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Highlights 

 Effects of biological soil disinfestation (BSD) on spinach wilt were investigated.  

 BSD-treatment using Brassica juncea plants reduced the wilt disease incidence. 

 Soil bacterial compositions in BSD soil were examined by clone library analysis. 

 Species in the Clostridia class dominated in the bacterial communities in BSD soil. 

 BSD should be applied before every cropping to suppress the disease effectively. 

 

Abstract 

Biological soil disinfestation (BSD) is a method of controlling soil-borne pests and diseases 

through anaerobic decomposition of plant biomass incorporated in field soil with temporary 

irrigation and covering with sheets. In this study, effects of BSD on suppression of spinach wilt 

disease were investigated by two different field experiments using mainly Brassica juncea 

plants as plant biomass. Soil bacterial community compositions were analyzed with clone 

library analysis based on 16S rRNA gene sequences to determine the relationship between the 

bacterial composition in the treated soil and suppression of the disease. For the BSD-treated 

soils, oxidation-reduction potential dropped, and acetate was usually detected at high 

concentrations. Although the control treatment (irrigation and polythene covering without 

biomass) decreased the wilt disease incidence in spinach plants cultivated in the treated plot as 
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compared with those for the non-treated plot, BSD-treatments suppressed the disease more 

effectively. The clone library results showed that both non-treated and control soils contained 

diversified bacterial communities of various phylogenetic groups, while members of the 

Firmicutes mainly from the class Clostridia were dominated for the BSD-treated soils. The 

clostridial groups detected were diverse and the major clone groups were closely related to 

strictly anaerobic fermentative bacteria such as Clostridium saccharobutylicum, C. 

cylindrosporum, C. sufflavum, C. xylanovorans, etc. These clostridial groups were almost 

eliminated from the soil bacterial community when the BSD-treated soil was treated again with 

irrigation and covering without biomass before the next cropping, in which the wilt disease was 

hardly suppressed.  

 

Keywords 

Anaerobic bacteria; Biological soil disinfestation (BSD); Brassica juncea; Clone library; 

Clostridial group; Fusarium oxysporum, Wilt disease 

 

1. Introduction 

   Soil-borne diseases are recognized as important limiting factors in the production of 

vegetable crops. The outbreak of soil-borne diseases inflicts major economic damage on crop 
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worldwide. Fusarium wilt of spinach (Spinacia oleracea L.), caused by Fusarium oxysporum f. 

sp. spinaciae, has been reported as the most serious disease of spinach cropping (Correll et al., 

1994; Horinouchi et al., 2010). It causes damping-off, wilting, root rot, and discoloration of the 

vascular system of seedlings and mature plants. To combat the disease, preplant soil 

disinfestation is essential. Although soil fumigation with methyl bromide, chloropicrin or other 

chemicals has been used successfully to control the disease, their use has been associated with 

potential severe environmental problems or damages for human health (Kuniyasu et al., 1993; 

Gina et al., 2008). 

   Biological soil disinfestation (BSD) is a method for controlling soil-borne pests and diseases 

through anaerobic decomposition of plant biomass that was mainly developed in the 

Netherlands (Blok et al., 2000; Messiha et al., 2007) and Japan (Shinmura, 2004; Momma, 

2008). Recently, BSD has become popular in the world, especially in organic agriculture as an 

alternative of chemical fumigation. For BSD, plant biomass is incorporated into soil followed 

by application of irrigation water and covering the soil surface with transparent plastic film for 

about three weeks to induce reduced soil conditions and to maintain suitable soil temperature 

(Shinmura, 2000, 2004). Thereafter, crops can be cultivated after removing the plastic film and 

plowing the field. Plant biomass sources such as Brassicaceae plants, wheat bran, rice straw, 

rice bran, Avena spp., grasses, or other organic substances have been reported to be used 
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successfully for BSD against soil-borne pests and diseases (Mojtahedi et al., 1991; Sarwar and 

Kirkegaard, 1998; Shinmura, 2004; Goud et al., 2004).  

  Brassicaceae plants are known to contain bioactive substances and have been widely used for 

biofumigation in soil (Kirkegaard et al., 1996; Larkin and Griffin, 2007). Biofumigation was 

originally designated to include the particular use of Brassicaceous cover crops and the plants 

have become associated with the practice of BSD as promising biomass for incorporation 

(Stapleton et al., 2000). The decomposition of glucosinolates in the Brassicaceae plant tissues 

may cause release of isothiocyanates (ITCs), in addition to thiocyanates, nitriles, and 

oxazolidinethiones, which are toxic to many soil pathogens (Sawar and Kirkegaard, 1998; 

Fahey et al., 2001). Thus, incorporation of the Brassicaceae plants in soil for BSD should be 

advantageous for suppression of plant pathogens over other organic substances. Brassica 

species such as Brassica juncea, B. napus, B. nigra, B. oleracea, and B. campestris used as BSD 

material or biofumigant were reported to control various soil-borne diseases and crop mortality 

caused by Fusarium spp., Rhizoctonia spp., Pythium spp., Verticillium spp. Alternaria alternata, 

Colletotrichum dematium, and plant parasitic nematodes (Tsror et al., 2007; Mattner et al., 2008; 

Ramirez et al., 2009). A number of brassicas are available in the world market, of which 

mustard greens or Indian mustard (B. juncea var. cernua) is widely grown at both subsistence 

and commercial levels. The potentiality of use of B. juncea plants in BSD is attributed to the 

http://ucanr.org/repository/CAO/landingpage.cfm?article=ca.v063n01p41&fulltext=yes#bib29
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availability of seeds, easy and quick growth, and year round production in most of the areas in 

the world.  

