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Abstract 

Biological soil disinfestation (BSD) is an effective method to suppress soil-borne plant diseases 

by incorporation of plant biomass into soil under reduced, anoxic condition. Usefulness of 

Japanese radish (daikon) residue as plant biomass for BSD was investigated by both model and 

field experiments in comparison with the effects of Brassica juncea plants or wheat bran. 

Considerable amounts of acetate together with minor amounts of propionate and butyrate were 

detected from the radish-treated soils at similar levels with those in soils treated with B. juncea 

plants or wheat bran. BSD treatments with radish residue reduced spinach wilt disease incidence 

in both model and field experiments. When the BSD-treated soil was treated again with 

irrigation and covering without biomass before next cropping, however, wilt disease was hardly 

suppressed. Clone library analysis based on 16S rRNA gene sequences was carried out to 

determine the changes in the bacterial community compositions in the treated soil samples. The 

analyses showed that the bacterial communities in the radish-treated soils were dominated by 

members of the classes Clostridia and Bacilli of the phylum Firmicutes in both experiments. 

The clostridial groups detected were diverse and the major operational taxonomic units (OTUs) 

were closely related to Clostridium saccharobutylicum, Clostridium sufflavum, Clostridium 

xylanovorans, and Oxobacter pfennigii, which had been commonly detected as the dominant 

groups in BSD-soils treated with B. juncea plants or wheat bran in our previous studies. The 



dominant clone groups belonging to the Bacilli class were closely related to several species such 

as Bacillus niacini, Bacillus circulans, and Bacillus pycnus. Dominancy of the Bacilli groups 

seemed to increase when radish residue was repeatedly applied as BSD material. 
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1.  Introduction 

 

   Public demands to protect the global environment have stimulated research to reduce the use 

of pesticides and to find environmentally friendly and cost effective alternatives for controlling 

plant diseases. In this context, biological methods without using chemicals offer attractive ways 



to suppress plant pathogens. Biological soil disinfestation (BSD) is a method developed mainly 

in the Netherlands (Blok et al., 2000; Messiha et al., 2007) and Japan (Shinmura, 2004; Momma, 

2008) as an ecological alternative to chemical fumigation. BSD requires incorporation of plant 

biomass into field soil together with excess irrigation water before the start of cropping. The soil 

surface is then tightly covered with polythene sheets to maintain anoxic soil condition for about 

three weeks (Shinmura, 2000, 2004). Crops can be cultivated after this period upon removal of 

the sheets and plowing of soil. It has generally been thought that bioactive substances released 

from plant biomass incorporated into soil as well as various compounds produced by microbes 

in soil during decomposition of plants synergistically suppress soilborne plant pathogens. 

Among plant biomass sources, the Brassicaceae plants have been used as promising BSD 

materials or biofumigants (Sarwar and Kirkegaard, 1998; Goud et al., 2004). Most of the 

Brassicaceae plants may release isothiocyanates (ITCs), substances that are toxic to soilborne 

pests and pathogens, by the myrosinase activity to hydrolyse glucosinolates commonly present 

in the Brassicaceae plant tissues (Sawar and Kirkegaard, 1998; Fahey et al., 2001).  

   Spinach (Spinacia oleracea L.) is an important vegetable crop in many countries that is 

mainly cultivated from seed sowing. In case of direct seed sowing, BSD seems to be more 

advantageous as seeds sown in the field may often be prone to attack by a number of soilborne 

diseases during their establishment. Spinach cultivation is greatly hampered by many fungal 



soilborne diseases. Fusarium wilt caused by Fusarium oxysporum f. sp. spinaciae has been 

reported as the most serious disease of spinach in Japan (Muslim et al., 2003; Horinouchi et al., 

2010). The disease causes damping-off, wilting, root rot, vascular discoloration, and death of 

seedlings as well as mature spinach plants (Hungerford, 1923; Larsson and Gerhardson, 1992).  

   In our previous studies with BSD treatments using model experiments (Mowlick et al., 

2012; 2013a), Brassica juncea plants, a species of the Brassicaceae, as well as wheat bran and 

Avena sativa plants were incorporated into soil to determine the effects on pathogenic 

suppression and soil bacterial community development. The BSD treatments successfully 

controlled populations of the pathogens F. oxysporum f. sp. lycopersici (wilt pathogen of 

tomato) and F. oxysporum f. sp. spinaciae (wilt pathogen of spinach). Furthermore, B. juncea 

plants were effectively used in field experiments as BSD material to combat spinach wilt 

(Mowlick et al., 2013c). Using molecular analyses such as polymerase chain 

reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone library methods based 

on 16S rRNA gene sequences, we observed that bacterial communities in these BSD-treated soil 

samples were greatly changed and anaerobic groups, especially in the class Clostridia of the 

phylum Firmicutes, became major bacterial groups in the communities together with some other 

aerobic or facultatively anaerobic bacteria in the classes Bacilli and Gammaproteobacteria. It 



seemed that the activities of these bacterial groups that proliferated in BSD-treated soil strongly 

affected the survival and growth of pathogens in the soil. 

