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§ 0. Introduction.

Since A. Einstein, tensor analysis (abbreviation : tan) became rapidly practical
and popular. But vector analysis by direct notation (abbr.: van), especially
3-dimensionsl vector analysis Cabbr.: Svan) is still usefull for classical physics. Therein,
differential vector laws (abbr.: van™) is reduced to vector algebra by W. R.
Hamilton's operator ¥, and van™ is represnted as V-algebra for examplein the J. A.
Stratton’s Tlectromagnetic Theory (1941) etc. But integral vectorial laws ( abbr.:
van™") which use by J. W.Gibbs proposed Pot, New, Max, Lap, (GV 205~589, for
"GV gee references at the end) and Helmholiz's operator H(w) =Hel v (GV 258~9)
were not algebraified in spite of their algebraic properties. We succeeded the
algebraification of van™ by reducing it to division vector algebra (abbr.: val™)
which is proposed By K. Hisazie by his book (HV). But about integro-differential
laws Cabbr. : vau®) such as Gauss, Stokes, Green etc. we intend to proceed quite
another way, and its results are published in other places (O 1~4, OP etc.), so
here we don’t touch them. Also extension of our result to 4-and n-dimension gives
interesting problems but we don’t touch them too. For projection of vector to
subspace X™ in X® we treated it in another paper (OS) by index notation. This
corresponds to an extention of a part of this work.

We add 2-dimesional case in appendix. The above result is tabulated as follows :

At
val : val¥——val”

v v vy 1V ¢ — tan

van @ vapt——— van~
van .

By above formal algebraification, the correspondence between network theory (OS)
and field theoy (e.g. SE.) became quite clear as we would show in the forthcoming
paper (OA) in another issue .

The conteuts of this paper :

in §1, we arrange and describe shortly the neccessary concept from abstract
- algebra, R
in §2, we study algebraic construction of vector algebra especially—val—val.™
in §3, we introduce inverse vector A~ about inner product and general exponen-
tial A¥ necessary for van™.
in §4, we proceed to general value of inverse vector and its application, we owe

these result: mainly to J. A. Schouten (SDG,I, 21. problem 2.14 and 2.15),
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§ 5, describes inverse operation for outer product,

§ 6, is an arrangement of the algebraic properties of the operator ¥,

in §7, we reduce van~'to val™'.

To sce ouly algebraification of integral vectorial laws, only §3, and §7 suffice.

By this investigation it beeame clenr that inverse operation is useful in vector

caleulus, especially we became able to reduce van™ to val™.
Also by representaion of decomposition of an any vector to parallel and normal
component to another vector by inverse vector, we knew this dJdecomposition
correspond to the decomposition of any vector to divergent and rotational components
by Helmholtz.

§ 1. Algebraic preliminaries (WCG, BLL)

_Art. 0. Order For the following sets:
set of matural number M™ 3 1, 2, 3+,
set of integer M 3 0, 1, -1, 2, -2, -+-ene

set of rational number M* 30, 1, A s

2
set of real number M© 20,1,e,7, &/ 2 , & % e

(this doesn’t show countability)
set of polynominal of x with coefficients of above sets M® 3,0, a, ax-+b,---- ,

set of linear operator M? 3 - f° =~§%, P = —g;; b =—§7,ﬁ° =1,

= fdt, = [

we consider following four axioms of crder (we read = ”include” and we say =
“inclusion relation”) (BLT).

P1 reflexive : For all A, AZ=A.

P2 transitive : If A=B, B=C, then A=C.

We call a set “quasi-ordered” which astisties P1, P2.
P3 antisymmetry : If A=B and B=A, then A=B.

A set which satisfies these three so-called "equivalence relations” Pl, P2, P3,
"partially ordered”, “semi-¢rdered” or simply “ordered set”. Further if a set has
P4 chain-property or linearity : For any A and B,

AZB or B=A.

then we call this “linearly ordered set” (BLT,5, 9) , ”simply ordered set” or
”chain”.

Art. 1 Tattice.

)
We call a part of set “subset”. A subset above various ordered sets become the

same subsets respectively.
For a subset X in ordered set P, if there exist upper bound A=x for every 23X,
we call the element “A” upper bound. A “least upper bound” is an upper bound

contained in every other upper bound. Dually we can define “greatest lower bound.”
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If any 2 elements A, B of an ordered set have unique 1. u.b. anb g.1. b. we call this
a “lattice,” and we write L u. b. A—B and eall “join” and, write g.1.b. A~B and
call “meet”. )

Art.2 Combination

Tor mere convention we call M or Mrl-dimensional set M herecafter, and we write

M 30,1, a b, g, sereeenenees A
Further
complex number : M¢ 20,14, u, v, W, Z, voeeonrevens ,
2-dlimensional set : M 230, e,e, A B, i ,
3-dimensional set : M! 50,8, 8, A B, e ,
n-dimensional set : M~ 3 0, e, - e, A, B ,
n-dimensional operator vector set : MYD----- VLV VLT V=1L, T, Ve s
rectangular or square matrlx : MY 3 0, E, A, B,....conneey
M=Mc D A B, «ooeeeeen ,
(k=mna, i,7a,72, 0, %, 1,6, 2, 3,erreneeor S 1 N, M)l

and if we can construct a kind of combination
A X B
(for example : sum, direct sum—i—,@,productx, direct product - X, X -, X, (Kronecker)
X, scaiar and vector product( ), [ ], meet—and join—), we ecall this "product”
-Cthough this may represent sum) and we call this set a”’system”. The main objects of
these axiomatic discussion are equations and congruences of hypercomplex numbers,
matrices, polynomials ete.

Art. 3 Commutative

In matrix caleulus, both matrix product and direet product AXB=xB}(A and for
vector product also
(AB]) =— [BAJ = (BA].
So if
AXB=BXA, (1)
we call this “commutative system.”
Art. 4 Multiplicity.
If the product of a system (not necessarily commutative) decide always uniquely,

we call this ”one-valued” system. Geometrical mean of two number /AB is two
valued system. Matrix product AB™ in which determinant of B is zero, is “indefinite
system”.
Arxt. 5 Closed.
If the product of a one-valued system is also included in the original set, namely
AXB=C ¢ M, (2)
we call this system “closed” about this combination X in H: Weyl's (WCG. D)

meaning or simply “algebraic system”, and write (ML{}) if necessary.

If a closed system is
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Art. 6 associative : (ANXB) XkC=Ak (BX(O), (3)

we call this “semigroup”. Further a semigroup is

Art. 7 divisible, namely for any two element A, B there exists X and Y which-

satisfy
AXX=B (4>, Yk A=B. (5)
wo call X and Y "right and left quotient” and write A\B and B/A respectively.
and we call to decide X,Y from A and B "division:”. So
AN (A B)=B (6), - (B/A)XA=B. (7)
(A/B)kA or ASM(B/A) is not always equal to B.
If both quotients of a semigroup determine uniquely, we call this a “group”. A

group is commutative if (1) holds, or we call it ”Abelian group”. In this case

A\B=B/A, so we can write this ~1-3- If division is possible only under certain

A

condition, we call this semigruop “semi-divisble”. Vector is semi-divisible for
(AL I -
Art. 8§ Unit element.
For semi-group, if there exist X and Y for
ANX=A (8), V YKA=A . (9)
which are got by substituting A for B in (4) and (5), we call X and Y “right
and left unit element”, and we use parti(!:ular lester KE and TXK for ANA, A/A.

and if both coincides we call it “unit element”, and write it H. Namely
AXT=A (o, EXA=A. (i
Art, 9 Regularity ‘ .

If a semigroup has a unit element by (8) and (9), and there exist X and Y
which satisfy
AXX=EF azy, Y A=I, as)
we call ANE and E/A “right and left inverse element” and write them XA~ and
At ){{,if both coincide, we call it “inverse element” and write A~ Namely
 AXAT=E 4y , ' A-KA=E. (15)

If a semi-group has a unit element, we call an element which has an inverse
elment “regular”. If there exist unit element in a semigroup and every element is
regular, this becomes group . Namely Art, 7 is equivalent to Art. 8 and 9. We can
define natural number M™ as a semigroup about addition 1 as a “generating
element”, and each number acquires personality by decimal or other nomenclature. If
we add this zero and negative, and accomplish to M?% this becomes an Abelian group
about addition, as inverse (subtraction) become possible and unique for all elements.
And rational number M’ except zero is Abelian group about multiplication from
Mre ag generéting elements. If inverse element exist, we can write A\B=A"" B,
B\A=BA™'and even in this case, the experience of matrix calculus shows A~ B=¢
BA~" therefore A\B=xB/A.
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An element which satisfy _
Art. 10 Idempotent : XXX=X , (16)
we-call it “idempotent”. In (AT {+}) idempotent element is zero only, but in
(M*{x}), O and I are both idempotent.
Art. 11 Distributive.