  In our previous studies, BSD treatments with mustard greens (B. juncea var. cernua) and 

Avena plants, as well as wheat bran, successfully controlled the population of the pathogens (F. 

oxysporum f. sp. lycopersici, wilt pathogen of tomato and F. oxysporum f. sp. spinacea, wilt 

pathogen of spinach) in two pot experiments using soil from different districts of Japan 

(Mowlick et al., 2012, 2013). Based on the polymerase chain reaction-denaturing gradient gel 

electrophoresis (PCR-DGGE) and clone library analyses, we found that bacterial communities 

in the BSD-treated soils were greatly changed and strictly anaerobic groups, especially 

fermentative members in the class Clostridia, became major bacterial groups in the 

communities together with some other aerobic or facultatively anaerobic bacteria from the 

classes including Bacilli and Gammaproteobacteria. The Clostridia population increased in soil 

was suggested to play an important role in the control of pathogens through their activities or 

products.  

   Considering the large scale production or repeated cultivation of crop, we should give 

importance to the field experiments to increase the reliability of the findings from the model 

experiments. In this study, we intended to confirm the effects of BSD in field conditions to 

suppress the spinach wilt disease using B. juncea plants and the changes in the soil bacterial 
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community compositions by the treatments. Moreover, the BSD-treated fields were treated 

again with irrigation and covering without biomass incorporation before the next cropping, and 

changes or recovery of bacterial community in the soil and duration of BSD-effects on diseases 

suppression were also investigated. Molecular clone library analysis (Maidak et al., 1999) based 

on 16S rRNA gene sequences was mainly carried out to determine the bacterial community 

compositions in the soil samples.   

2.  Materials and methods 

   The experiments were carried out in greenhouses at two different fields located in two 

districts in Japan at a distance of more than 500 km from each other. Spinach was grown based 

on the organic farming method (without applying chemical fertilizers or pesticides) throughout 

the cultivation period for both experiments. 

 

2.1.  Soil samples for Experiment 1 

 

   Soil samples for Exp. 1 were collected from a field experiment of BSD in a greenhouse (8 × 

21 m2) of Agricultural Research Center, Nara (34.49 oN, 135.96 oE), Japan during June 2010. A 

total of three treatments were carried out in this experiment using a Randomized Complete 

Block Design with three replications. The unit plot size for each treatment was 2.5 × 4 m2. Soil 
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(brown forest loamy soil, pH 6.5-7.0) was treated with two plant biomass sources, B. juncea var. 

cernua (Mustard greens) and Avena sativa plants, as BSD-treatments in a greenhouse field. 

Spinach had been continuously cultivated since 2009 and natural infection of wilt disease of 

spinach had occurred in the field. The Brassica and Avena plants were cultivated beforehand in 

the same greenhouse for two months (15 April to 15 June) and used for the BSD-treatments. 

The plants were cut to pieces by a hammer knife mower and immediately incorporated into the 

soil by a rotary tractor at the rate of 10.4 kg/m2 (= 1.1 kg in dry weight/m2) and 3.29 kg/m2 (= 

0.44 kg in dry weight/m2), respectively. For the control-treatment, none of plant material or any 

other substances was incorporated into the soil. All the plots including the control were irrigated 

sufficiently to exceed the field capacity of moisture content (56.4%) and covered with 

agricultural transparent polyethylene film tightly to provide reducing conditions in soil for three 

weeks (15 June-06 July). The plots were plowed well when the sheets were removed after three 

weeks. Spinach was seeded in every plot about a week later (15 July). The natural wilt disease 

incidence (%) was recorded during the cultivation by visual observation of 100 spinach plants 

(hill) per plot. 

   Temperatures in soil (5 and 10 cm depth) and air inside the greenhouse were recorded every 

10 minutes by data loggers (TR-724, T & D Co. Ltd.). Oxidation-reduction potential (ORP) of 

soil (at 15 cm depth) were measured at intervals of two or three days at four points of every 
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treatment by electrodes (Ag/AgCl) inserting into the soil directly. 

   Soil samples for the measurement of volatile fatty acids (VFAs) in soil and clone library 

analysis of bacterial communities were collected at every week during the treatment. Each soil 

sample (100 g) was obtained from the upper 10 cm of soil depth and mixed well in sterile 

polyethylene bags. Similarly, an original field soil sample without any treatment was also 

collected. Soil samples collected were kept in a freezer (-20oC) immediately after the sampling 

and preserved there until use. Soil samples collected at two weeks of the treatments were used 

for the clone library analysis based on the data for various soil conditions examined. The names 

of clone libraries were designated considering the name of the place (Nara), the sampling date 

(two weeks), and control or the type of biomass as NCO (non-treated soil), N2C 

(control/irrigated without biomass), N2B (Brassica /Mustard-treated soil), and N2A 

(Avena-treated soil).  

 

2.2. Experiment 2 

 

   Soil samples for Exp. 2 were collected from a field experiment of BSD in greenhouses (5.5 

× 17.5 m2) of Agricultural Research Center, Yamaguchi, Japan (34.9 oN, 131.3oE) during June 

2010. The soil was gray lowland soil (sandy loam, pH 6.5) and the plot size for each treatment 
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was 1.5 × 5.5 m2. The number of treatments used in this experiment was six distributed in a 

Randomized Complete Block Design with three replications. Spinach had been also 

continuously cultivated and natural infection of wilt disease of spinach had occurred in the field. 