  In this study, we intended to determine the efficacy of plant biomass from the family 

Brassicaceae when incorporated into soil as BSD material. Radish (Raphanus sativus L.),  

belonging to the family Brassicaceae, is an important vegetable crop in the world that is 

consumed in China, India, Japan, Korea, the European countries, and America as raw (salad), 

cooked, brined and fermented (pickled), and dried forms. In Japan, many varieties of R. sativus 

have been widely cultivated. Especially, Japanese radish (R. sativus var. longipinnatus), 

commonly known as “daikon” in Japanese (that is, “large root”) is cultivated all over Japan as 

one of the most popular vegetables with high production. A daikon plant develops a white thick 

root (composed of a hypocotyl and a main root, 20-35 cm long and about 7-8 cm in diameter) 

and radical leaves (about 20 pinnate compound leaves with more than 50 cm long rachis). 

Young leaves of daikon are also cooked as a brightly-colored, nourishing vegetable however, 

the roots are mainly used in various popular foods (Morgan and Midmore, 2003). As a 

Brassicaceous crop, daikon plants or their products also contain glucosinolates or ITCs (Diana 

et al., 1985; Okano et al., 1990). In fact, grated raw roots of daikon, called “hot daikon” in Japan, 

have a very hot or pungent taste. Due to larger size of the roots and leaves, a vast amount of 

radish products can be obtained every year in Japan. Thus, a lot of radish residue is wasted after 



collecting marketable plants from the fields. Furthermore, most of the leaves of grown daikon 

are usually discarded during harvesting and transportation. Hence, the radish plants seem to be 

very promising as material for BSD treatments and may have greater possibilities to be used in 

controlling soilborne diseases. Besides, the availability of radish seeds in the market, the ease of 

growing radish, and the rapid growth of radish plants may increase the potential of using radish 

biomass as BSD material.  

   The objective of this research was to determine the usefulness of Japanese-radish (daikon) 

residues as BSD treatments in suppressing spinach wilt disease in model and field experiments. 

Changes in soil bacterial community composition due to radish incorporation were also 

investigated by clone library analysis. Furthermore, repetition of BSD treatment in the same 

fields was also investigated to evaluate the persistence of BSD effects on spinach wilt and soil 

bacterial community structures. 

 

2.  Materials and methods 

 

2.1.  A model experiment of BSD using pots and plastic bags  

 

   A model experiment of BSD using both pots and closed plastic bags was conducted in 



Agricultural Research Centre, Yamaguchi, Japan (34.9oN, 131.3oE) during 2010. A total of five 

treatments were assigned in this experiment using a completely randomized design with four 

replications. Soil group was gray lowland (sandy loam). Roots of daikon (cv. Yakushakoiki), as 

well as B. juncea plants and wheat bran were used as BSD material, and the effects on 

suppression of wilt disease of spinach were compared. Fresh daikon (radish) roots were broken 

into pieces (about 1 cm3) with a food processor and B. juncea plants harvested before the 

flowering stage were cut into pieces (about 1 cm) with a cutter before application. Radish roots, 

B. juncea plants, and wheat bran were applied to soil at the rates of 10, 5, and 2 kg/m2, 

respectively. For control treatment, no plant biomass was incorporated into soil. F. oxysporum f. 

sp spinaciae YSF-1 (wilt pathogen of spinach) cultivated in Komada’s Fusarium-selective 

medium (Komada, 1975) was incorporated into soil at about 104 CFU/g of dry soil. 

   Pots (16.0-17.5 cm in diameter or 0.02 m2 with 19.8 cm in height, four pots for each 

treatment) were filled with each treated soil (working volume 3.3 L) prepared as described 

above and the soil was irrigated. The amount of water for irrigation (the ratio of soil and water, 

4.3:1.2) was determined based on our previous BSD field experiments (Mowlick et al., 2013c). 

Each pot was kept airtight throughout the treatment by covering with a double layer of 

transparent sheets with low gas permeability (Barrier Star film, TOKANKOUSAN Co. LTD; 

Sky Coat film, C.I. KASEI Co. LTD). The pots were placed in a greenhouse (2 June) without 



disturbance during the treatment in ambient temperature. The sheets were removed after three 

weeks and the pots were kept open to dry the soil. Thereafter, the pots were prepared for 

cropping and spinach (cv. Summer Top) was seeded (9 July) in all pots (15 seeds/pot) placed in 

the same greenhouse. Spinach was also seeded in pots filled with original soil, without any 

treatment but inoculated with the pathogen. After seedlings emergence, the pots were inspected 

regularly and intercultural operations such as watering, weeding and insect control were done 

when necessary following common agricultural practices in the area. Wilt disease incidence was 

recorded in all pots after a month (6 August). Temperature in pot soil was recorded by a data 

logger (Ondotori, T&D Corp.) during the soil treatment. 

   Plastic bags (17 cm × 11 cm × 3.3 cm) were used for sampling of soil during the BSD 

treatments under the same conditions. Each bag was filled with soil (430 g), treated in the same 

way as for pot soil as described above, watered (120 mL), and sealed tightly to create anoxic 

conditions in the bag. The treated bags were placed in the same greenhouse at the same time as 

the pots (2 June). The bags were opened (one for each condition) and soil was sampled at 

weekly intervals for four weeks in all treatments. Soil samples collected were kept in a freezer 

(-20oC) immediately after the sampling and preserved there until use. The bags once opened and 

used for soil sampling were discarded and other bags incubated under the same treatment 

conditions without opening were used for the next sampling.   