For a set, if adopting addition 4+ as XX, we get Abelian group. we call it addi-

tive group”, then we call the unit element ”zero element” specially for an additive

group. Namely

A+0=A (n, O+A=A. (18)
For an additive group, we introduce another combination}X, and if this is both
left distrilutive : AX(BA4C) = AXB+AXC, . a9
right distrbutive : (A+B)XC = AXC+BXC, (20)
we call it “distributive system”. From (19) :
AO=0 (19 , similarly OXA=0. 207

If a distributive system is associative and about X namely semigroup, (namely
exclude division) we call it "ring”: (M%4{+,x}) is a commutative ring.
Art. 12 Lie-ring, If in a distributive system, every element is
Art. 13 nilpotent : AXA =0, o @
Art, 14 Jacobi-property , AX(BXC)+BX(CXA)+CK(AXB)=0, (22)
we call it “Liering” or ”“Lie-algebra” (WCG. 260). This is

Art. 15 anticommutative : AMXB==—DBXA. (23) .
Art. 16 non-associative :
(AXB) XC=AX(BXO)+(AXCIXB=AX(BXC)+BX(CXA) 24
Axt: 17 Null-divisor . we call XN=A\O namely which satisfy
Ax0 , AXN=0 (25)
”righﬂ pull-divisor”. Similarly we call N3k =0/B
B=:0, N¥B=0 (26)

Meft null-divisor”, and we use special letter N for them.

If this distributive system is associative, XINXQ which is multiplied from right
any element Q to a right null-divisor XN of A is also null-dirvisor, because

AXATKQ =(AXN)XKQ=0XQ=0. @7

This experience is useful also for non-associative system such as Liering. Every
element of Liering, has itself as null-divsor by nilpotent property (21). If a ring
has unit element aboutX , null-divisor is zere only, and it is called ”integral domain”.
If every element of integral domain is regular CArt.9), it is called a ”field”. Field
* is defined also as a distributive system which construct a group about3( except zero.
The minimun number which satisfy

Art. 18 Index The minimum number which satisfies

AP ASKANK e veee KA=0 (28)
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is called ”index” p. If there is none such finite p, we call it zero-index. Positive
and negative rational number is a minimum field which is generated from number
717 and is zero-index. Hwvery zero-index field contains this rational field as a
subfield. Algebraic real and complex number construct both commutative field in

{+. x}.

One can construct various closed sct, distributive system, Lie-ring cte. from these
fiells. For example, from matrix A and B, we get Liering by

AB—BA=AXDB. ) (29)

In this meaning we can say every ring to be Liering and also inversely one can

show that every Liering can be realisel by proper ring.

Art. 19 muliiplicity of quotient element.

If there exist quoticnt which fulfils {4) and (5) in a distributive system having
null-divisor beside zerc namely in non-integral domain, K be a solution of (4)
K N=A\O "
be right null-divisor, then from left distributive law (19).

A (K4+N) = AXKAAKN=AXK.

So, if X=K. (30) shen X=KN+N (31)
is also solution. Iurther if it is associatve, by (27)
X=K4+NXQ (32)

is a solution too. This experience is useful also for non-associative Lie-ring.

§ 2 Algebraic consideration of 3 val (SGAY

Now we cousider algebraic construction of 3-dim. vector algebra 3val. in order to

utilize experience and successes of abstract algebra. Il-dimensional set such as M@
or M construct a kind of commutative field K. 3-dimensional vector set M®
which consist of these 1-dim. set is called a set on the operator X' “additive vector
group” or “linear additive group” generated from e, e, and €. There are also
standpoints of T.oewy’s mixed group and Brandt’s quasi-group.

Here we consider axiomatic (logical) construction of 3-val without sticking to
these.

We start from 1-dim. set M' which is commutative field. We consider 3% as g
- linear additive group generatad by e, e, e, on the M', then we start {rom a
"compound set”

M=GQLIM) M 30, L a, b, «+eee ;ML D Oe, e, 0, A B, - (33

M is for example M, algebraic field, M™ ete. To introduce operators M?, MY, we

necessitate M at least. We can also start from a ring ete. As M is additive group.

Art. 20 Additive properties :

Additvely 1. commutative A+4+B=B-+A, (39
2. associative A+ (B+C)=(A+B)+C, (39

3. if A+B=A{C , then B=C. (36)
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If necessary, we write ordinary product of M! as follows : .
K= X(M?', M*-»MY) 37
Next, there exist already numerical product of M' and M® as M® is a linear additive
group, but we consider this product as a kind of produet : —
o= S (MLMEM) | T (38)
MUKDP=D . . 39
For example, 3X.A=3A=3{4,57}={12,15,21}=B.
About this pfoduct X:»

Art. 21 Compound properties :

compound commutativity : aA=Ag R C))]
especially 1X.A=A 41, OXA=0; - 4D
(—=DXA=—A 3, A—A =0; (44)
compound first distributive property : ‘
a(A4+B)=aA-1dB, (45)
componnd second distributive property :
(a+Db)A=a”A+ DA, (46)
compound associativity : '
a(bA)=(ab)A (47), (Aa)b=A(ab) (48), . (aP)b=a(Ab). (49

So M®  safisfies axioms of vector space or linear space (34—6), (41), (d5—7),

Art, 22 Vector lattice ,

Further, we introduce ”order” by the following rule : ——
if Ay = By (W=1,23), then A>=B. (50)

So there does not exist order between any two wvector, namely chain property
P4 in Art. 0 does not satisfied, e. g. sﬁrely .A={1,2,5} = B={0,14}
but between A = {1.2.5}and C={2,1,3} we cannot give order, therefore this
is semi-ordered. About this order : '

VLI : There is join of A and O. for A={—1,—5. 3} this join is {0,0,3}.

VI2;if A=B, then A+C=B4C,

VI3 ;if Az=ZB, a>0, then afh>=aB.
So in 3P, we can introduce “vector lattice” because axioms of vector lattice VL1~3
are satisfied. But the concept of vector lattice began from limit calculation in
functionzjl space and has not relations to our algebraic properties in spite of its
algebaic definition, therefore we stop this topic here.

Art. 23 Linear relations.

From above description, we can define linearly independence, dependence, dimension

ete, we omit them.

Art. 24 Inverse operation of X.

If A and B is collinear (parallel), we call x which fit
Ax=0B ‘ ' (51)
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"numerical quotient”, and if we write the magnitude of vector A A as defined lelow
from inner produet, then (51) has a unique solution

x=A"1B (52)
Next, =8 (58)
is satisfied by X=g'B. : (54)

The operation to determine z from (51) is possible only for the case Al B, so this
&
is semi-divisible, in spite of the fact that the solution (52) has no conatraint such as
A” B, but the answer is in BI%, so close in the meaning of Axt. 5 (58) is divisible
and close. For 3, there exists no null-divisor except o.
_Art. 25 Axiom of inuer product.

If we introduce a third operation (s

Ke=XA{ MM —> M'} (55)
which is called ”innér product” ¢ ) by:

A BEM}, (A B)=A.B=AB+A,B,+AB,=CE3, (56
this construct commutative distributive system, namely
inner commutativity : (AB)=(BA), (57)
inner distributive p.: -—
left distributive p. : (AB+C)=(AB)+(AL), (58)
right distributive p.: (A+BO)=(ALC)+(B,C). (59)
Between M, and Wy: —— .
inner compound associativity : a(A,B)Y=(ahA,B)=(&,78)." (60)

Art. 26 MP —> M cerrespendence
If we adopt AasBin (58), .
(AA)—': AlAl +A-3A.g +*A.3A.3 C61)

we call it “norm” of vectet A, and we call positive root of it “magnitude” of A aml

write A, [A], [JA]] ete. For every element of M? two element of M' (norm and mag-
nitude) correspond, but inversely for the element O in M' corresponds the vector O in
M? (in indefinite quadratic metric space, even this correspondence is not unique e. g.
in 4-dimensional relativistic world). Bub for every element of M!' does not correspond

the element of M’ uniquely.