The soil was treated with plant biomass of two different varieties of B. juncea, that is, B. juncea 

var. cernua (Mustard greens) and B. juncea var. crispifolia (Azamina, one of green vegetables 

commonly cultivated in this district). The name of the treatments was designated considering 

the name of the place (Yamaguchi), control or types of biomass (C, control; B, 

Brassica/Mustard; Ba, Brassica/Azamina). 

   Both B. juncea varieties were cultivated (30 Nov. 2009-8 Apr. 2010) to use as the 

BSD-materials for the BSD plots (YB and YBa) in the same plots. The plant material was 

incorporated into soil by the rotary tractor at the similar way as described for incorporation of 

plants in Exp. 1 together with applying irrigation water and covering with a double layer of 

agricultural transparent sheet with low-permeability for gas (Barrier Star film, 

TOKANKOUSAN Co. LTD; Sky Coat film, C.I. KASEI Co. LTD). For the control-treatment 

(YC), soil was covered with the same film after irrigation without plant biomass. Soil samples 

were collected from all the plots in the similar way as described above for Exp.1 after three 

weeks of the treatments (8-30 Apr. 2010). Spinach was then seeded and cultivated (10 May-17 

June) in the treated soil. Natural wilt disease incidence was recorded based on the observation of 
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plants for 10 different places of 0.1 × 1 m2 of each plot during the cultivation and fresh 

marketable yields (g/m2) were determined by the weights of plants harvested at the end of 

cultivation for the same area. 

   As the next treatments after spinach cultivation in the YC, YB, and YBa fields, the field soil 

was treated in the same way as described above for the control treatment (covering after 

irrigation without biomass incorporation) for each soil (designated as YCC, YBC, and YBaC, 

respectively). Soil samples were also collected from the plots after three weeks of the treatments 

(25 June-16 July). For all plots, spinach was cultivated (22 July-9 Sep.), and both natural wilt 

disease incidence and yields of spinach were also recorded for each field. Temperature in soil 

with sheets (10 cm depth) and air inside the greenhouse during the soil treatments was also 

recorded by data loggers. 

 

2.3.  Measuring volatile fatty acids concentrations of soil samples 

 

   The concentrations of volatile fatty acids (VFAs) for the soil samples were measured by gas 

chromatography (Hitachi G-3900) as described previously (Mowlick et al., 2012; Ueki et al., 

1986) and the concentrations are shown in the text as those determined in the supernatant of 

slurry samples. 
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2.4.  DNA extraction, PCR amplification, clone library, and sequencing 

 

   A composite sample (3 g) was prepared by taking 1 g soil of each triplicate soil sample. One 

g of soil from the composite sample was used for DNA extraction. According to the instructions 

of ‘Ultra CleanTM Soil DNA Isolation kit’ (MO BIO Laboratories, Inc., Carlsbad, CA, USA), 

DNA was extracted from the soil and used for PCR amplification. Bacterial 16S rRNA genes 

were PCR-amplified using a primer set B27f (5'-AGA GTT TGA TYM TGG CTC AG-3') and 

U1492r (5'-GGY TAC CTT GTT ACG ACT T -3'). The composition of PCR mixture (50 µl) 

and PCR amplification conditions were followed as described in the previous study (Mowlick et 

al., 2012). Amplified DNA fragments were confirmed after agarose gel electrophoresis and 

ethidium bromide staining. 

   Clone library analyses were conducted to determine the bacterial community composition of 

the soil samples collected as described previously. The PCR products of DNA from these soil 

samples were purified according to the instructions of QIAquick Gel Extraction Kit (Qiagen, 

Valencia, CA, and USA) and cloned into Escherichia coli JM109 competent cells following the 

protocol of pGEM-T Easy Vector Systems (Promega, Madison, WI, USA). The vector-harboring 

clones containing an insert of appropriate sizes (about 1500 bp) were obtained in the 
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Luria-Bertani (LB) plates by the standard method (Kaku et al., 2005). Nucleotide sequencing 

(about 600 bp) was performed for a total of 96 clones unless otherwise stated for each soil 

sample using a sequence primer U515f (5' GTG YCA GCM GCC GCG GTAA-3') according to 

the Dye Terminator method using a capillary sequencer at Takara Co. Ltd. 

 

2.5.   Database search, construction of trees, and statistical analysis 

 

   The database searches for related 16S rRNA gene sequences were carried out with BLAST 

program and GenBank database (Altschul et al., 1997). The ClustalW program of DDBJ was 

used to align the nucleotide sequences of the clone libraries. The phylogenetic trees were made 

using the neighbor-joining method (Saitou and Nei, 1987) with Njplot program in ClustalW 

package (Thompson et al., 1994). Determination of OTUs (operational taxonomic unit), 

bootstrap resampling analysis, chimera checking, rarefaction analysis, calculation of coverage 

(C), Shimpson's- (D) and Shannon-Wiener-diversity index (H'), etc. were conducted as 

described in our previous study (Mowlick et al., 2013). 

  

2.6.  Accession numbers of the nucleotide sequences 
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   The nucleotide sequences retrieved from the clone library analyses have been deposited in 

DDBJ/GenBank and assigned under the accession numbers AB746034-AB746159 (125 entries 

for Exp. 1) and AB744235-AB744467 (232 entries for Exp. 2). 