 

2.2.  A BSD experiment in a field greenhouse using radish residue 

 

   A BSD experiment using radish residue was carried out in a greenhouse located in a 

research field at the Agricultural Research Centre, Yamaguchi, Japan. The soil was gray lowland 

soil (sandy loam) and the size of each treatment plot was 1.5 × 5.5 m2 distributed in a 

randomized complete block design with three replications. Spinach had been continuously 

cultivated in the greenhouse and natural infection of spinach by Fusarium wilt disease had 

occurred. Nonmarketable roots of daikon (cv. Natsutsukasa) were collected from a vegetable 

sorting house before shipping. Most of the above ground parts (leaves) were usually removed 

and discarded before collection of radish roots from fields. But the bottom (about 20 cm) of 

rachises of compound leaves was left on each root. Therefore, the above ground parts were also 

used as BSD material. The radish residue collected was broken into pieces by a hammer knife 

mower and incorporated into soil (about 15-20 cm depth) by a rotary tractor at a rate of 20 

kg/m2. The soil in the greenhouse was treated three times by BSD and spinach was cultivated 

after each treatment during 2009-2010 as described below. The plot names were designated 

according to the name of the place (Yamaguchi), control or types of biomass (C, Control; R, 

Radish; B, Brassica/Mustard; Ba, Brassica/Azamina). 



   1) The first treatment: For the first BSD treatment and cropping of spinach, radish residue 

was applied as described above together with enough irrigation water (more than 80-100 L/m2) 

and the soil surface was covered with sheets (16 September 2009) (YR plot). As the control 

treatment (Control 1), soil was irrigated with the same amount of water and covered with sheets 

without biomass incorporation. The greenhouse was closed during the treatment to maintain 

ambient temperature and humidity. After three weeks (7 October 2009), the sheets were 

removed and the treated plots were dried and plowed. Spinach (cv. Trad) was seeded using a 

seeding machine (Gonbe, Mukai Kogyo Inc.) with an inter-row spacing of 10 cm and intra-row 

spacing of 16 cm resulting in 63 plants/m2 (14 October 2009). Plants were watered as needed 

(about 10 minutes in the morning). Weeds were pulled by hand until two weeks after seeding 

and insect pests were mainly controlled using insect screens (4-mm mesh size) set at all 

openings of the greenhouse. Insecticides were used when need arose. Occurrence of wilt disease 

was monitored during growth of the plants and yields were recorded after about a month (17 

November). 

   2) The second treatment: The YR plot in the first treatment was divided into four plots for 

the second treatment. Since production of daikon in this district is generally decreased from 

January to May, it was difficult to obtain enough amounts of radish residue for the next BSD 

treatments. Therefore, two different varieties of B. juncea, that is, B. juncea var. cernua 



(Mustard greens) and B. juncea var. crispifolia (Azamina, one of the green vegetables 

commonly cultivated in this district) were cultivated after the first cropping of spinach (from 30 

November 2009). After about four months of cultivation (8 April 2010), the Brassica plants 

were used as BSD material in the second treatment. Both Brassica plants harvested were cut 

into pieces by a hammer knife mower and immediately incorporated into the plots (YRB for 

Mustard greens and YRBa for Azamina, respectively) with a rotary tractor at the rate of 9.6 

kg/m2. After irrigation, the soil surface was covered with sheets as described above. For YRC 

plots, both cultivated Brassica plants were removed after harvest without incorporation into soil 

(YRC-B for Mustard greens cultivated plot and YRC-Ba for Azamina cultivated plot). Control 1 

plot of the first treatment was used for the second control treatment (Control 2) and Brassica 

plants were also cultivated after spinach cultivation, but the plants were removed in the same 

way as those for YRC plots. Soil samples were collected from all plots after 3 weeks (30 April 

2010). For each soil sample, 100 g of soil was obtained from the upper 10 cm soil depth in 

triplicate and preserved in a similar way as described for the model experiment. Spinach (cv. 

Active) was seeded and cultivated (10 May-17 June) in the treated plots in a similar way as 

mentioned above. 

   3) The third treatment: After spinach cultivation in the YRB and YRBa plots, soil was again 

treated with radish residue and sheet-covering as the third treatment (YRBR and YRBaR), 



respectively (25 June). In case of other treatments (Control 3, YRCC-B, and YRCC-Ba), the soil 

was irrigated without biomass incorporation and covered. Soil samples were also collected from 

the plots after three weeks of treatment (16 July). Spinach (cv. Summer Top) was cultivated (22 

July-9 September) in these treated plots. The second and third treatments as well as cropping of 

spinach were carried out in parallel with the field experiment (Exp. 2) described previously 

(Mowlick et al., 2013c). 

   Pellet-type organic fertilizer containing fish meal (Kumiai Ube Yuki 100: N, 70 g/kg; P2O5, 

40 g/kg; K2O, 10 g/kg) (MC FERTICOM, Co., LTD) was used as preplanting fertilizer to supply 

nitrogen (20 g/m2) in each plot. The amounts of fertilizer applied were determined based on the 

nitrogen content measured by the microdiffusion method using samples extracted from each plot 

with 2 M KCl. Additional fertilizer was not applied throughout the cultivation. The soil and air 

temperatures inside the greenhouse during the treatments were recorded by data loggers. For all 

plots, natural wilt disease incidence was recorded based on the observation of plants in 10 

different locations (each measuring 0.1 × 1 m2) in each plot during the cultivation and fresh 

marketable yields (g/m2) were determined by the weights of plants harvested at the end of 

cultivation for the same area. 

 

2.3.  Determination of volatile fatty acids (VFAs) concentrations in soil  



 

   The concentrations of volatile fatty acids (VFAs) in the soil samples collected were 

measured by gas chromatography (Hitachi G-3900) as described previously (Mowlick et al., 

2012; 2013c).  

