90  -176 ± 17 8.3 ± 0.9 1.0 tr nd
Av30-30 P1, 2 30 30 nd  -170 ± 10 9.6 ± 1.9 tr tr 3.2 ± 0.3
Co30-20 Q1, 2 None (Control) 30 20 (9.50 ± 1.10) x 104  318 ± 28 nd nd nd nd
Co25-30 R1, 2 25 30 (1.50 ± 0.53) x 103  299 ± 44 nd nd nd nd
Co27.5-30 S1, 2 27.5 30 (1.30 ± 0.15) x 103  263 ± 18 nd nd nd nd
Co30-30 U1, 2 30 30 (1.40 ± 0.02) x 103  257 ± 18 nd nd nd nd

Original soil (non-treated)  Y1, Y2a) (5.04 ± 0.08) x 105  403 ± 4 nd nd nd nd
MC, moisture content; ORP, oxidation-reduction potential; nd, not detected; tr, trace.
a), Values at the start.

Volatile fatty acids



Library Representa- Number     Closest relative (accession no.)                   Taxonomic affiliation Sequence*
tive clone of clones   Phylum Class similarity

Br30-20 (A1) A1-4 26 Clostridium acetobutylicum (X81021) Firmicutes Clostridia 99.5
Clostridium saccharobutylicum  (U16147) Firmicutes Clostridia 98.3

A1-2 22 Bacillus azotoformans (AB363732) Firmicutes Bacilli 99.1
A1-50 7 Bacillus niacini  (AB021194) Firmicutes Bacilli 99.3
A1-61 4 Clostridium xylanovorans  (AF116920) Firmicutes Clostridia 95.5
A1-13 3 Clostridium leptum  (AJ305238) Firmicutes Clostridia 92.1

Br25-30 (B2) B2-9 13 Bacillus niacini  (AB021194) Firmicutes Bacilli 99.3
B2-11 8 Bacillus azotoformans (AB363732) Firmicutes Bacilli 99.0
B2-74 7 Clostridium xylanovorans  (AF116920) Firmicutes Clostridia 94.3
B2-5 6 Clostridium cylindrosporum (Y18179) Firmicutes Clostridia 92.8
B2-78 3 Clostridium subterminale  (AF241844) Firmicutes Clostridia 97.7
B2-28 3 Clostridium saccharobutylicum  (U16147) Firmicutes Clostridia 95.1
B2-20 2 Clostridium saccharobutylicum  (U16147) Firmicutes Clostridia 99.1

Br30-30 (E1) E1-30 9 Oxobacter pfennigii (X77838) Firmicutes Clostridia 91.5
E1-11 7 Clostridium xylanovorans  (AF116920) Firmicutes Clostridia 94.6
E1-64 7 Zymophilus raffinosivorans (DQ217599) Firmicutes Clostridia 99.8
E1-38 5 Clostridium sufflavum  (AB267266) Firmicutes Clostridia 93.5
E1-69 5 Clostridium cylindrosporum  (Y18179) Firmicutes Clostridia 93.5
E1-2 5 Clostridium cylindrosporum  (Y18179) Firmicutes Clostridia 91.9
E1-28 4 Clostridium saccharobutylicum  (U16147) Firmicutes Clostridia 99.3
E1-68 3 Clostridium saccharobutylicum  (U16147) Firmicutes Clostridia 93.6
E1-51 3 Desulfosporosinus acidophilus (FJ951625) Firmicutes Clostridia 94.6

Wh25-30 (H1)H1-40 13 Clostridium pasteurianum  (AB536773) Firmicutes Clostridia 95.0
H1-1 5 Clostridium acetobutylicum  (AE001437) Firmicutes Clostridia 98.2
H1-24 5 Clostridium xylanovorans (AF116920) Firmicutes Clostridia 95.2
H1-20 5 Clostridium saccharobutylicum  (U16147) Firmicutes Clostridia 99.0
H1-4 4 Clostridium intestinale  (X76740) Firmicutes Clostridia 94.4
H1-54 4 Microbacterium testaceum (JN585696) Actinobacteria Actinobacteria 99.8
H1-7 3 Clostridium tetanomorphum   (DQ241819) Firmicutes Clostridia 94.9
H1-43 3 Clostridium intestinale  (X76740) Firmicutes Clostridia 96.7
H1-2 3 Clostridium subterminale  (AF241844) Firmicutes Clostridia 94.7
H1-18 3 Desulfosporosinus acidophilus  (FJ951625) Firmicutes Clostridia 89.6
H1-15 3 Bacillus niacini  (AB021194) Firmicutes Bacilli 99.0