 

3. Results 

 

3.1. Experiment 1 

 

3.1.1.  Soil status and disease incidence of spinach 

 

   The soil temperature under the sheets (10 cm depth) was much higher (24.7 to 35.5oC based 

on the average daily values) as compared with that without the sheets (22.6 to 26.2oC) 

throughout the period of soil treatments (Fig. 1a). The temperature at 5 cm in depth was usually 

higher (about 0.5-1.0oC) than that at 10 cm irrespective of with or without sheets (data not 

shown). The air temperature inside the greenhouse ranged from 21.2 to 29.0oC and was 

comparable to the soil temperature without the sheets. 

   The ORP value for non-treated soil was fairly constant at around +350 to +400 mV. The 

values for Mustard- and Avena-treated soil dropped very rapidly to below -100 mV within three 
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days, and then decreased to -200 or -250 mV until 13-15 days (Fig. 1b), indicating the 

development of strongly reduced conditions in these treated soils. The ORP value for the control 

soil (irrigation and covering without plant biomass) also decreased early in the treatment, while 

it never decreased under -100 mV. 

   Concentrations of VFAs in each soil were determined once a week (Table 1). No VFAs was 

detected from the control as well as non-treated soil samples throughout the period of treatment. 

For the Mustard-treated soil, acetate was detected at rather high (15-17 mmol/l) concentrations 

for the first two weeks, and decreased (<4 mmol/l) by the third week. Lower concentrations (1-2 

mmol/l) of propionate and butyrate were detected throughout the treatment. For Avena-treated 

soil, acetate was detected only from the first week sample and a small amount of propionate was 

detected from all samples. 

   Non-treated plots resulted in a high incidence of spinach wilt (41.5%), but the control 

treatment considerably reduced disease incidence (66% reduction) relative to the non-treated 

plot (Table 2). However, both BSD-treatments, the Brassica and Avena plant biomass treatments, 

reduced the incidence more effectively (by 88-90%) than the control treatment.  

 

3.1.2.  Clone library analysis for soil bacterial community structure 
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   To know and compare the changes in the soil bacterial community structures after the 

treatments, clone library analysis was carried out for the four soil samples including the 

non-treated (original) soil (48 clones for each soil sample). The phylogenetic affiliations of the 

clones designated by phylum or class levels of the domain Bacteria were determined for all 

clones (Table 3), and the phylogenetic trees were constructed for all libraries (data not shown).  

   The clone library for the non-treated soil (NCO) showed much diversified populations of 

different phylogenetic groups. The most dominant taxonomic group from the soil sample was 

allocated to the phylum Proteobacteria (32.5% of the total number of clones) and the majority 

in the phylum was placed in the Alphaproteobacteria class. Other sequences were placed in the 

phyla Bacteroidetes, Actinobacteria, TM7, Acidobacteria, etc. For the control library N2C, 

diversified bacterial populations were also detected and the clones in the Proteobacteria phylum 

were the most dominant (37.6%), including the clones in the class Deltaproteobacteria (12.5%), 

which were not found in the library NCO. Clostridium straminisolvens and Clostridium 

xylanovorans appeared as the closest relatives of some clones in the Clostridia groups (a 

spore-forming, strictly anaerobic bacterial group). 

   Clone libraries for both BSD-treated soil samples showed substantial differences as 

compared with those of the libraries NCO and N2C. In case of the Mustard-treated library N2B, 

27.8% clones were assigned to the class Clostridia in the phylum Firmicutes. For the 
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Avena-treated library N2A, the number of members of the class Clostridia also increased as 

compared with those of the libraries NCO and N2C. The closely related clostridial species of the 

dominant clone groups in these two BSD-treated libraries were Clostridium saccharobutyricum, 

Thermincola carboxydiphila, Clostridium tetanomorphum, and Clostridium orbiscindens. 

 

3.2.  Experiment 2 

 

3.2.1.  Effects of treatments on soil status and crop 

 

   The average air and soil (10 cm depth) temperatures during the first treatment (in April) in 

the greenhouse were 18.1 and 21.7oC with great daily fluctuations. For the second treatment 

(June to July), the average air temperature was 30.7 and that of soil temperature was 35.7oC 

(data not shown). Considerable amounts of VFAs were detected from both BSD-treated soils 

with B. juncea plants incorporation (YB and YBa) (Table 4). Acetate was the major VFA with 

butyrate and propionate as the minors. No VFAs was detected where the soil was irrigated 

without plant biomass incorporation (YC, YCC, and YBC), with an exception of YBaC where 

traces of acetate and propionate were detected. 

   BSD treatment with both Brassica plants (Mustard and Azamina) effectively reduced the 
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incidence of spinach wilt by 87% and 75% relative to the control treatment, respectively, and 

almost the same and high amounts of fresh marketable yields were obtained from both BSD 

plots (Table 5). When both BSD plots were treated again with irrigation and covering without 

biomass incorporation (YBC or YBaC), the treatments hardly suppressed the outbreak of 

disease of spinach cultivated after the treatment, especially for the YBaC plot. Furthermore, the 

high disease incidence level for the YCC plot showed that repetition of irrigation without 

biomass incorporation had no effect on disease suppression. 

 

3.2.2.  Clone library analysis for soil bacterial community structure 

 

   Out of the soil samples obtained from the plots, five samples except from the YBaC plot 

were used for the analysis of the bacterial community compositions (Table 6). The clone library 

YC showed much diversified populations of different phylogenetic groups at almost similar 

ratios as described for the control library (N2C) of Exp. 1. For the Mustard-treated clone library 

YB, the members of the Firmicutes were exceedingly dominated (64.2%), of which the majority 

(38.8%) was clostridial clones. The clostridial groups were also dominant (44.4%) in the 

Azamina-treated library YBa. The clone groups affiliated with the class Bacilli (a spore-forming, 

aerobic or facultatively anaerobic group) were the second most dominant for both libraries (25.4 
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and 12.5%, respectively).  