    

2.4.  DNA extraction, PCR amplification, and clone library analysis 

 

   All procedures were conducted as described previously (Mowlick et al., 2013c). For soil 

DNA extraction, each composite sample (3 g) from triplicate soil samples was used following 

the instruction of ‘Ultra CleanTM Soil DNA Isolation Kit’. PCR amplification of bacterial 16S 

rRNA genes was done using a primer set B27f (5'-AGA GTT TGA TYM TGG CTC AG-3') and 

U1492r (5'-GGY TAC CTT GTT ACG ACT T -3').  

   Molecular clone library analyses (Maidak et al., 1999) based on 16S rRNA gene sequences 

were carried out to determine the bacterial community compositions in the soil samples as 

described previously (Mowlick et al., 2013a). Nucleotide sequencing (about 600 bp) was carried 

out for a total of 96 clones using a sequence primer U515f (5' GTG YCA GCM GCC GCG 

GTAA-3') according to the Dye Terminator method (capillary sequencer at Takara Co. Ltd.). 

 



2.5.  Data analysis 

 

   Disease incidence and yield data were analyzed using MSTAT-C statistical software (Nissen, 

1983) and mean separation was conducted according to Duncan’s multiple range test (DMRT). 

Database searches for related 16S rRNA gene sequences were carried out with the BLAST 

program and GenBank database (Altschul et al., 1997). The ClustalW program of DDBJ was 

used to align the nucleotide sequences of the clone libraries. Phylogenetic trees were made 

using the neighbor-joining method (Saitou and Nei, 1987) with the Njplot program in the 

ClustalW package (Thompson et al., 1994). Construction of OTUs (operational taxonomic unit 

at 97% similarity level), bootstrap resampling analysis, chimera checking, and rarefaction 

analysis were carried out as described previously (Mowlick et al., 2013c). Coverage of the clone 

libraries including the diversity indexes was calculated using an online biodiversity calculator 

(http://www.alyoung.com/labs/biodiversity_calculator.html).  

 

2.6.  Accession numbers of nucleotide sequence  

 

   The nucleotide sequences obtained from the clone library analyses have been deposited in 

DDBJ/GenBank under the accession numbers AB745762-AB746033 (271 entries) for the model 

http://www.alyoung.com/labs/biodiversity_calculator.html


experiment and AB744468-AB744648 (180 entries) for the greenhouse experiment.  

 

3.  Results 

 

3.1.  The model experiment  

 

3.1.1.  Soil status during treatment  

 

   Soil temperature in the pots changed with large diurnal changes, and the average, maximum, 

and minimum temperatures during the treatments were 27.3oC, 39.4oC (in the daytime), and 

19.7oC (in the night), respectively. The cumulative soil temperature was 573oC. Changes in 

concentrations of VFAs in the treated soil were determined by using the soil samples collected 

from the closed bags (Fig. 1). No VFAs were detected from the original soil as well as the 

control soil throughout the treatment. Considerable amounts of VFAs were detected from all 

BSD-treated soil samples. Acetate was the major component followed by butyrate and 

propionate for most of the treated soils, and the amounts detected were comparatively higher 

during the three weeks of treatments than other incubation periods. The changes in the 

concentrations of VFAs in the radish-treated soil showed a similar pattern as those in the 



Brassica-treated soil with the highest concentrations of acetate at about 13-14 mmolL-1. 

Butyrate was detected at a higher concentration in case of wheat bran-treated soil (up to 22 

mmolL-1).  

 

3.1.2.  Effects on spinach wilt disease of BSD using radish in pot soil 

 

   Spinach was cultivated in the treated pot soil and wilt disease incidence was determined. All 

spinach plants were affected by the disease (100% incidence) in both original and control pots, 

whereas all BSD-treatments reduced the incidence to 15-32% (Table 1). Radish biomass was 

determined to be as effective BSD material for suppression of spinach wilt as Brassica- and 

wheat bran-treatments. 

 

3.1.3.  Bacterial community structures based on clone library analysis 

 

   The bacterial community compositions in soil during the treatments were subjected to clone 

library analysis using the soil samples collected from the closed bags at one week of the 

treatments. Table 2 shows the phylogenetic affiliations of the clones from these soil samples 

based on percentages of abundance. The clone library for the control soil (without biomass 



incorporation) consisted of diverse bacterial groups allocated mainly to the phyla Acidobacteria 

(about 34% of the total number of clones) and Proteobacteria (30%). On the other hand, the 

library of radish-treated soil sample showed substantial differences as compared with the control 

library and contained members of the Firmicutes phylum (at similar ratios of those in the 

Clostridia and Bacilli) as the dominant and major groups in the community. The most dominant 

clone groups belonging to the Firmicutes phylum from this BSD library were closely related to 

Clostridium saccharobutylicum (8 clones, 95-99% sequence similarity with the closest one) and 

Bacillus niacini (10 clones, 99-100%). Other phylogenetic groups of this library detected were 

from the phyla Proteobacteria, Actinobacteria, and Chloroflexi. For other two BSD libraries 

(Brassica- and wheat bran-treated soil), members of the Firmicutes phylum including both the 

classes Clostridia and Bacilli were also dominant groups in the communities in consistence with 

our previous studies using these BSD materials (Mowlick et al., 2012, 2013a,b,c). Thus, it was 

shown that radish residue brought about similar changes in the soil bacterial community as those 

brought about by Brassica plants or wheat bran biomass. 