Art. 27 Inner null-divisor.

Above introduced inner product does not fulfil (2)in M? namely M? is not closed
about Xs., so this cannot be assciative in the meaning of Art. 8, nor divisible in Art.
7. Therefore M? is not group about X even not semi- group, but the result failsin
MY, so this is closed as a compound set (33), and M’ is commutative field, so M' has
‘O and 1. Therefore we eall the X which satisfies

A0, (AX)=0cM! - (62)
“right inner null-divisor” of A, this is also the left one by (57), so we can call it

simply ”“inner null-divisor” and we can write it A\O, O/A, %, or special letter WN.
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Besides zero vector ©, any vertical vector to A is also inner null-divisor, namely

O

X=0 or X:A\O':O/AZK:N NyAL (63)
So M* is non-integral domain about inner product. By the experience of Axt. 17, if
H=WN. then X=IN,6 €3’ : any value. (64)

is also solution.

Art. 28 Inner inverse clement.

TLet us call X “inner inverse element” which satisfies
A0, (AX)=1 A (65)

and ‘write it A\I:i/!l:% ' (66)

Yector parallel to A and of inverse magnitude to A is surely one of the solution.

If K is one solution, from the experience of Art. 19 K +ZHN is also solution,

namely if XéK, then X =K. (67)
If wo aklopt X parallel to &, then about magnitude in M,
AX=1. (68)

So surely (66) is an extension of reciprocal number.

Axt. 29 Inner quotieu.

If we call X which satisfies
AFO, (AX)=b==0 (69)
“right inner quotient”, this becomes also left quotiént, so we can call it simply

"inner quotient”. So we cun write it

Ap=t/a=l {70)
It K is a solution, also K+/IN is also solution. In case where A and X are
parallel. V
AX=0. 7L
But in genear! case, _
AKX cos (AR)=). (72
If we adopt (A¥)=(AB) : (78)

instead of (6Y), this represents a plane which passes through the terminal point of B
and vertical to A, In this case we do not need the constraint that A,B are not zero.

Art. 30 Axioms of outer proluss.

1f we introduce forth operation in M?®
K= K (MPEMP— M) (74)
"vector product”, "outer product’” [ ] x ’

[AB] = AxB =6, A;By— AsBy)+6,(AB— ABy) 6,7 A By — AB,)

=3!e[1A~2 5, . (75)
this fulfils Art.5 and is close. Between X, and X, holds outer compound associativity
«[AB] =[aA,B] = [AcB]. * (76)

(M3{+,[ 1}) construets Lie-ring, by (21) and (24).
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Art. 81 Outer null-divisor.
[AB]=C 77)

holds only when A and € are vertical, so we cannot decide B for any A and C, so

outer product is reversible only for vertical A and ©, namely this Lie-ring is semi-

divisible. Algebraic eriterion that (77) is soluble about B, is

(AC)=0, (78)
this is nothing else than vertical condition of A and C. Now,

(AX)I=A (79)
is satisfied only by

A=0. X=any finite vector o (80

and for any non-zero vegtor A, X does not exist, so this Lie-ring is semi-divisible but
this has not unit vector independent of coordinates, therefore this has also no outer
inverse vector. After all, distinction between inner and outer quotient is necessary bub
we do not need the word ”inner” for inverse vector. There is © which fits
A+O=A, [AO)=0, (81)
50, A+O, (AX)=0 (82)
holds for proper X, we call this X “right outer null-divisor”. this is also left one
from Art. 15., we write this A\O and O/A respectively,
X=A\O=—0C/A or X=0/A=—-A/0. (83)
A is itself outer null-divisor to A by Art.18, so by applying experience of Art.17
(27) to XK. we get
X=kA, k€ M!': arbitrary. (84)
k=1 : (21) nilpotent, k=—1 : (83)

(84) is the mosht general form of outer null-divisor. (84) can be written also .

X=K, KA
So [AB] =0 is equivaleut to A||B (85)
(AB)=0 is equivaleat to A_|B (86)

Art. 832 Outer quotient vector.

For any vectors which have conditions :
AZ=0. A_| B namely (AB)=0,
there exist X for

(AX]=B. (87)
K which is vertical to A and B and
K=A"B (88)

is & solution of (87). About the sense of AKB, it is necessary to construct right
‘hand system in this order. Let us call such solution right outer quotient vector and
write A\B. From antisymmetry of ¥, between X and Y which fits

[YA] =B, (89)
‘there is a relation '
A\B=—B/A. (90
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.

So we cannot write this B neither A-'B,BA-! because of lack of outer inverse

A,
vector. To avoid the vertical condition of A and B in the problem, we can start from
[AX]=[AC]. A.C: quite free, (91)

because the right side is always vertical to A, This X represents a straight‘line passing
through the terminal point of C and parallel to A. Using the same expression,

(PV)=0, P\O=0/P=2 = [QP] or p[QP], p. @ : arhitrary (92)

This is one of the most general form of inner null-divisor.

Inner quotient A\b has numerical numerater €M, on the contrary outer quotient
has vectorial numerator €M?, so we don’t meed special notation to distinguish them.
For X, M? is a Liering, so it has no unit nor inverse vector, this is the reason that
we wrote divisibility (4), (5) in Axrt. 7 before Art. 8 and 9; also we wrote Art. 8 co-

mmntativity before Art. 5 closed property because inmer product is commutative butnot
-clossd.

§8 Inverse vector.

Axt. 33 Inverse vector.

If we denote a unit vector of sense A,
A

eA:A_,zAA"I, (93)
then inverse vector is from Axrt. 28
_ 1A A A
X: 3 fon g T o p— 94
ATe= X = KT ARy oo
or  X=ACAAY'=AA"T - (98)
because (AA)=A2 [AA]=0, (96)

we can use A’ and not A* for (AA).
If we adopt A, we can write A~ for X from addition rule of exponent. Now we
‘ignore X, for A™from nilpotent property, and define
D
(AA) =A%, (97)
2 means an equation of definition. As A*€M!, sc its reciprocal exists, which we write

A% namely

A (A =(AA) (98)
~ From axiom of M',
' AAT=AA=1 (99
By this notaticn, (95) is written as ‘
AA~?=A-ZAL A (100)
“That A-! fits (€5) is written
(AA)=(A™A)=1. (101)

“This is shown by substituting (100) to A"‘._sirriilarly, by (100),
[AA-'] =[A,AA?] = [AA2 Al = [AT'A]=A*[AA] =0.
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By (23),
[AA™]= — [A~ATs0 [AA™] == [A—A],

after all,
[AA™] =[A~A]) =0. (102)

Next, ’

AAT = AT A=A, (103)
(AA™)=(ASAAA)=AACAA)=A", (104)
[A—A™] =0, €105)
Av=1, Al=A. (106)

Art, 84 Bxponent of vector.

Above equations are summarized to

AP = (BAYPACHY : veclor, p=—1,0 (107
AN =(AA C M :sealar, ¢=0,1,—1 (108)

Adopting proper product from o XK Xy we can extend p and ¢ to any integer B
Similarly adopting X, properly,
ACAD = ARO[ — BtE (109)
a+b=14+1=2:(97) 2—2=0:(99); 1—2=—1:(100);
1—-1=0:(101); 2—1==1:(108); —1—1=~2:(104).
Namely these exhaust all the eases wheve 0.0 : —2~2 and [o+0;=<2. But further we

can define

—2 2= —4: AR 2R (110)
1—4=—3: AA~ =A"ALAS (11n)
2—4=—32: ATA=A1/2D A% . (112)
By these we cexhausted all eases of @ and b: —2~2
In
(A7) = ATS, (118)

rs=48,1 are trivial,
r=2y=1 is a definition (98),
r=—1, s=2: (A=A, by (104) (114)
s=—1, (AD"'=(AA) =AD" (A)'=A%A2A=A (115)
We did not used above the property :
(AB)"=(A™B"™) .
which docs not hold generally, but the property which we used above is the case of
p:——]
in '
. ((ZA)”’—:CZPA”; ' (316)
which can be shown from (60).
s=—2: from (98),
(A-D)2=(A-A ) =A% (117)
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Art. 35 Application of vectorial exponent.