   Of all the phylogenetic trees constructed, the trees for both BSD-treated libraries (YB and 

YBa) are shown in Fig. 2. Clones related to Clostridium cylindrosporum (8 clones, 93-95%), C. 

saccharobutylicum (4 clones, 91-100%), and C. sufflavum (4 clones, 90-93%) were dominant 

clostridial groups in the library YB, whereas those related to C. cylindrosporum (12 clones, 

92-93%), C. saccharobutylicum (6 clones, 90-92%), C. xylanovorans (3 clones, 94-95%), and 

Pelotomaculum schinkii (3 clones, 88-89%) were dominant for the library YBa. The clone 

groups related to Bacillus pycnus (5 clones, 100%), Bacillus circulans (4 clones, 99%), and 

Bacillus niacini (4 clones, 96-97%) were also dominated in these libraries.  

 

3.2.3.  Effects of irrigation-repeats on the bacterial communities 

 

   In case of the clone library YCC, diversified bacterial populations were also detected, but 

clones related to the “Symbiobacterium” clade in the Firmicutes were detected as the most 

dominant group, which was not found in the library YC (Table 6). The ratio of clones from the 

Bacilli class increased and those from the phylum Acidobacteria decreased as compared with 

the library YC. Besides, the bacterial groups belonging to the class Gammaproteobacteria and 

the phylum Bacteroidetes, which emerged in the library YC, seemed to be eliminated in the 
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library YCC. The major dominant clone clusters for this library were related with 

Symbiobacterium thermophilum (16 clones, 90-95%) and B. niacini (7 clones, 98-99%) in the 

Firmicutes. 

   For the clone library YBC, the typical clostridial members became minor in the community, 

while the members in the Bacilli and the “Symbiobacterium” clade occupied the dominant 

places. Other major groups belonged to the phyla Proteobacteria, Chloroflexi, and 

Acidobacteria. The major clone groups from the YBC clone library were related to S. 

thermophilum (10 clones, 90-95%), Longilinea arvoryzae (10 clones, 87-89%) in the 

Chloroflexi, and Pseudolabrys taiwanensis (6 clones, 92-97%) in the Alphaproteobacteria, etc. 

Among the clostridial groups, two clones related to C. saccharobutylicum (99%) were found. 

 

3.2.4.  Bacterial diversity in the soil bacterial communities 

 

   The numbers of OTUs (at 97% similarity) recognized for the clone libraries showed almost 

a similar pattern according to the number of clones. Rarefaction analysis based on the OTU 

clustering showed that the curves for all the treated soils were far from the saturation with lower 

coverage values and bacterial richness in soil was not recovered for all soil samples (data not 

shown). The estimates of diversity in the communities (Table 7) showed almost the same and 
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high levels of bacterial diversities for most of the soil samples.  

 

4.3.  Phylogenetic diversity of clostridial groups from both experiments 

 

   Since members in the Clostridia were the specific group increased in the BSD-treated soils 

and suggested to play important roles to suppress the pathogens, the compositions of clostridial 

communities for all BSD soils were compared by constructing a phylogenetic tree consisting of 

all OTUs assigned to the class Clostridia from all (both Exp. 1 and 2) BSD-treated samples (Fig. 

3). Most of the OTUs in the class consisted of more than two clones as shown above, and some 

of OTUs contained only one clone. All the clostridial clones are classified into four clusters (the 

clusters I, III, IV, and XIVa) (Collins et al., 1994) together with various groups such as 

Caloramator, Oxobacter, and Pelotomaculum. The result indicates that the clostridial 

communities were diverse irrespective of the BSD-treatments. 

   It was revealed that OTUs related to C. saccharobutylicum, C. cylindrosporum, C. 

tetanomorphum, C. sufflavum, C. xylanovorans, and P. schinkii were recognized in most of the 

BSD-treated clone libraries as the dominant groups and clones related to O. pfennigii were also 

detected commonly as a relatively minor group. 
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4. Discussion 

 

   In this study, we investigated the potential of B. juncea plants as BSD material to suppress 

the spinach wilt disease. Spinach plants cultivated in all BSD-treated soils with B. juncea 

incorporation showed much lower disease incidences as compared with the non-treated or 

control plots for both experiments. The results were similar to our previous studies of model 

experiments (Mowlick et al., 2012, 2013), indicating the effectiveness of BSD using B. juncea 

plants for actual cultivation of spinach in the field conditions.  

   The exact mechanism for the suppression of soil pathogens in the BSD-treated fields is not 

yet clearly known. For the Brassica-treated fields, ITCs from the tissue damage of Brassica 

leaves have been mentioned as the major causal factors to kill the pathogens (Matthiessen and 

Kirkegaard, 2006; Mattner et al., 2008). Apart from the function of glucosinolates, studies have 

demonstrated that the pesticidal activity of Brassica spp. is likely due to other factors such as 

releasing of aldehydes, acids and other sulfur- and nitrogen-containing compounds during plant 

growth or biomass decomposition in soil (Gamliel and Stapleton, 1993; Bending and Lincoln, 

1999). In our preliminary experiments using closed pots containing soil incorporated with B. 

juncea plants, it was shown that volatile bioactive substances were released from soil only at the 

early period (3-4 days) of the treatment, that is, before the start of active decomposition of 

http://ucanr.org/repository/CAO/landingpage.cfm?article=ca.v063n01p41&fulltext=yes#bib8#bib8
http://ucanr.org/repository/CAO/landingpage.cfm?article=ca.v063n01p41&fulltext=yes#bib6#bib6
http://ucanr.org/repository/CAO/landingpage.cfm?article=ca.v063n01p41&fulltext=yes#bib6#bib6
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plants by microbes in soil (data not shown). Thus, it was strongly suggested that microbial 

decomposition of plants during the BSD-treatment for three weeks should be greatly associated 

with soil disinfestation in addition to the bioactive substances directly released from the plants.  