 

3.2.  The field experiment 

 

3.2.1.  Temperature and soil status 



 

   For the first treatment, air temperature in the greenhouse was monitored. The average, 

minimum, and maximum temperatures were 33.1, 21.4, and 44.8oC, respectively. The average 

air (in the greenhouse) and soil (10 cm depth) temperatures during the second treatment were 

18.1 and 21.7oC, respectively, with great daily fluctuations (the cumulative soil temperature, 

442oC). For the third treatment, the average air temperature was 30.7 and the soil temperature 

(10 cm depth) was 35.7oC (the cumulative soil temperature, 750oC). VFAs concentrations were 

determined for the soil samples obtained at the ends of the second and the third treatments 

(Table 3). No VFAs were detected in Control 2 and 3 plots. All BSD-treated soils contained 

considerable amounts of VFAs (acetate as the major VFA followed by butyrate and propionate 

as minor components). Almost the same concentrations of VFAs were detected from both soil 

samples of YRB and YRBa as well as YRBR and YRBaR. The amounts of acetate and butyrate 

were almost more than double in the third BSD treatments by radish incorporation as compared 

with those in the second treatments using Brassica plants. When the nitrogen contents in field 

soil immediately after the radish-treatments were measured to determine the application amount 

of fertilizer, it appeared that the soil contained more than 15 g/m2 of nitrogen (mainly 

ammonium nitrogen) (data not shown), which was enough for the next spinach cropping without 

application of the fertilizer.  



 

3.2.2.  Wilt disease incidence and yield of spinach 

 

   For the first treatment, severe spinach wilt disease did not occur even in the control plot, but 

radish-BSD resulted in complete suppression of the disease (Table 4). For the second cropping, 

the incidence of wilt in the control plot increased significantly (44.5%) and it was also rather 

high for YRC plots (YRC-B and YRC-Ba), although the levels were lower than that of Control 2 

plot. BSD treatments with incorporation of B. juncea plants (YRB and YRBa) remarkably 

reduced spinach wilt (3-6% incidence) and large amounts of marketable products (4000-4800 

g/m2 yield) were obtained from these plots. As for the third cropping, severe wilt disease broke 

out in the three plots without biomass incorporation (Control 3, YRCC-B, and YRCC-Ba). In 

the case of BSD-treated soil using radish residue, wilt incidence was rather low, especially for 

the YRBR plot. Spinach yields were higher in both BSD plots (YRBR and YRBaR) as 

compared with those of the three plots without biomass incorporation. Thus, the BSD plots 

without biomass incorporation hardly suppressed the outbreak of spinach wilt in the next 

cropping. It was also shown that repetition of irrigation without biomass incorporation (Control 

2 and Control 3) had no effect on disease suppression. 

 



3.2.3.  Clone library analysis for the radish biomass-treated soil samples 

 

   Out of the soil samples obtained, six samples were used for analysis of bacterial community 

compositions (Table 5). The clone library Control 2 showed much diversified populations of 

various phylogenetic groups from the phyla Proteobacteria, Acidobacteria, Actinobacteria, 

Chloroflexi, and others. For the BSD clone library YRB, members of the phylum Firmicutes 

especially from the class Bacilli (44%) were exceedingly dominant with 20% from the 

Clostridia. Besides, the clone library YRBa showed the clones belonging to the Bacilli (48%) 

and Clostridia (26%) almost at a similar ratio as detected in the library YRB. The phylogenetic 

trees for the YRB and YRBa clone libraries (Fig. 2A, B) showed a similar type of closely related 

species of the dominant clone groups from the Clostridia and Bacilli with some exceptions. The 

dominant clostridial groups were closely related to C. saccharobutylicum, Clostridium 

xylanovorans, and Oxobacter pfennigii, whereas those related to B. niacini, Bacillus circulans, 

and Bacillus pycnus were from the class Bacilli. 

   In the clone library Control 3, diversified bacterial populations were also detected, but some 

changes were observed in the “Symbiobacterium” clade and the Bacilli class in the Firmicutes 

as well as in the phyla Acidobacteria or Bacteroidetes in comparison with those in Control 2. 

When BSD was repeated by radish incorporation (the clone library YRBR), the ratio of clones 



from the Bacilli was much higher (70%) as compared with that of the Clostridia (19%). The 

phylogenetic tree for the clone library YRBR (Fig. 3A) demonstrated that dominant clone 

clusters were related with B. pycnus, B. niacini, and Paenibacillus ruminocola from the class 

Bacilli as well as C. saccharobutylicum, C. xylanovorans, and Clostridium sufflavum from the 

Clostridia. For the clone library YRBaR, almost all members in the library were from the 

classes Clostridia (63%) and Bacilli (33%). The phylogenetic tree for the YRBaR clone library 

(Fig. 3B) showed an exceeding proliferation of clone groups related to C. saccharobutylicum, C. 

xylanovorans, and Thermoanaerobacterium saccharolyticum from the Clostidia as well as B. 

niacini, B. circulans, and B. pycnus from the Bacilli. 

    

3.2.4.  Bacterial diversity of the clone libraries 

 

   Rarefaction analysis based on OTU clustering (Fig. 4) showed that the curves for the control 

soils (Control 2 and 3) were far from saturation with lower coverage values. The curves for 

YRB and YRBa overlapped, whereas those for the YRBR and YRBaR libraries seemed to reach 

near the plateau. The number of OTUs (at 97% similarity) declined greatly for the clone 

libraries YRBR and YRBaR as compared with those of the YRB and YRBa libraries (Table 6). 