Following equations are used in van™'. To thab object, we write D for A and we write
down various results operated from scalar o and vector A by proper X, (%k=1,2,8,4,)
a=DD 2 =D"D%=D"*(D,Da)=(D,DDg) = (D*D,Da) (118)

= (D,D ) =(D,Bn), (119)
(D*)'a=D"q, (120)
A=DDA=DD'A=D-¥DD)A=(DDDA=(D,D)A,  (121)
(D)A=D"A, ‘ (122)
DD % =D"*Da=D"%, = (128)
(D,D~2A)=D"}(DA)=(D7A), (124)
[0,D2A] =D"DA]=[DA], (125)
[D,b-¢]=[D",Da]=[D,D~Da] =D D.Da]=0, (126)

D(D,D2A)=D(D,~A)=DD(DA)=D"(DA)=DD(DA), (127)
(D[D'A]) = ([DB]A)= (DD [DA])=(D[DA])=D-*(D[DA])=0,

, (128)

[D[D“’A]]:[BD"-’[DA]] - [D~*[DA]] = D(D A)—(D DA,

) (129)
=D DA)—A=D(B"A)—A, 130)
= [D[D, D—‘—’A]] = D*‘-’[D[DA] ] = D—z{DcDA )—DA } (181)

Art. 86 Decomposition of vector.
From above results,

A=D(DA)— [D—l [DA]] (132)
=D(D7A)— (D[D—IA]] (188)

=D-* { D(DA )-[D[DA] ]} =DD(DA)— [DD“Q[DA]]‘ (134)
If we write (182~4) l}y using D7D instead of (DD)=D-%,

A= locon>-[oroa|-B(34)- (3154 1]

=e D[eDA]—[eD [eDA]]_ A (185)

This is nothing else than the well-known formula of . decomposition of any vector A

into parallel and vertical component to any vector D, A, and A, : A=A+ A,

(136)
Al D namely (DA,])=0, (187)
AL D7 (DA, )=0, (138)
"where ‘ .
A=A p=ey(e,h), ' - (139)
(140)

Ar=R.y=—|exesAd |
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also .
A, =D(DA)=D(DA)=D"(DA,)=D(D A )=A—A,, (l41)
A= ——[Q"[!}Aj]: {5{04,&\]]: ——[D"[BAQ]: ~—|:DKD"A_‘_]]:A—-«A§
(142)
A, :(DA,)=(DD)(DA)=(DA),
[DBA,I=[DD1(DA)=0,
Au: (DAL=~ D[DDAT] |= D (DIDAT+(DD" I DAT=[DA],
(DAL =—(D[DDTAT)=0, (148)
Namely V

(DA I ) = (DA>’ ED‘E\ [ ] = O;
(DA, ]=(DA], (BA)=0 (1d4)
is shown algebraically. The operators: ‘
DT(D)=D(D)=e,(ey)
and
~[oro =~ oo |=—[eser |
ane mutually null-divisor ani each is idempotent CArs.10(16)).

Art. 37 Application of vectorial exponent (continued)

DDY=D"1r=Da, (145)
(DLD2A)=DX0A)=(DA), (148)
Mo, DAT=DTDA]=DAT, ' (147>
DY =(D D De=(D" D), (148)

)

N N [ e ey

(149)
DA, =D-(D~'A)=D"(D7A, ), 4 (150)
DA, = — [D“[D“’A] = [D-l[n-l AL]] (151)
(DD~ =0, (152)
(cp=pa)=(B-rPAT)=0, £ (158)

5 .
[[D—‘D“ljl-\ =0 : (154)
(D~ ,~14=Du, ((D—‘ )—*,A) ~(D.A), [(D“ )‘IA] ~[D,A), (155)
From (110~2), 2" s )

(D2, Ta=D%, (D~)'A=DA,
DD =D, (156)
DD-2A=D™A, (157)
DD =D""Ds=D"", _ o (158)
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(D,D-A)=D"(DA)=(D"A), . (159)
(D,DAJ=D"4DA)=[D3A), (160)
DD = DD =D, (161)
DD-HA=DDA=D24, (162)
D—2A=ED[D,D—4AJ]—D;D,D-%A). (163)

As shown in later § 7, we exhausted all the formulae of van™ by above formuliae.

_Axt. 38 Representation of inner quotient by inverse vector.

The answers of (69) and (73) are:
(PV)=qw, A4ns.: ¥=Pw=uP
(PV)=(PA), Ans: V=P PA)=P(PA).
These are not general solution because these do not contain null-divisors. We see (132)
to investigate it.
(139) : A:D“I(DA)——[D"EDA]] .
is decomposition formula of A as déscribed in Art. 36, but we can interpret this a
formula to determine A from (DA) and (DA ’
If oaly (DA) is given, the secon term becomes null-divisor.
Namely, for '
(DA) =q, . (166)
we can adopt a null-divisor such as determined by given [(DAJ=B

A=D-ig— [D"‘[DA]]’ | (167)

or A=D-ig— ])[D"’[DA]] (168)

In the sccond term [BA) is verticél to D and A, whatever & be, but the inner null-
divisor satisfies (160) if only it is vertical to D, so (DDAJ can be substituted by a quite
arbitrary vector @ and at the same timé by Art. 17, we can adopt following represen-
tations as the answer of (166):

D-u—(D™'Q), D a— p(D~'Q), D g+ p(D-Q], D~ a—(DQJ,
D-la— p(DQJ. Do+ Q,D) ete. (169)
We would call the null-divisor in (167) "Normal type” in these. Bimilarly if we are
given only outer product [DAJ, the first term of (132) becomes outer null-divisor, so
the solution of '
(DA)=B ‘ (170)
can be written down
—[D™BJ+DDA)
—[(D-B)+ D (DA)
—[(D™BJ+pD etc. (171)
We could call the null-divisor in the first form of (171) which is got directly from (DA)
Normal type”. If we adopt (78) aud (91) instead of (69) and (87), "
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(D¥)=(DA), X, =07 (DA)—)p {D"ICDA]]
K,=D(BA)—p[D&) (172)
(DX)=(DA)], (178)

X‘:——[D‘{DA]} FpB(BA),

K= _[Dﬂ[DAﬂ-p D (174)

distributive property of inner quotient can be got from (164):
A\(b+c)=A\b-+A\c. (175)
To utilize in van™, we would rewrite the notation of (51) and (52) in the inverse

operation of ¥, in Avt.24,

Da=A (176) a=D- A= gg §§§~§~<D”A) a7y
This is also distributive,
from
Du=B+C, (D*B+C)=(D"B)+(DC) C178)

when D become X7, this is known as "Law of superposition” or "lineurity” in electric
engineering.

§4 General inverse vector

Tuner inverse clement, namely X satisfying (65) is not only A~ bhut it has addition:l
term as a inner - null-divisor. Here we search single term representation of (187~9).
Tet v be any vector which is neither zero nor vertical to A,
namely #3=0 anl ¢ 2 A of in one word '

(Ar)==0, C179)

Then A-direction component of ¢ is
- A
e, ) =(f—).
(re,)=(20)
8o if we consider A-componeht only for v, ¥ divided by this (re,)=( ri),namely

v r
( )“ (vA, 4 has a length 1 in A-divection, therefore if we divile thi
/
r

further by A, we get
‘ v 1L,_ ¢ A4 F
‘(re) A (*A)4~ (eA) (180)
A-component of this has leugth of A~ . So this is 5 representation of general solution:
of inverse vector of type (169). That .this fits (65) is verified ab once by substitution.

Actually decomcosing r into || el and |- component for A, we get

r vy "i =Tle = AT L

PRy~ (r“+u,A) (__7 By T A mm ’ (rnA)
(181)
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This shows that (180) is a general solution of type (169).
As this is directed to * , we would write this A7, namely
r

At D _F A~
N -T) A~tsec (Ar)e., (Ar) 0. (182)
The generality is checked also algebraically from the number of unknowns and

equations.

Art..39 General inverse vector,

(132) contains null-divisor, buf though one add this any vertical vector to A, it
satisfies also (65). We would call this type "General inverse vector” and denote it
by A7, namely

A- D i"i‘P*[‘qA] —

D) A7l +p [ar]], p,a, :arbitrary. (183)
(183) can be deformed to type A7 by Inverse operation of decomposition of
(181). Also, if we adopt A as r, we get A7} =A7, (184)
A7 =A"+p [alh™']. (185)
Mr. Hisazue calls A~ “principal value”, mull-divisor “subsidiary value”. Surely
(AA7 ) = (A7 A) = (AA7 ) = (A7A) = 1. (168)
But [AA7] = —[A7' Al = ~E§:g- = [r7r] = —[#7"] %0, (187)
[AA71=—[ayA]=LAERLRLaIL (188)

From these we knew the characteristic of A™' in A7 and A7, namely the one of
A7 or A7 which satisfies (102) is A~

Art. 40 Application of general inverse vector.