   In Exp. 1, covering with sheets (control) reduced the disease incidence as compared with 

non-treated soil. A moderately reduced condition was developed in the soil during the treatment 

and it appeared that some anaerobic bacterial groups in the classes Deltaproteobacteria and 

Clostridia increased in the soil bacterial community. These changes in the soil condition might 

affect the population of soil pathogens and bring about the suppression of disease incidence. It is 

generally thought that BSD-treatment effectively suppresses soil pathogens at lower temperature 

as compared with solarization. Since the soil temperature under the sheets for Exp. 1 was not so 

high throughout the treatment (usually lower than 40oC at the highest during daytime), it is not 

likely that increase in temperature or solarization was the major cause of the suppression of 

pathogen. 

   In this study, we investigated various states of BSD-treated soils such as ORP, VFAs 

accumulation or changes of bacterial community composition, etc. The decrease in ORP (Blok 

et al., 2000) and accumulation of VFAs such as acetate and butyrate in soil (Momma et al., 

2006; Katase et al., 2009) have been pointed out as important aspects of BSD, that are 

associated with the proliferation of anaerobic fermentative bacteria in soil. We noticed that ORP 
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values (Exp.1) decreased considerably for the BSD-treated samples as compared with the 

control and non-treated soils, thereby might stimulate growth and multiplication of anaerobic 

bacteria. Actually, a large number of anaerobic bacteria including clostridial groups were 

detected as the closest relatives for the clones from the BSD-treated soil samples of Exp. 1 

(N2A and N2B) as well as Exp. 2 (YB and YBa). Although the ratios of the clostridial group 

populations were not so high as in our previous studies of the model experiments (Mowlick et 

al., 2012, 2013) especially for Exp. 1, they were also dominating in the clone libraries obtained 

in this study. Besides, high concentrations of VFAs were also detected from most of the 

BSD-treated soil samples. Since anaerobic bacteria such as clostridial groups are known to 

produce VFAs or other compounds during fermentation of substrates for their growth, the 

detection of VFAs from the BSD-treated soils coincided well with the presence of a large 

number of clostridial groups in the clone libraries for the BSD-treated soils. Thus, it was shown 

that incorporation of Brassica plants also strongly stimulated growth of the strictly anaerobic 

clostridial groups in field soil. Of the two Brassica plants used as BSD materials in this study, 

Mustard plants showed a slightly higher disease suppressing effect than Azamina, however, 

differences in the effects of both plants should be confirmed by further experiments.  

Avena sativa, a member of the grass family (Gramineae), has been also known to produce 

bioactive chemical compounds, including phenolics, glycosides, benzoxazinones, and amino 
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acids, which have mainly allelopathic effects on other plants or soil-borne pests and diseases 

(Putnam and DeFrank, 1983; Stapleton, 2009). Thus, the Avena plants also have the advantage 

to suppress pathogens in a similar manner as that for the Brassica plants, and actually showed 

effectiveness to suppress the disease in this study. We did not include Brassica or Avena plants 

incorporation without polythene covering to see whether the biofumigation of these bioactive 

plants alone could produce disease reduction comparable to BSD. These should be studied in 

future as remaining subjects to discriminate between effects of bioactive substances of plants 

and microbial activities during BSD treatments. 

   The clone libraries for the non-treated soils NCO (Exp. 1) contained diversified bacterial 

groups of different phyla and classes as noticed in case of non-treated soils of the previous 

studies (Mowlick et al., 2012, 2013). Since we obtained almost similar community profiles for 

the non-treated and control (without biomass) soils in the previous studies as well as Exp. 1 of 

this study, we did not analyze the communities for the non-treated soil of Exp. 2. However, the 

bacterial compositions of the control soils N2C (Exp. 1) and YC (Exp. 2) indicated that the soil 

upon irrigation without plant biomass incorporation kept diverse groups in the bacterial 

communities in soil with only slight changes, which also coincided with our previous studies of 

the model experiments. 

   Most of the closely related clostridial species found in the BSD soil samples such as C. 

http://ucanr.org/repository/cao/landingpage.cfm?article=ca.v063n01p41&fulltext=yes#bib23#bib23
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saccharobutylicum, C. cylindrosporum, C. sufflavum, C. tetanomorphum, C. xylanovorans, O. 

pfennigii, and P. schinkii were also placed as the dominant clone groups for our model 

experiments (Mowlick et al., 2012, 2013). These diverse clostridial species are known to form 

various products including VFAs, alcohols or other compounds such as indole or skatole during 

decomposition of biomass (Macfarlane and Macfarlane, 1995; Rainey et al., 2009; Wiegel, 

2009), suggesting the possible role of pathogenic suppression by the fermentation products of 

the related species in BSD-treated soil in practice. Besides the Clostridia, clones closely related 

to B. niacini, B. circulans, B. pycnus, etc. of the Bacilli class were also major groups in the 

BSD-treated libraries. Since the species in the Bacillus have been well known to participate in 

various enzymatic activities (Wang et al., 2002; Hariprasad et al., 2011), the group may play 

some roles in the disease control. In the further studies, isolation of bacteria relating to these 

dominant groups from the BSD-treated fields and their physiological and other metabolic 

characteristics should be studied to determine the functions in pathogenic suppression. 