Wh30-30 (K1)K1-2 14 Clostridium xylanovorans (AF116920) Firmicutes Clostridia 95.8
K1-4 11 Bacillus niacini  (AB021194) Firmicutes Bacilli 98.4
K1-18 9 Oxobacter pfennigii  (X77838) Firmicutes Clostridia 90.3
K1-26 6 Zymophilus raffinosivorans (DQ217599) Firmicutes Clostridia 99.8
K1-6 7 Azotobacter chroococcum  (EF634038) Proteobacteria Gammaproteobacteria 100
K1-19 4 Clostridium leptum  (AJ305238) Firmicutes Clostridia 92.8
K1-55 3 Clostridium saccharobutylicum  (U16147) Firmicutes Clostridia 98.8

Av25-30 (M2) M2-47 10 Clostridium cylindrosporum  (Y18179) Firmicutes Clostridia 92.9
M2-34 9 Clostridium saccharobutylicum  (U16147) Firmicutes Clostridia 88.7
M2-55 6 Prolixibacter bellariivorans  (AY918928) Bacteroidetes Bacteroidia 89.3
M2-18 5 Clostridium xylanovorans (AF116920) Firmicutes Clostridia 96.3
M2-3 5 Bacillus niacini  (AB021194) Firmicutes Bacilli 99.5
M2-40 4 Pelotomaculum schinkii  (X91170) Firmicutes Clostridia 87.1

Av30-30 (P2) P2-81 32 Veillonella rogosae  (EF108446) Firmicutes Clostridia 99.5
P2-10 30 Streptococcus parasanguinis  (GU561390) Firmicutes Bacilli 99.8
P2-68 4 Clostridium saccharobutylicum  (U16147) Firmicutes Clostridia 98.0

Co25-30 (R1) R1-16 15 Symbiobacterium thermophilum  (AB004913Firmicutes Symbiobacterium clade91.2
R1-20 9 Rhodanobacter terrae  (FJ405366) Proteobacteria Gammaproteobacteria 99.8
R1-5 7 Alicyclobacillus aeris  (FM179383) Firmicutes Bacilli 95.5
R1-10 4 Bordetella petrii (EF212440) Proteobacteria Betaproteobacteria 97.6
R1-19 4 Sediminibacterium salmoneum  (AB682145) Bacteroidetes Sphingobacteria 93.0
R1-23 3 Terrabacter tumescens  (JQ342911) Actinobacteria Actinobacteria 100

Co30-30 (U1) U1-5 17 Symbiobacterium thermophilum  (AB004913Firmicutes Symbiobacterium  clade91.4
U1-14 6 Sphingobacterium multivorum  (AY787820) Bacteroidetes Sphingobacteria 99.2
U1-60 6 Achromobacter spanius  (JN629043) Proteobacteria Betaproteobacteria 99.6
U1-1 5 Sphingomonas kaistensis  (AY769083) Proteobacteria Alphaproteobacteria 96.3
U1-35 5 Rhodanobacter terrae  (FJ405366) Proteobacteria Gammaproteobacteria 99.8
U1-21 4 Symbiobacterium thermophilum  (AB004913Firmicutes Symbiobacterium clade89.7
U1-6 3 Zymophilus raffinosivorans (DQ217599) Firmicutes Clostridia 100

Original (Y2) Y2-12 10 Rhodanobacter terrae  (FJ405366) Proteobacteria Gammaproteobacteria 99.5
Y2-2 10 Dokdonella fugitiva  (AJ969432) Proteobacteria Gammaproteobacteria 94.9
Y2-8 5 Zymophilus paucivorans  (AF373025) Firmicutes Clostridia 98.5
Y2-41 3 Bacillus niacini  (AB021194) Firmicutes Bacilli 99.6
Y2-62 3 Sphingomonas  azotifigens (AB680881) Proteobacteria Alphaproteobacteria 92.5
Y2-84 2 Sphingomonas  azotifigens (AB680881) Proteobacteria Alphaproteobacteria 99.8

*, Sequence similarity (%) of 16S rRNA gene sequence between each representative clone and the closest relative.

Table 2. Major bacterial OTUs and their closest relatives from different clone libraries 



Table 3. Estimates of richness and diversity of bacterial community for each soil sample
Soil sample A1 B2 E1 H1 K1 M2 P2 R1 U1 Y2
No. of total clones 79 89 87 88 89 76 82 80 79 82
No. of total OTUs 18 42 39 38 32 34 13 34 34 49
No. of phyla 3 5 6 7 5 8 2 7 9 9
Coverage (%) 87.3 71.9 74.7 76.1 82.0 76.3 91.4 76.2 73.4 57.3
Richness (Chao 1) 318 380 468 270 386 272 40 667 163 996
Shimpson's diversity index 0.80 0.96 0.96 0.96 0.94 0.95 0.75 0.94 0.93 0.96
Shannon-Wiener diversity ind2.99 4.86 4.85 4.84 4.40 4.45 2.50 4.47 4.42 5.01
Soil sample: A1, Br30-20; B2, Br25-30; E1, Br30-30; H1, Wh25-30; K1, Wh30-30; M2, Av25-30; P2, Av30-30; R1, Co25-30; U1, Co30-3
 Y2, Original.