The following results owe entively to Mr. J. A. Schouten to SDG. 1. Problem 2.14

and 2.15, they are nothing else than the direct vector representation of them.

Respecting the text, we write unknown v and not £, and we use only —1 as
exponential index and denote the coefficient vectors P: P!, P%...... , Pm,
also inner products value, o w', w®, o , ™,

In these, upper indices [, are contravariaut, so —1 does not appear in these. We
decide the order of examples by the runk r of P~ ]

D @ Py, Pu=—Pp : any scalars]  which do not make the denominators

§,F : any vectors S zero in the case they exist.

We adopted as the sign of null-divisor -+ on the contrary to SDG. by Axrt. 17 (27).

EBxample. 0,11. (62) : (Pv) =0, v=1p [aP]. 0,11)

Example. 0.12. (P'v)=0,(P*v) =0, 2 ;

P P namely [P'PY] =0 (0,12)
= [a, 5, P' 4+ 2. PY] }

Example. 0.lm. (P'v)=0,,(P")=0, .

PP | P PP = =[P P =(), (0,1m)
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}Mple. 0.22. (P'v)=0,(FP'v)=0, P 4 P [P'P] %0 \
v==pq [P P*]. ' )
Example.0.23. (P'v) =0, (P*v) =0, (P°v) =0
PP PP are coplanar but are not | ¢,

(PIPP =0, [P'FP]0.

v (P[P P4 by, [P P

Bxample. 0.2m.  (P'v) = 0.or, (P v)=0. 1

(0.22)

P, P" are coplanar butf are not | el,)

; \ ; (0.2:m)
(Ph [Pc Pj]) == (). [pn PL] :§: 0, J
v=q {P!g[Pl PQ] el +Pm~l . [p'm~1 gm] }
Example, 0.33, (P'v)=0,(P'v)=0, (F'v)=0, (F[PP]D=x0,vy=0.
(0.33)

Following are inner quotient vectors and so contain null-divisors (as said above,

sign of them is changed to + from the original SDG)
Example. 11 (Pv)=1, v-—:u(-;a—w +p [q(»%—]:P;‘w—I—p[ﬁ #3501 (elD)

or compared with (183) v=P w= w -+ P ([;3 w. (ell”)

( P r)
pw of the second termy in (ell”) coresponds to P in (ell).
Example. 12.  (P'v)=w', (P*v)=u,

Pl P namely [P P 1=0, ' P*—w P'= O,

_ _pav'+ pawt PP +pP 19
(p:P +p,Phy) r4pla, (pPH P (el2)

= Pl o =1 1 ) 2 -
{p.P P {pw'+par’} +plea,r \rplpl +p2§2}]

If we put the linear combination of P! and P*anb w' and w?,

PP +pP =P, pat’+pat=w, (el2a)

V=7t plars], )

v=Fyw. . V (el2¢)
Example. Im. (P'v) =, -~ , (P™) =™,

PP e [ P [PPY = e =[Pm-1pn]=0,

W P? —Pl=0,-e e @t PPl (),

v ={pP e £ PP {puet s Pogtt™ )

+pla, ™ {p Pt eenee PP} ] (elm)

If we put pPiad o pPP=P, sttt pu=w, Celma)
then v =P+ plary J=Pw. (elm)

Example. 22. (P! v)=u\(P*v)=4u/,

P 4P [PP]4 0

[Pr]w' —[P'r]w’+pq [P P7]
. (PP TN ' 2
This can be got from the following Fx. 33 by putting P'=v, w’=pq in it.
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.

Namely (r v)=pq. (e222)

" From it we can also represent .
v ={F)} f;:,“ r] wl'*‘{Pe}E:. '] w -+ {r }—[;tpe] pg. (e227)
Further, (¢22) can be written also
vV = [Pﬁwl-Pl’lUs, [PIPQJ _7‘]] + Pq r_[lp} P2] (e22")
Putting [P'P*]=P , we get
v=[P'yw—Pw, P]4+pq r“[‘) = [Pw'—Pu’,Py'] (e22m)

It becomes clear that this also satisfies the problem.

Example. 23. (P'v)=w!, (P*v)=u’, (F°v) =1’
PL,P?, P°, arc coplanar but any two of them are not parallel,
namely (P! [P*P)=0, [P*F*]20, [PB]%0, [PP7]:0,

w [PP] + 4 [P° P o [PP*]=0.

~ P . —pat—pad)  [palPPEl4p PP
v = F +P* (pat : —Pas W) l . +pu[P* PS]Ir , (e23)
L + P (P’ pagtt® . D
T pulP B [P PP+ pu[ PP} <
P . —pudt—puu’) [P [PP]+ pis[P'P"] ]..1
Ocv=| +P2(po' . —p®) | + pu[P2P?] g (237)
+ PPt b pans® . ) »

BExanple. 33. (Plv)=x!, (Pv)=u" (Pv)=4/
P, P*, P® are not coplunar : ([PP ]P0,

_[PP] t + [PPP ]t + (PP .
V= CRTFFT) (3
. ={Pl}~fp‘;§31 wh - [P [e°0'] w® 4+ {P7} [p'p?] w (e33)

Of course this coincides with Cramer’s rule by determinants.

It is interesting that this expression has the form of sum of individual inverse
operations of .the 3 cquations of the problem.

Next we put Pi=a, P'=b, P’=c¢,

o [be] 2 yu _ [68] 2.
[he] ™ (afbe], at. b [ea]  (a[be]) ®

2

" [ab] ~Ca[be])
(189)

These a1, b™, ¢ are not principal inverse vectors, but general ones, so- these

a ,€ Zect,

do not satisfy (102) ; these have following properties;
(38~ )=(bb~ )=(co1)=1.
(ab™ )=(ba™ )=(he™ )=(cb™ )=(ca™" )=(ac™ )=0, (190)
(albe]) (@at[ble]) = L
If we substitute left sides of the problem as w" in (e33)
v =(va)a +(vb)b 4 (ve)e . (191)

In the definition formulae (190) of @™, 7', ¢!, a and a'are symmetric, we get
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e -1 g1 -
“(“al::ifg‘é{z]:,'f)za ) —-C‘:\[f‘:—l:giﬁc:"]‘_:];) =b, (“af-[iaﬂ_b?xglv]j =c (192)
for (191), we get
V=(Va)a+t (Ve bt (Vel)e.
By this consideration we knew that so-called Inverse vector system is really
2 kind of inverse vector system in the xﬁuzmi;xg of (182).
Bxample. 34. (P1v)y= gt,-eeee , (Prv)y=wt. .
Any three of P are not coplanar: (P [P*FP?) 2= 0, (PP P D=0,
W (P B PY) +20® (B [P P+ (P PIR ) + (P [PF?)=0,
j (—=pso' +pav®) [P F] + (—pav' + pa®) [PP ]+ (—pav'+ pgwﬁ)[P’F‘J\'
' +(=pav* + pao) [PF] + (—pao’+ pav') [FP] g
v = +(—puat®+ pw) [PP] ] (e34)

PP [ER )  po(BO BRI -y (P PIF2] )4 pu (P [PF])

In algebraic topology, inecidence matrices (houndary matrices) of neighbouring

dimension are null-divisors each other (sce.e.g.VAS) and also in the algebraic
electromagnetism whieh uses fully this algebraic topology, null-divisor and inverse
operation appear in various rank aud order, therefore there are used the above
results and their extension to any dimeunsion, so we deseribed them rather lengthy.

See OAL

§ 5. Outer quotient vector.