   The YCC and YBC clone libraries showed the increased ratios of clones from the Firmicutes 

phylum, especially from the class Bacilli, as compared with that for the library YC, but the 

Clostridia became a minor group even in the library YBC. The results indicated that irrigation 

without biomass incorporation (YBC) did not maintain the clostridial dominancy even the field 

soil had harbored diverse clostridial species at large ratios just after the previous BSD-treatment. 
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A unique group relating to S. thermophilum (a new clade within the Firmicutes or, possibly, a 

novel phylum, Beppu and Ueda, 2009) was found to dominate in the libraries YCC and YBC. 

Similar results were obtained from the analysis of bacterial community for the control soil 

(without biomass) of our model experiment (Mowlick et al., 2013). 

   The estimates of diversity indicated a high diversity in the soil bacterial communities after 

the BSD-treatment even though the percentages of the clones in the Firmicutes, especially in the 

class Clostridia, remarkably increased as compared with the non-treated or control soils. 

Various species from these newly proliferated groups in the BSD-treated soil apparently 

supported the high bacterial diversity at the species (OTU) level, indicating the abundance of 

bacterial species in soil for changing the community structures according to circumstances.   

   In this study, effectiveness of BSD with B. juncea plants incorporation in fields can be 

observed clearly by the suppression of spinach wilt disease, accumulation of VFAs, and 

increased ratios of the clostridial groups for the BSD-treated libraries from both experiments. 

Moreover, it was shown that the control treatment (irrigated and polythene covered without 

plant biomass incorporation) could not fully reduce the plant disease incidence as compared 

with BSD-treatments. Thus, BSD should be a suitable option to control the soil-borne disease 

and B. juncea as a plant biomass can suppress the spinach wilt disease effectively. Moreover, 

plant biomass is always necessary to be incorporated for successful functioning of BSD before 



 28 

cultivation of crops. We isolated many clostridial strains from the BSD-treated soil samples 

during the study. We are now investigating to clarify the effects of anaerobic bacteria on growth 

of soil pathogenic fungi using the bacterial isolates relating to the major clostridial clones found 

in the BSD-treated soils. 
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FIGURE LEGENDS 

 

Fig. 1. Time courses of changes during the treatments of Exp. 1 in (a) temperatures of soil (10 

cm depth) (∆, without polythene wrapping; ▲, under polythene wrapping) and air in the 

greenhouse ( ◇ ) and (b) oxidation-reduction potential (ORP) ( ◆ , non-treated; □, control; ●, 

Mustard-treated; ○, Avena-treated). 

 

Fig. 2. Neighbor-joining trees showing the phylogenetic relationships of all OTUs derived from 

YB (Mustard-treated soil) (a) and YBa (Azamina-treated soil) (b) based on 16S rRNA gene 

sequences from Exp. 2. Bootstrap values (n = 1,000) above 70% are indicated at branch nodes. 

The scale bar represents 2% estimated difference in nucleotide sequence position. The name of 

each clone starts with the clone library designation of both YB and YBa. As the outgroup, 

Sulfolobus acidocaldarius (D14053) (the domain Archaea) 16S rRNA gene sequence was used. 

Accession numbers of the species are shown in the parentheses. Numbers in the parentheses 

aside each clone name denote the number of clones assigned to the OTU. Each clone name 

without parenthesis represents one OTU with one clone. The abbreviation C. indicates the genus 

Clostridium. Other abbreviations: α-, β-, γ and δ-Prot, Alpha-, Beta-, Gamma-, and 

Deltaproteobacteria, respectively; Actino, Actinobacteria; Acido, Acidobacteria; Gemma, 



 

Gemmatimonadetes, Symbio, Symbiobacterium; Bacter, Bacteroidetes; Plancto, 

Planctomycetes; Verruco, Verrucomicrobia; Chlo, Chloroflexi. Designation of clone names with 

YB and YBa correspond to the YCB and YCBa libraries, respectively, deposited in the 

DDBJ/Genbank. 

 

Fig. 3. Neighbor-joining tree showing the phylogenetic relationships of clostridial clones (all 

OTUs from BSD-treated samples of Exp. 1 and 2) based on 16S rRNA gene sequences 

(according to the clostridial cluster analysis by Collins et al., 1994). As the outgroup, Bacillus 

subtilis DSM10 16S rRNA gene sequence was used. The abbreviation C. indicates the genus 

Clostridium. The name of each clone starts with the clone libraries with BSD treatments. N2B 

and N2A, Mustard- and Avena-treated soil, respectively from Exp. 1, whereas YB, 

Mustard-treated; YBa, Azamina-treated; YBC, fields irrigated and covered again without 

biomass for YB field from Exp. 2. Tree construction and other notifications are similar as 

described in Fig. 2. 
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Table 1. VFAs concentrations detected from differently treated samples
a

Plant biomass Weeks of                     VFAs (mmol/l)
b

incorporated  treatment Acetate Propionate Butyrate

Brassica (Mustard) 1 15.5 1.0 1.3

2 17.0 1.6 1.0

3 3.8 1.7 0.3

Avena 1 4.9 0.4 -
c

2 - 0.2 -

3 - 1.7 -

a
 No VFAs was detected from Control (irrigated and polythene covered without

biomass) and non-treated soil.
 b
 Means of triplicate samples. 

c
 Not detected.