The estimates of diversity in the communities demonstrated that radish biomass incorporation in 



the repeated BSD decreased bacterial diversity in soil. 

 

4.  Discussion 

 

   Addition of various radish biomass in soil has been reported to reduce soilborne diseases of 

onion, potato, celery, and other solanaceous vegetables together with increase in crop yields 

(Larkin and Griffin, 2007; Justo et al., 2008, Anita, 2012). In this study radish biomass 

incorporation greatly suppressed spinach wilt in both model and greenhouse experiments 

indicating that Japanese radish was an effective biomass in suppressing the disease. Harmful 

effects of radish incorporation on growth of spinach were not observed throughout the 

experiments from every possible aspect. Furthermore, it was shown that incorporation of radish 

into soil also input nutrients necessary for growth of plants at least in the next cropping.  

   In addition to the experiments presented here, we have carried out many BSD experiments 

in greenhouses. The results obtained suggested that if the cumulative time of soil temperature 

(10 cm depth) at higher than 30oC reached more than 250-280 hours during the treatments, it 

was very promising to succeed in suppression of soil pathogens. It was also indicated that soil 

temperature higher than 40oC (200 hours of cumulative time) by solarization effects should 

enhance suppression of pathogens. Concerning the field experiments in this study, soil 



temperature for the third cropping kept higher than 30oC for most of the period of treatment 

(cumulative time of more than 350 hours). For the first cropping, soil temperature might be 

changed similarly judging from the air temperature. Meanwhile, for the second cropping, 

although the soil temperature was lower than 30oC for most of the period and the cumulative 

soil temperature was much lower than that of the third cropping, the BSD treatment suppressed 

wilt disease effectively. The results indicate that although it is desirable to keep high soil 

temperature to succeed in BSD, the method is also applicable even during colder periods with 

appropriate treatments to establish sufficient reduced condition in soil.   

   Goud et al. (2004) found that the suppressive effect of BSD was maintained for several years 

to control verticillium wilt disease of perennial crops. However, most plants may be more 

sensitive to soilborne pathogens at the seedling stage. When radish-treated field was again 

irrigated without biomass incorporation, the plots showed higher disease incidence in a similar 

way as observed in the control plots indicating that radish biomass should be incorporated 

before every spinach cropping for effective suppression of wilt disease. Our study showed that 

yield of spinach was also increased by radish incorporation in soil probably due to effective 

suppression of wilt disease in consistence with our previous research (Mowlick et al., 2013c) 

where yields of spinach were increased markedly by BSD treatments. High temperature during 

the third cropping season might increase the disease incidence as a whole. 



   Radish residue incorporation resulted in accumulation of considerable amounts of VFAs in 

soil, especially of acetate in all conditions. Production of VFAs such as acetate and butyrate in 

soil are reported as an important aspect of BSD (Momma et al., 2006; Katase et al., 2009), 

which is associated with proliferation of anaerobic fermentative bacteria in soil. Actually, a 

number of anaerobic bacterial species including clostridial groups were detected as the closest 

relatives for the clones from the radish-treated soils in both experiments. These results agreed 

well with our previous reports mentioned above where high concentrations of VFAs in various 

BSD-treated soils were detected in both model and field experiments. 

   All control libraries so far examined by us were shown to harbor diversified bacterial 

communities of various phylogenetic taxa, whereas the radish-treated as well as other BSD 

libraries showed an extraordinary development of clones belonging to the phylum Firmicutes. 

Bacterial groups under the class Bacilli of the phylum Firmicutes were detected as the dominant 

groups for all clone libraries of BSD with radish incorporation. As compared with the ratios of 

the Bacilli groups in the Brassica plants-treated soil (Mowlick et al., 2013c), it was revealed that 

these groups were proliferated by the repeated incorporation of radish biomass. Especially for 

YRBR, repetition of radish incorporation to the YRB soils seemed to enhance remarkable 

proliferation of the Bacilli groups, and closely related to B. niacini, B. circulans, B. pycnus, and 

P. ruminocola. Bacillus species are recognized as biocontrol agents that kill soilborne pathogens 



by synthesizing different kinds of antibiotics and enzymes, as well as by their longer survival due 

to their ability to form endospores (Emmert et al., 1999; Wang et al., 2002; Lee et al., 2006; 

Hariprasad et al., 2011). Bacillus species have also been reported to reduce plant disease 

incidence by competition, growth promotion and induction of resistance (Cawoy et al., 2011). 

Therefore, although they are basically aerobic or facultatively anaerobic, proliferation of Bacilli 

groups might play some roles in the suppression of spinach wilt during BSD treatments.  

   Although clostridial groups were relatively lower in percentages in radish-treated soils 

(except YRBaR), similar types of clostridial species were also found as the closest relatives in 

radish-treated soil, especially for the library YRBaR, as those detected in the Brassica- or wheat 

bran-treated soils in the present study as well as in our previous research (Mowlick et al., 2012, 

2013a,c). Clone groups related to C. saccharobutylicum, C. sufflavum, and C. xylanovorans 

recognized in most of the BSD-treated soils in our previous work were also detected as major 

groups in the radish-treated clone libraries. These clostridial species are known to form various 

products including VFAs, alcohols or other compounds such as indole or skatole during 

decomposition of biomass (Macfarlane and Macfarlane, 1995; Rainey et al., 2009; Wiegel, 

2009). The high concentrations of VFAs detected in these soils also indicated proliferation of 

clostridial groups in these field soils, suggesting their important roles in disease suppression in 

radish-treated soil in practice. 