Quter quotient veetor, namely X satisfying (87) or (19) is
v _ B
X_},\e‘_,,‘ =y

if we assume A= Ae, B=Be,,

BA
AsBlA, e =[g3] Z”LBA—I’ ;
Cve . B [BA] i A, _ S et
X=Xe=—-—p = =[B,"] =[BA™ | =—[A7B], (194
or AB=—B/A=—[A"B]=[BA™]. (195)
putting (194) into (80), ) s
[AX]=[A[BA" || =(AA-)B—(AB)A™ (196)

The first term equals B by the definiton (101), and the sccond te'm is zero by
A { B independent of AL,
So we can use A7 instead ef A~ in (196). Using (183) as A%

X, =A\, B=[BA; J=(8, T reas - @ay . o

By experience of Art. 39, X;can be also

[BA7 =*E§{)l, [BA7 1+(Ba) A~ =[BA~ J+kA~, k: arbitrary
’ (198)

These are general solutions containing outer null-divisor. The general solution of
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(91) is simply
AN[AC]=[[ACIAL |=C—(CA}) A=C+EKA or C+KA™. (199)
C is the one solution without null-divisor. b
After all generality of outer product caused by null-divisor is covered by the
gencrality of inner inverse vector A7'. i -

Example 1. If P, | @, or (P, @)=0,and P, | & or (P, @,)=0,)

(200)
and also @, 11 @, or[@, @, 1=0 and P, 1 P, or (P, P,)=0, J
the solution of [P, v]=@,, [P, v]=@Q, is
v=[@PF]+[&FP]. : (201)

The general eondition which enables to have solution of the problem (200) can be
got by decomposing this into indivisual scalar equations and applying the extension
of (e34).

Tixample 2. (AX)=qz, [BX]=C, B1C or (BC)=0, ALB or (AB) %0, (202)
The terminal points of the first equation lic on a plane, points of the second
equation on a straight line. So if these are not parallel or [AB] =0, the solution is
determined uniquely as the intersection. At fivst a solution of the former is

X = [CB™] +aB.

Dctermihing a by putting this into the latter,

X=Ajuwt+[CB]— (A[CB]) A7 . (203)

The invarisnce of ghis solution under transformation BOBT is shown by using the

form (185). .

Example 3 (A=, [AX]=B, A1 B : (AB)=0. (200

putting B—A , C-B in Example £, R=A"%-+[BA™]. (205)

The idensity putting w and B of (204) into (200) is nothing else than the

decomposition formula of the above (132). :

_Example 4. From computation of [P35 [DA]] , [eroy Al , we get. ,
A=D (D7'R)— [D7 [DA]] or A=D (D7 A)— [DF[DA]] ; (2054) , (2051
A=D7 (DA)— [B[D7AT] or A=D7(DA)—[D[D7A]] . (205¢) , (205a)

Art. 41, Exteunsion of the solution.

The problem (61) is

A) ..
Da=A, a=(D7 A = -E%;)—=(D~x +[aD™ ], A), (206)

if DIIA.
Also (166); (DX)=a, X=D7 a=(Ti)-a=D‘la+[qD" ]a. (207)
(198): [DX]=A, X =— [D3A] 3‘%% - [DUA]—(aA)D™.  (208)
In these problems, there existed the constraints: .
for the first problem: D J A or [DA]=0, (209)
for the third problem: D A or (DA)=0, . (210)

However the solutions do not loss their mathematical meaning, even if we omit
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the above constraints. Then what meaning have the solutions ¢ Decomposing

A into parallel and vertical components A, and Ay to D, for principal inverse value,

Da=D(D'A)=D(D~' A,)+D(D~ A, )=A, .
namely the above answer fulfils Dae=A; and not Da=A, ’ 211
Answer using 206) does not fulfil this rcelation. Also for (280), it fulfils
(D, —[DTA]—(aA)D™ [=A,
Namely this fulfis [DX]=A, and not [D¥X]=A. (212
We owe these (211) and (212) te Mr. Hisazue.

For the psincipal outer quotients

(A A, BA)=(—[A"B], —[B" A])=—1, (213)
AB AB)=+1, (214)
namely ANB =— {B A} ={A/B}"; (215)
Also [AB, B/A]=—[A'B|=[A B]=0, (216)

this distinguishes the principal outer quotient from the other general ones.

§ 6 Algebra of operators.

Let M? be operators to set of one variable function

AT 3 M, f, =%, fifa ,reeer s ME e .

M7 is a commutative field on M7, matrices on this M7 are non-commutative ring,

field ete..M?and M are commutative, but A? and M7 are not,

left distzibutive : pf (fi-+f2) =01 +5Y5 217
right distributive : (§24+p%) f = ptf -+ pof, (218)
non-associative : p{f, o } ={pL e +A{D0}, 7 {fifi} :+ Tcibniz 219)
non-associative : 7 {f; fo} = {p Vo }—p{(pf)P o} (partial integral),  (220)
exponential laws: P pP=pF pl=pith, . (221)
(PP = (pF) =p* (222)
5 =1. ‘ (223)

We treat the Hamilton’s operator R

V=Vi+V.+V:=270 +€09;+e3;, :—’a%' .

as a vectorial operator in  DM?®.
Let A, B be representatives of both scalar M! and veetor M?,

- X;be either of (38), (55), (76), (1=2,3,4),

X be either of (37, or X, (2=1,2,3.4),
noncommutative : V3K; A F A XK, V., (224)
left distributive : ¥ XK, (A+B)=V X, A + V X; B, ‘ (225)
non-associatiative : ¥ X (AXGB) =T X (AX: B+ Ve AXB) (226)

‘

where v, indicates operaticn ouly to A, imitating 9. With these and valt! we get

van*', e.g. from
[A[BC]] = (CA)B—(AB)C.
A=B=vy: rot rot A=Yy div A—V°A. 0 (227)
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§ 7 Algebraification of integral vector laws.

Art. 42 Defininition. From the experience for electrostatic field hy Coulomb,

if betweeen scalar potential field V and scalar field

a =—J—;— , P: charge density, & :permittivity.

there is a relation: div Yy V=9V =gaq, (228)

then we have V =— Z@—a, ' ' (229)
T

The field point searching V must avoid all the points where @ distributes otherwise
this integral (229) diverges, in other case. there can hold only integral relation (229)
by Lebesgue, Stieltjes ete., where differential law (228) no more holds by disconti-
nuities of V ete.,and In case where connectivity of the domain under consideration
is not topologically simple, only differnetial law holds, and integral law docs not
hold as described in MEM. I p. 17-8 by J. C. Maxwell. However, let us treat only
the case whre (228) and (229) are quite equivalent, then

putting (229) into (228) : ¢* (—— '%a>= a, - -(230)
putting (228) into (229) : V =— 4{;)7' vV, ' (231)

. dv . . :
thus yZand — construct inverse operation each other, so for any scalar
: A7

field a, let us define

Ve Lo-- f 46?7 a, (232)
Pot a = %7&:— a, v =—~—£77 Pot, (GV22)

where (GV22) shows the formula (22) of the Chapter 4 in Gibbs’ book GV, then
from (230), (231)

Vvt a=v?V a=a, (233

vV Pot a= Pol §° a=—4na. : {GV30,52.66)

Applying the above operation to cach component A; of any, vector field A,

TIA 2 f j{f; A—e v A, + &, V2 A, + €V 2Ag, (234)

Pot A= -ﬁfﬁ-Axe, Pot A+ e, Pot Ay+e, Pot Ay. (GV923, 24)

VVIA=VEV A=A, (235)

V? Pot A = Pot v° A=—A4zA, : © (GV3L, 52, 66)

VVia=viva= f zf—}j";a €y, (236)

v Pota= Poty a= f i;’sirm a (GV27,39)
where &, = "2 js the unit vector directing from the point 2 at @ to the field

point 1. Here we define
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vV a=2- 4{;}7’- a e, , » (237
New a= N (GV42)

In electrostatic field,
div D=(yR)=p. D=y7'p,
which coineides with (166.7) , thercfore (237) eun he written also divi'a

Summarizing,
X . 1 .. v,
B ST Y S 2 = | 2
TV rla=yriva=vlael-divi a i New a f prpr (238)
v Pot 4= Pot'y a= New @ ~ __dv e (GV27, 42,45,61)

7, 7 are scalar operator ML ,M', but ¥ is an operator vector, so V'a is a

vector and there are two kinds of operation to any vector ficld,

@R =vr A= (2 (ae). (239)
So we define
(v A) 4 cpe,) (240)
=] Epr(Aon),

again in electrostatic field,
Vo= Vﬂz*é)"—f‘“v_gdz'f) —2———-——v“9 div E =—v2 (TE)=--(v"'E),

and E=— grad V
are reciprocal operation (GV63), so we can write grad ™' A for (7' A).