Table 2. Wilt disease  incidence of spinach

cultivated in differently treated soil for Exp. 1

Treatment Wilt disease

incidence (%)
a

Non-treated 41.5 ± 7.7

Control 14.0 ± 1.5

Brassica  (Mustard) 5.2 ± 1.5

Avena 3.9 ± 0.6
a
 Mean ± SD.



Table 3. Composition profiles of phylogenetic groups of bacteria based on 16S rRNA gene

sequences from clone libraries of Exp. 1.

Phylum or Class                        Clone library
a
 (% of relative abundance)

NCO N2C N2B N2A

Alphaproteobacteria 24.4 15.3 8.3 8.3

Betaproteobacteria 5.4 5.6  -
b 5.6

Gammaproteobacteria 2.7 4.2 13.9 8.3

Deltaproteobacteria  - 12.5 2.8 2.8

Acidobacteria 5.4 5.6 8.3 2.8

Verrucomicrobia 5.4 5.6 2.8 16.7

Bacteroidetes 13.5 4.2 8.3 11.1

Planctomycetes 2.7 2.8 2.8  -

Firmicutes (Clostridia ) 2.7 8.4 22.2 19.4

Firmicutes (Bacilli ) 2.7 4.2 5.6 2.8

Gemmatimonadetes 2.7 1.4  - 2.8

TM7 8.1 2.8  - 2.8

Actinobacteria 10.8 15.3 13.9 2.8

Chloroflexi 2.7 1.4 5.6 8.3

Others 10.8 8.4 5.6 5.6
a 
NCO, non-treated soil; N2C, control soil (control (irrigated and polythene covered without

biomass ); N2B, Brassica  (Mustard)-treated soil; N2A, Avena -treated soil. 
b 
Not detected.



Table 4. VFAs accumualtion for the soil samples of Exp. 2

Soil sample
a

                               VFAs (mmol/l)

Acetate Propionate Butyrate

YC -
b - -

YB 4.5 1.9 2.7

YBa 9.0 2.6 2.3

YCC - - -

YBC - - -

YBaC 0.3 0.2 -
a 
YC, control (irrigated and polythene covered without biomass); YB,

BSD (Mustard)-treated; YBa, BSD (Azamina)-treated; YCC, YBC,

and YBaC, fields irrigated and covered again without biomass for YC, 

YB, and YBa fields, respectively. 
b
 Not detected.



Table 5. Wilt disease  incidence and yields of spinach cultivatede

in the treated fields for Exp. 2

Soil smaple
a Wilt disease Yield  of spinach

incidence (%)
b

 (g/m
2
)

b

YC 58.8 ± 37.3 858 ± 601

YB 7.5 ± 8.5 4,556 ± 717

YBa 14.7 ± 12.1 4,425 ± 599

YCC 55.0 ± 20.1 1,484 ± 859

YBC 31.0 ± 25.6 2,265 ± 820

YBaC 65.0 ± 20.1 416 ± 188
a
 YC, control (irrigated and polythene covered without biomass); YB,

BSD (Mustard)-treated; YBa, BSD (Azamina)-treated; YCC, YBC,

and YBaC, fields irrigated and covered again without biomass for YC, 

YB, and YBa fields, respectively.  
b
 Mean ± SD.



Table 6. Composition profiles of phylogenetic groups of bacteria based on 16S rRNA gene sequences from

clone libraries of Exp. 2.

Phylum or class                                  Clone library
a
 (% of abundance)

YC YB YBa YCC YBC

Alphaproteobacteria 9.1 10.4 5.6 10.0 17.7

Betaproteobacteria 9.1 4.5  -
b 6.7 3.8

Gammaproteobacteria 7.6 2.9  -  - 1.3

Deltaproteobacteria 9.1  - 6.9 2.2 2.5

Acidobacteria 13.6  - 2.8 8.9 6.3

Verrucomicrobia 3.0 1.5 1.4 3.3 1.3

Bacteroidetes 6.1  - 1.4  - 3.8

Planctomycetes 4.5 4.5 4.2 4.4 2.5

Firmicutes (Clostridia ) 3.0 38.8 44.4 1.1 7.6

Firmicutes (Bacilli ) 6.1 25.4 12.5 16.7 14.0

Firmicutes (Symbiobacterium )  -  - 1.4 17.8 12.7

Gemmatimonadetes 6.1 1.5  - 7.8  -

Actinobacteria 12.1 4.5 9.7 6.7 2.5

Chloroflexi 9.1 1.5 8.3 3.3 21.5

Others 1.5 4.5 1.4 11.1 2.5
a
 YC, control (irrigated and polythene covered without biomass); YB, BSD (Mustard)-treated; YBa, BSD

(Azamina)-treated; YCC and YBC, fields irrigated and covered again without biomass for YC and YB

fields, respectively. 
b
 Not detected.



Table 7. Estimates of bacterial diversity from the field samples of Exp. 2

Soil sample
a YC YB YBa YCC YBC

No. of total clones 66 67 72 89 79

No. of total OTUs 45 43 46 43 46

Coverage (%) 57.5 56.7 51.4 73 63.3

Shimpson's diversity index 0.98 0.98 0.97 0.96 0.98

Shannon-Wiener diversity index 5.32 5.17 5.14 5.05 5.25
a
 YC, control (irrigated and polythene covered without biomass); YB, BSD (Mustard)-treated; YBa, BSD

(Azamina)-treated; YCC and YBC, fields irrigated and covered again without biomass for YC and YB 

fields, respectively.
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