   The estimates of diversity indicated a high diversity in the soil bacterial communities after 

BSD with Brassica incorporation in our previous study (Mowlick et al., 2013c), whereas radish 

incorporation decreased the diversity in this study probably due to proliferation of less diverse 

Bacilli groups. Especially for YRBR, bacterial diversity decreased remarkably as the ratios of 

the Bacilli increased. The results indicated that the Bacilli rather than the Clostridia reduced the 

overall diversity in radish-treated soil. 

   In this study, usefulness of radish residue for BSD treatment was observed clearly as spinach 

wilt was suppressed both in the pots and field greenhouse. Thus, radish residue can be used as 

BSD material for the suppression of plant pathogens in a similar manner as for other plant 

biomass sources like B. juncea or wheat bran. The exact mechanism of suppression of soil 

pathogens by BSD has not been elucidated. As a further study, it may be necessary to compare 

the type and content of glucosinolates in radish residue used in this study with those of B. juncea 

plants. The abundance of populations in the Firmicutes, especially in the Bacilli, was greatly 

increased by radish biomass incorporation. Bacterial groups from both the Bacilli and Clostridia 

might have important roles in suppressing spinach wilt. We have isolated many strains in the 

Clostridia and the Bacilli from BSD-treated soil. We are now examining their physiological 

characteristics to clarify the effects of these bacteria on survival or growth of spinach wilt 

pathogen and to determine their functions in suppression of soilborne plant diseases. 



Furthermore, changes in fungal communities in soil after BSD treatments should be examined in 

future to determine the comprehensive effects of BSD on soil microbial communities. 
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FIGURE CAPTIONS 

 

Fig. 1. Changes in concentrations of volatile fatty acids in (A) Brassica- (B) Wheat bran-, and 

(C) radish-treated soil. Symbols: ∆, acetate; ■, propionate;▲, butyrate. 

 

Fig. 2. Neighbor-joining trees showing the phylogenetic relationships of all operational 

taxonomic units (OTUs) derived from the libraries YRB (BSD-treated soil with radish and 

Mustard greens, subsequently) (A) and YRBa (BSD-treated soil with radish and Azamina, 

subsequently) (B) based on 16S rRNA gene sequences. The name of each clone starts with the 

clone library designation of both YRB and YRBa. Abbreviations: C., Clostridium; α-, β-, and γ-

Prot, Alpha-, Beta-, and Gammaproteobacteria, respectively; Actino, Actinobacteria; Acido, 

Acidobacteria; Gemma, Gemmatimonadetes, Symbio, Symbiobacterium; Bacter, Bacteroidetes; 

Plancto, Planctomycetes; Verruco, Verrucomicrobia, Chlo, Chloroflexi. Bootstrap values (n = 

1,000) above 70% are indicated at branch nodes. The scale bar represents 2% estimated 

difference in nucleotide sequence position. As the outgroup, Sulfolobus acidocaldarius 

(D14053) (the domain Archaea) 16S rRNA gene sequence was used. Accession numbers of the 

species are shown in parentheses. Numbers in parentheses aside each clone name denote the 

number of clones assigned to the OTU. Each clone name without parenthesis represents one 



 

 

OTU with one clone. 

 

Fig. 3. Neighbor-joining trees showing the phylogenetic relationships of all operational 

taxonomic units (OTUs) derived from the libraries YRBR (BSD-treated soil with radish, 

Mustard greens, and radish, subsequently) (A) and YRBaR (BSD-treated soil with radish, 

Azamina, and radish, subsequently) (B). The name of each clone starts with the clone library 

designation of both YRBR and YRBaR. Abbreviations: C., Clostridium; α- and δ-Prot, Alpha- 

and Deltaproteobacteria, respectively; Gemma, Gemmatimonadetes, Symbio, Symbiobacterium. 

Tree construction and other notifications are similar as described in Fig. 2. 

 

Fig. 4. Rarefaction curves for the 16S rRNA gene sequences from all clone libraries. Refer to 

Tables 3 and 4 for the clone library names.   
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Table 1. Wilt disease incidence of  spinach plants  cultivated in pots with 

 differently treated soil

Treatment of pot soil
a

Disease incidence (%)
b

Without treatment (Original) 100a

Control (irrigation without biomasss) 100a

Brassica  with irigation 31.7  ± 31.8b

Wheat bran with irigation 22.7  ± 6.9b

Radish with irigation 15.4  ± 26.6b
a 
Cells of Fusarium oxysporum  f. sp. spinaciae  YSF-1 were inoculated to soil for

all treatments. 
b
Mean ± SD (n  = 4). Means followed by different letters are

singnificantly different (P  = 0.05) according to Duncan's multiple range test.