8
(v, V2 A=y (VA =(V A) 2 grad- A—-—~ ' Maxh= f 0 peyy.  (241)
div Pot A= Pot div A = Maz A = [-%2- vy, (G99, 41, 44, 45, 63)
o,
Next, [v,V@Al=y?[VAl=—| % [Ae,] (242)
. T - . dvs,
So we define, [y A]-2. Ayt [Ae,], (243)

then from the experience of magnetic field by conduction current,
. when rotH=[yHl=i, by (194), H=—[y'i].
Therefore we can write —[y ™" A] also roi™ A.

— (Vv A=V VA=V Al= o~ A= Laph= [ {2 [Ae], 244

rot Pot A= Pstrot A =Lap A :f»(—i%l [rLA]. (GV28, 40, 43, 45, 60)

Art. 43 Algebraification of van™.

By the definitions (232), (234), (237), (240), (243) integral operatof is reduced
to notation of val™. Rules of principal inverse vector in §3 can be applied to
these all, especially if we interpret D in Ari. 35 (118) and other as ¥, these
equations represent directly well known integral vectorial laws. Namely
A18): a=vWVvle=vivie=vidivvae=diwvvy*iva (245)
(119): =div div™ a= grad~ grada, (GV46,58, 63) (246)
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(120): (VO ta=v"? g, asn
(121): A=Vy? A=V VA=V (VA=Y A=V VA,  (GVE6) (248)
(122): (¥H A=y A, (249)
(123)»>(238) : diva=gradya=y*grad a, (250)
(124)-(239) : grad* A=divy ™ A=y"div A, (251)
(125)>(240) : 7ot A=—r0ot V> A=—y 70t A, (252)

(126) : 7ot div™* a=—rot™* gmcf a=rotygrad a=vy*rot grad a=0 (GV50)(253)
(127): v divy? A=grad gred™ A=yv*div A=div™ div A=V divA,
’ (GV32,47) (254)
(128) 1 —div vot? A=([yv " |R) =divy? yot A=grad " votA=yy2 div rotA=o,
(GV49) (255)
(129) : —rot vot™ A= vot Y vot A=—rot™ yor A=div™" div A—(yy~ DA,
(GV48) (256)

(130): =div~ div A—A=grad grad~ A—A " (257)

(131) : rot ror -2 A=y rotrot A =2 { ydiv A—°A}. (GV33) (258)

Axt. 40. Decomposition of vector field (Helmholtz)

From this (132): A=div™" div A + roi > rot A (GV5E5) (259)

(133): =grad grad™ A 4+ 7ot ror™ A ’ (GV54) (260)

(184) . =y {ydiv B— rot roi A} =grady divA—roiy ™ rolhA , (261)
div='div 2 di* = grad grad™ £ grad’ (262>

and ot~ roi=vol voi™' =vol’ (263)

are mutually null-divisor and each is idempotent (Art. 10(16)) , namely

di’ div"=di® (264) , grad grad’=grad® (265), rof* rot"=rofl® (266)

di rotf =vyor® dit’ = grad® vot' =vot’ grad =0, (267)

At (135) of Art. 36 we got the formula to decompose A to parallel and vertical
component A, and A, to another vector I, corresponding it we got here the
formulae to decompose any vector field A into divergent and rotational component

A, and A, nawmely

(136): A=A, LA, (268)
(187):  [UA.] =7cth=0, (GV61) (269)
(138):  (vA)=div &, =0, ‘ (270)
Where (141): A, =dit® A=grad® A=A—A, (GV57,62.65) (271,
(142): A,=70' A =10’ B, = A—A, (GV56, 60, 64) (272)
Also A, : div By =(VV™) div A= div B, rot A=y~ ] div A=0,  (GV59,61)

A, vot B,=rof rot R=vol A, div A, = yiv rot® A=0, (GV58)
ot voi A, =— A, (GV6T), v yiv A,=7 A, (GVE8)

or (148): divB,= div A, 7ot Py=0 (273); (144): vet A, = rot A, div A= O. (274)

Art. 45 Discussion of null-divisors.

For a vector field A, if we give ouly its divergence div A, rotational component
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is indefinite, so we can adopt as null-divisor not only 7of A but also one multiplied
by any scalar field p : v0i™ p ro¢ A, also by any vector field &, we can use also
707 & in stead of nondivergent rof A, Namely

div A=a, Answer : A=div™ a+rotrol A or = div™ atroi g,
Similar to Art. 38 we would call the second term of (259) “normal type”. On the
contrary when we are given only rotation of a vector field &, we would call the

first term of (259) or (260) “normal type” of outer null-divisor.

Also (148): div™'v° a=v div™ = grad o, (275)
(146): grad™ v A=V* grad™ A=div A, (276)
(147): —rot7 P A= et A=vol A, 277
(148): v ra= (v o= grad”'divaq, (GV69) (278)

(149): v A= (v vT)A
=y {ygrad™ B-+rol roi™ Ay =div grad™' A rot vot™ A, (GVT0) (279)

(150): 2 Ay=div- grad— A=div= grad™ Ay, . (280)
(151): ¢ B,=—rot " rot™ A=-—rol~ rot™ A, (281)
152): rot™ divta=0, (282)
(153): (V- v A) =—grad— 7o~ A=0 (283)
154y : [[vv™]Al=0], (289)
55): (V) a=grad a, (CV-' )~ A)=divA, [(v=)"'A] =roi A, (285)

(V) e=va, (V)T A=V AL
Art. 46 Helmholtzian operator.

(156): v=v=a2yal— A, : (GV39, 96) (286)
asry: veveazyac— [ R (GV90, 97) (287)
(158): grad v'e= g~ grad a=div™* 72 a2 v, (GVa1) (288
(159): div v A=y div A=grad™ Ty A2 (v A), (GV92) (289)
(160): rot vt A=y rot A=—rof l"f AZ[vA], (GV93) (290)
161): Vv e =yt via= grad l;—gmd a=vra, . (GV94) (291)
(162): Vv A=y~ v A=y=A, ' (GV95) (292)
(163): v *A=roroty -t A—vdiv v A, (GV98) (29)

(286)-(293) are algebraification of Helmholtzian operator. H=Hel=—87zV " des-
cribed in GV.p. 258-9.

Example 1. div D=(yD)=p, D=div p+ro rotD;

i rob D= % 1ot E=0, then D=di p=y~' p= f Eft?;;épeg,‘ (Coulomb) (299
See Art. 45.

Example 2.  rot H={yH]=i, H=du” divH + rot™1;
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if div H= ~;Ll—dz'v B= O, then H= ot i=—[y i ]=f dv [ie,] , (Biot-Savart) -

4mr*
295
See Art. 45. (29)
-2 PN\aef (PN [dv P
MVV » Vo= V( 8)“ 4m‘( 8> dar &
(Potential law) or E:—gmd V, V=—grad E=—(y™ E)=—y i (VE)
. v D
=—y diE =~y ‘”—dﬂé =—V—§*=‘ 4671:7, —g* (296)
. LY H R T ‘ d’Ul,l»i
Example 4. VA=—pl A=y (—pi)=— 47{7 (-—-Ml) f iy
(SE241-2). (297)
Example 5. b=y (h+M) , M: magnelization .
div. b=y, div (h+M) =0, rot b=0, h=—y v,
diw h=—div v =—-st=——-divM
v =yt divM=grad™ M = 4 o) - _ (298)
Example 6. 7ot E=TF, div D=p, D—EE,
D= div~ div D+rot~t rot D= div=' p+& roi ' F
= 4‘3”“ -p eyt ef D te,]. (299)
§ 8. References.
1. inverse vector:
Abb.
Hv Keiitiro HISAZUE : Elementary Vector Analysis (1932) p. 33-41 (in Japa-
nese)
2. grad™, div?, rot™:

GV J.W.Gibbs : Vector Analysis (1901) p. 237-8.
3. abstract algebra :

WCG 1. Weyl : Classical Groups (1939)
4. Jatiice and vector latbice :

BL.T G. Birkhotf : Lattice Theory (1940 Rev. 1949)

5. axiomatic construction of vector, algebraic properties:

SGA O. Schreier, E. Sperner : Einfuhrung in die analytische Geometrie und
Algebra. Bd. 1 (1931), Ba. IT (1935)
SDG J. A. Schouten, D. J. Struik : Einfubrung in die neueren Methoden der
Differentialgeometrie. Bd. I (1935), Bd.II (1938)
6. clectromagnetic theory :
SE J. A. Stratton : Electromagnetic Thery (1941)
MEM  J.C.Maxwell: A Treatise on Electricity and Magnetism, I (1904) II (1904)
7. lattice (grid or net) theory of physical field:
OE S. Okada, M. Iwasita, T. Huzi : Blectromaguetic Theory (No.1-4)
Journal of Elec. Com. Eng. 28. 8&9 (1944) p.11-8.