Supplementary material:  

Name of journal: Applied Microbiology and Biotechnology 

Title: Proliferation of diversified clostridial species during biological soil 

disinfestation incorporated with plant biomass under various conditions 

Names of authors and their affiliations: 

Subrata Mowlicka, Toshiaki Takeharab, Nobuo Kakua, Katsuji Uekia, and Atsuko 

Uekia 
aFaculty of Agriculture, Yamagata University, Yamagata, Japan 
bNARO Western Region Agricultural Research Center, Hiroshima, Japan 

Corresponding author: 

Dr. Atsuko Ueki 

Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka 

997-8555, Yamagata, Japan. Tel.: +81235282846; Fax: +81235282846 

E-mail address: uatsuko@tds1.tr.yamagata-u.ac.jp 

mailto:uatsuko@tds1.tr.yamagata-u.ac.jp�


D
en

at
ur

in
g 

gr
ad

ie
nt

 

60
% 

30
% 

Y2   Q2   A1   G2   L1   U1   E1    K1    P2 

(a) (b) 

1 
2 
 3 

11 

5 

12 

20 

13 
14 

8 

9 

10 

15 

Supplementary Fig. 1 

16 

17 

7 

4 

6 

19 

18 

22 

27 

24 

21 

25 23 

26 

8 6 4 2 

A1 

G2 

K1 

E1 

Y2 

U1 

Q2 

L1 

P2 

Supplementary Fig. 1. (a) DGGE patterns for the original (non-treated) and the treated 
soil samples. (b) Cluster analysis of DGGE band pattern for similarity index. The lane 
Y2 indicates for the original soil, whereas other lanes for the treated soil at 30oC 
under different MC: control (Q2 for 20%, U1 for 30%), Brassica-treated (A1, E1) 
wheat bran-treated (G2, K1), and Avena-treated soils (L1, P2). Other notifications of 
DGGE were similar as described in Fig. 1. 
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Supplementary Fig 2. Rarefaction curves for the 
clostridial groups of the libraries of soils that 
effectively suppressed the pathogen. Clone 
library: A1, Br30-20; E1, Br30-30; H1, Wh25-30; 
K1, Wh30-30. 



Soil sample A1 E1 H1 K1 

No. of total clostridial clones 42 64 67 52 

No. of total clostridial OTUs 10 23 26 14 

Coverage (%) 83.3 82.8 80.6 94.2 

Chao1 (richness) 114 281 176 197 

Shimpson's diversity index 0.61 0.94 0.94 0.88 

Shannon-Wiener diversity index 2.07 4.06 4.23 3.30  

Supplementary Table 1. Estmate of richness and diversity of clostridial 
community for the soil samples suppressed the pathogen effectively  

Soil sample: A1, Br30-20; E1, Br30-30; H1, Wh25-30; K1, Wh30-30. 


	H2502上木厚子 カバーページ
	A. Ueki (2) Text (AMB2012)
	Clone libraries for all BSD-treated soil samples showed substantial differences as compared with those of the original and control libraries (Fig. 3). The BSD libraries irrespective of the treatment conditions showed the presence of exclusively domina...
	The compositions of the major Firmicutes groups for the Brassica-treated three clone libraries were compared (Table 2). The clones closely related at high similarities (about 99%) to Clostridium saccharobutylicum occupied major portions of those clone...
	For the wheat bran-treated two clone libraries Wh25-30 (H1) and Wh30-30 (K1), about 76% and 58% clones were detected from the class Clostridia with a few number of clones from the class Bacilli (Fig. 3). Other phylogenetic groups retrieved from the tw...
	For the Avena-treated clone libraries, members of the Firmicutes also occupied the dominant position. From the library Av25-30 (M2), 51% clones belonged to the Firmicutes phylum (43% from the Clostridia and 8% from the Bacilli) (Fig. 3). Clones relati...
	Bacterial diversity in the clone libraries
	ACKNOWLEDGEMENTS
	This work was partly supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Development of mitigation and adaptation techniques to global warming in the sectors of agriculture, forestry, and fisheries). We also greatly...
	Mowlick S, Hirota K, Takehara T, Kaku N, Ueki K, Ueki A (2012) Development of anaerobic bacterial community consisted of diverse clostridial species during biological soil disinfestation amended with plant biomass. Soil Sci Plant Nutr 58:273-287
	Watanabe T, Cahyani VR, Murase J, Ishibasi E, Kimura M, Asakawa S (2009) Methanogenic archaeal communities developed in paddy fields in the Kojima Bay polder, estimated by denaturing gradient gel electrophoresis, real time PCR and sequence analyses. S...

	A. Ueki (2) Figure legends
	A. Ueki (2) Figure 1-6
	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6

	A. Ueki (2) Table 1
	Sheet1

	A. Ueki (2) Table 2
	Sheet2

	A. Ueki (2) Table 3
	Sheet2

	A. Ueki (2)  Supplementary (Fig. 1, 2; Table 1)
	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4