Table 2. Composition profiles of phylogenetic groups of bacteria based on 16S rRNA gene sequences

for the differently treated soil samples of the model experiment

Phylum or class                                  Clone library (% of abundance)

Control Brassica -treated Wheat bran-treated Radish-treated

Alphaproteobacteria 15.9 8.0 10.4 13.9

Betaproteobacteria 6.8 5.7 2.1 1.4

Gammaproteobacteria 2.3 5.7 3.1 2.8

Deltaproteobacteria 4.5 1.1 3.1  -
a

Acidobacteria 34.1 16.1 5.2 4.2

Verrucomicrobia  -  -  -  -

Bacteroidetes  -  - 2.1 1.4

Planctomycetes 3.4 3.4 3.1 2.8

Firmicutes (Clostridia )  - 31.0 32.3 19.4

Firmicutes (Bacilli )  - 17.2 16.7 15.3

Gemmatimonadetes 12.5 1.1 4.2 5.6

Actinobacteria 6.8 6.9 9.4 15.3

Chloroflexi 9.1 3.4 4.2 6.9

Others 4.5  - 4.2 11.1
a
Not detected.



Table 3. Concentrations of VFAs in differently treated soil in the greenhouse

Plot name
a

1 2 3 Acetate Propionate Butyrate

Control 2 None None  -
c  -  -

YRB Radish Mustard 8.7 3.3 3.4

YRBa Radish Azamina 9.3 1.7 1.6

Control 3 None None None  -  -  -

YRBR Radish Mustard Radish 21.9 3.4 10.6

YRBaR Radish Azamina Radish 20.9 3.2 10.4
a
Control 2 and 3, irrigated and polythene covered without biomass for each treatment.

b
Measured after  triplicate samples were mixed. 

c
Not detected.

     VFAs (mmol/l)
b      Biomass incorporated



Plot name
a       Biomass incorporated Wilt disease Yield  of spinach

1 2 3 incidence (%)
b

 (g/m
2
)

b

Control 1 None 7.7 ± 4.9 4150 ± 420b

YR Radish -
c 5070 ± 620a

Control 2 None None 44.5 ± 30.3a 1062 ± 584d

YRC-B Radish None 21.9 ± 15.1b 896 ± 307d

YRB Radish Mustard 3.4 ± 3.6c 4086 ± 1329b

YRC-Ba Radish None 26.8 ± 11.6b 2462 ± 533c

YRBa Radish Azamina 5.7 ± 5.9c 4810 ± 530a

Control 3 None None None 58.5 ± 20.5b 1029 ± 763b

YRCC-B Radish None None 79.0 ± 8.8a 489 ± 361bc

YRBR Radish Mustard Radish 6.0 ± 10.7d 4003 ± 635a

YRCC-Ba Radish None None 75.0 ± 22.2a 238 ± 251c

YRBaR Radish Azamina Radish 38.0 ± 18.7c 3512 ± 1209a
a
Control 1, 2, and 3, irrigated and polythene covered without biomass for each treatment.

YRC-B/YRCC-B and YRC-Ba/YRCC-Ba: Brassica  (Mustard) and Brassica  (Azamina) plants

were cultivated in each field before the second treatment, respectively, but the plants were 

removed from the field without incorporation into soil. YRB, YRBa, YRBR, and YRBaR were

BSD-treated plots with radish and Brassica . 
b
Mean ± SD (n  = 10). Means followed by different

letters are singnificantly different (P  = 0.05) according to Duncan's multiple range test for each

cropping period.
 c
Not detected.

Table 4. Effects of different treatments on wilt disease incidence and yields of spinach

cultivated in the greenhouse



Table 5. Composition profiles of phylogenetic groups of bacteria based on 16S rRNA gene  sequences for the soil samples

differently treated with radish residue in the greenhouse

Phylum or class Clone library
a
 (% of abundance)

Control 2
b YRB YRBa Control 3

b YRBR YRBaR

Alphaproteobacteria 9.1 11.4 3.5 10.0 2.5  -
c

Betaproteobacteria 9.1 2.9  - 6.7  -  -

Gammaproteobacteria 7.6  - 5.9  - 1.3  -

Deltaproteobacteria 9.1 2.9  - 2.2 2.5 1.3

Acidobacteria 13.6 1.4 2.4 8.9  -  -

Verrucomicrobia 3.0 1.4  - 3.3  -  -

Bacteroidetes 6.1 1.4 2.4  -  -  -

Planctomycetes 4.5 2.9  - 4.4  -  -

Firmicutes (Clostridia ) 3.0 20.0 25.9 1.1 19.0 62.7

Firmicutes (Bacilli ) 6.1 44.3 48.2 16.7 69.6 33.3

Firmicutes (Symbiobacterium )  -  - 2.4 17.8 3.8  -

Gemmatimonadetes 6.1 5.7  - 7.8  - 2.7

Actinobacteria 12.1 2.9 2.4 6.7 1.3  -

Chloroflexi 9.1  - 7.1 3.3  -  -

Others 1.5 2.9  - 11.1  -  -
a
For the clone library names, refer to Table 3 and 4. 

b
Mowlick et al. (2013c). 

c
Not detected.



Table 6. Estimates of bacterial diversity from differently treated soil with radish residue in the greenhouse

Soil sample
a

Control 2
b YRB YRBa Control 3

b YRBR YRBaR

No. of total clones 66 72 85 89 79 75

No. of total OTUs 45 36 40 43 31 26

Coverage (%) 57.5 69.4 70.6 73.0 73.4 78.6

Simpson's diversity index 0.98 0.95 0.95 0.96 0.82 0.91

Shannon-Wiener diversity index 5.32 4.71 4.80 5.05 3.70 3.90
a
For the soil sample names, refer to Table 3 and 4. 

b
Mowlick et al. (2013c).
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