201



W kBRI (T8 #—8

(0 S. Okada : Lattice theory of physical Field,
Denki Hyooron 35. 5/6(1947) p.65-9.(in Jdpauese)
8. subspace: besides SDG .,
08 8. Okada, B. Onodera: Theory of flat subspaces and their applicasion,
Bulletin of the Yamagata University, Nat. Sci. No. 1 (March 1950)p. 5-18.
9. transverse vector (in 2-dimension) (in Appendix) :
NEM J. Nielsen : Elementare Mechanik (1935) p. 10, 142, 288, 293.
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APPENDIX. Inner Null-divisor and Inverse Vector in 2-dimensional spuace.

In 2-dimensional case

(AB)=AB,+A.B,=(BA). (300)
Let us call 2 counter-clockwise ;[ radian rotated vector of any vector: :

A = Ae, + Ae,
transverse vector and denote it with A. Algebraically (NEM p. 10){

A=—Ag + Ae, 301)
Following product corresponds to the vector product of A and B in 2.dimensional

case
(AB)=—AB+AB.= § | =—(AB), (302)
(AA)=0 M (303)
. = E l)
(AB)=(rB), (204
o A Ae -+ Ae ‘ .
A TAR) TALA, F AGA, (305)
~1 ’—‘...k,r,m“ - ey
T (AYY (806)
A} = _}'_’f'ﬂ — A ’iL(]/;'—l _
! (Ar) a (307)
or A=A+ g A—‘ (308)

If we put the third axis of right hand system e; for e, e, surface in 3-dimensional
space, the transverse vector becomes: ,
A = [esA]. ‘ O (309)
Null-divivisors.
Example.0.1  (Pv)=0, v=pq P. 0.1)
Example.0.2  (Pv)=0, (Pv)=0,
P! || P*namely zero area: (P‘ﬁ’fx):‘(ig‘Fa):O )
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ve=q (p: P+ p P 0.2
Example.0.m (P'v) ‘= O, - (P™V) =0.

P P (PHPH=0,

v=q (pLAF” . + Pm Fls"’”) . (O. m)

Quotient vector

A
A
Bxample 11 (Pv) = w, v= ﬂ(ﬂ;%‘f____p;t w-q r;,{ , (eell)
or v=P3w.
Example 12 (P‘/:O:wl,(i”\') = . . (eell”)
PP (PP = (PP =0, w'P'—w'P'=0,
A A
R ) s L
(plpl-*—jjﬁpgr l‘) @1PI+P2P2, l‘_)
A
= {pP+pP {(pavt+ pary + g r—l{pl & e ‘gg} (ecl2)
or v={pFP'+pP )y {puav'+par’} . (eel2?)
anmple Im (F”v) =w1’ ...... s (va) =™, .
PP oo [P (PP = (PP P =0
th pi . wi tho R N .
V= {plpl_}_ o +pmpm.};l {151201' . +?mwm} +q rt {j)lﬁl.}_ . .pmlﬁ’”t} , (ee]~m)
or v= {pP PP, we=pagteees + D™ (eelm)

_Example 22 (PW)= w', (P%)=u#,
Pt P2 (PP == 0.
A

, A A, A
P;ZUX_""P‘ZU? P'— . Pl o
By S Y S = roucA
(PIF’;E) (Pxpz> (plpﬂ)
= {PY7, W+ {P3 (ee22)
e
Example 2m  (PW)=w',.-- [Py =g,

T T A
Py Bz (P 20,
201(@2%3) —FZU%PSE,}A)-{—Z{)S(P‘&Q):O: ...... s
2T (pm—i .r,./l‘m) Lt (pmé\zm—a )+wm(pm—2 é\;m—q )=O

P o e P ") |
A i
J +F (Pute, @ P W™ |
1 ............................................................ {
A
i +E" (D ot + D ™ ) )

(eeZ2m)

v = I3 /\n A
|/ D (PTP) 4 + P (P
!
} 1 & 23
A +ﬁ7n—-lm Cpm— Pn )

Other example: Regularity of complex function w=f (z), (Caucby-Riemann) .
put: V=€,0 + &0,
Conjugate number: W=egw—ea,(e,=1, e=1)

s N
Regularity (Cauchy-Riemann): (yw)=0 and (Tw)=0, (310)
AR .

W =W = — 8 )81
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B vector & R IC L B vector S I o £ E b

M s i ® A E &

HOME 3KIT vector Eic R BHESE, M, JREEc0 HONEZBELZK
wYABRT, SBETF, WL, P S ShRke RETH 5 PEICBIL vector ©
— R (%) LEFEL vector REUCBrikE EA L e, X Hamilton {EFISE (BETET)
Vv (nabla) ORI v i@ X 2 THAR Pot, New, Max, Lap & Ll Bﬁ’L'C W RSN
DB % vector Briko follic i B EHs HIsk Y, B

[A[BC]] = (CA)B— (AB)C
KR TA=B=viLT VA=vdivA—rot rotA
YB3 AR, A=D, B=D, C=X LT 4

[P [DX]] =D (D" X) — (D" D)X =D (D' X)--X
B vector X @ D jc 47, TEEBRED ~O5H

X =X, + X, = D(DX) —[D-'[DX]]
¥4, BrlEPEv (nabla) &BEL TEZO vector 85 3 5k 5 X L MR SX O T B

FANY ,

X=X+ X, =v (' X)— [v[¥X]] = grad grad™ X —rot~' rot X
= div7'div X—rot rot™ X=y~2 {ydiv X —rot rotX } -
¥ Z2EORBAMFR—IEE RL, MMM vector Al vecter DI TS BEHERL,
vector AT ENRICEIL Tie BB CH B H LM Lz,
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149

150

152

155
156
156

157

159

160
161
162

181
182
183
184
185

186

187
188
189

190

191
192

19
15

10
30

(83)
(84)
(85)
13
(112)

—12

Bt

B VP Ly
&1)2’2—;—{ Racian)
HEEMD
Department-
FE=RIFHA
FARB(— TR
BERRI(ZORER
LR
Vs ursa
No.1. No.2, No.3,
AR

AR
Fysursial

Fverrry7all

FyvurZsall

represnted
22X
matrlx
(A/B)XA
XKnamely

Theminimun number which satisfy

associtve
M
Additvely
(34)
vector
vectet
quotieut
e € e
(24)
—A/O

X

=0 is equivaleut
clossed

Da:

=1

used

<
N
Voo Loy

&1)522—?—(Radian)
EH

Department
200

TESB—KBE/ "REE= £0000

i
Ak
200

L

Rt
Lk

VI i — K EE DTS
IR OBER I

30000
= 0 2%
300 10fETH 3

represented
zEX
matrix
(ANBIXA
X

associative
M
Additively
(35)
vectors
vector
quotient

e e e
(22)
—A\O

X

=0 is equivalent.

closed

=A"2



193 3 from from right side

—10 (BD)=D"? (bD)Y'=D"?
(185) eplepA] ey(epA)
194 (148) AT AT
(161) A ' AT
195 9 (164)
10 (165)
—15 (160) (138)
196 4 , X, X
18 a inner an inner
20 of or
97 7 (182) (182)
15 (168) (186)
198 6 v=a{pd P P It -+ Pun [P P"] v=q{pa PP+ p PP+ 0 PP°]}
11 v=0 (0.83) v=0O (0.83)
16 coresponds corresponds
198 (el2) v v
—15 anb and
200 3 (193)
20 or (19) or (91)
—6 (80) (87)
201 16 former latter
18 latter former
(206) (DA (D A)
—b (198) (170)
202 (213) A\A A\B
(216) =—[A\B]=[A\B]=0 =—[A\B, A\B]=0
(222) (") (")
’ —9 (75) (74)
208 11 differnetial differential
205 1 (127) (247)
16 Axt, 40 Axt 14
(263) =rot’ :Dr()t°
—5 yiv div
—4 yiv div
206 1 rot, rot?
277) rvt rot
(279) +rot~'rot™ A —rot™ rot™ A
207 38 v (__—g_) v (__ __g__)
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0
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divisors
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PI
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