Bull. of Yamagata Univ., Nat. Sci., Vol.16, No.3, Feb. 2007

A Classification of Double Circulant
Hermitian Self-Dual Codes over 4 of Lengths
up to 26

Hiroki Miyabayashi*

(Received May 31, 2006; revised July 12, 2006)

Abstract

In this paper, we give a classification of optimal double circulant
Hermitian self-dual codes over IF4 of lengths up to 26.

1 Introduction

For a Hermitian self-dual [n,n/2, d] code over [Fy, the following upper bound
on the minimum weight is known [7]:

dgz% 4o

A Hermitian self-dual code of minimum weight d.(n) = 2|n/6] + 2 is called
extremal. For instance, extremal codes are known to exist for admissible
lengths n < 10, 14 < n < 22, and n = 28, 30, while there is no extremal
code for lengths n = 12,24, 26 [6], [7]. Let dy(n) be the highest minimum
weight among all Hermitian self-dual codes of length n. A Hermitian self-
dual code of minimum weight dj(n) is called optimal. All Hermitian self-dual
codes were classified for lengths n < 16 [1], [5] and all extremal codes were
classified for lengths 18 and 20 [3].

Let Cir(a) be the n x n circulant matrix with the first row & € F} and
I,, be the identity matrix of order n (> 1). A pure double circulant [2k, k]
code has a generator matrix of the form

P(r) = (Iy Cir(r)) (1)
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where 7 is a vector of F§¥ (k> 1). A [2k, k] code with a generator matrix of

the form
a B - B

Y
B(r,a,,~v) = I C Cir(r) ; (2)
Y

where r is a vector of ]Fffl (k > 2) and borders «, 3, are elements of F,,
is called a bordered double circulant code. These two families of codes are
collectively called double circulant codes. Both pure and bordered double
circulant Hermitian self-dual codes exist for all even lengths. We denote
the highest minimum weight among all double circulant Hermitian self-dual
[n,n/2] codes by pn(n). Clearly, de(n) > dp(n) > pp(n).

Gulliver [2] determined pp,(n) for admissible lengths n < 40. For lengths
n < 30,n # 18, pp(n) is equal to dy(n). But he did not give a classification of
double circulant Hermitian self-dual [n,n/2, pp(n)] codes, and for lengths 24
and 26 he only obtained all weight distributions for which such a code exists.
This is the motivation of this paper, and we have the following classification
of optimal double circulant Hermitian self-dual codes of lengths up to 26.

Theorem 1. There are 3 inequivalent double circulant Hermitian self-dual
(22,11, 8] codes and 4 inequivalent double circulant Hermitian self-dual 24,12, 8]
codes. Also there are 19 inequivalent double circulant Hermitian self-dual
[26, 13, 8] codes.

In Table 1, we give the currently known values of d.(n), d,(n) and pp(n)
for lengths n < 40, and we also provide the references for these results.

2 Fundamental Concepts

In this section, we give some basic definitions and properties. Let Fy =
{0,1,w,w} be the Galois field with four elements, where @ = w? = w + 1.
A (linear) code over Fy of length n and dimension & is a k-dimensional
subspace of ] and denoted an [n, k] code. An element of a code is called
a codeword. A k X n matrix whose rows consist of a base of an [n, k] code
C is called a generator matrix for C'. A generator matrix G is in standard
form if G = (I, A) where A is some k x (n — k) matrix. Two codes C' and
C" are equivalent if there is some monomial matrix M over [y such that
C"=CM = {cM | ¢ € C'}. A monomial matrix which maps C' to itself is
called an automorphism of C' and the set of all automorphisms of C' forms
the automorphism group Aut(C') of C.
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Table 1: The highest minimum weights

n | de(n) | dp(n) pr(n) n | de(n) dp(n) pr(n)

2 2 (2 712 2 221 8 8 7] 8 2]
4 2 (2 712 2 24| 10 8 4], [7] 8 2]
6 4 (4 7 (4 ]2 26| 10 8 6] 8 2]
8 4 (4 7 (4 2 28| 10 10 (7] 10 [2]
0] 4 (4 74 2 30| 12 12 [7] 12 2]
120 6 (4 7 [4 2 321 12 | 10or 12 2] 10 [2]
4] 6 |6 [7]]6 [2] 34| 12 | 10or 12 2] 10 [2]
6 6 |6 [7]]6 [2] 36| 14 |12o0r 14 2] 12 2]
18 8 |8 [7]]6 [2] 38| 14 |12o0r 14 2] 12 [2]
200 8 |8 7|8 [2 40| 14 |120r 14 2] 12 2]

The weight wt(x) of a vector & € F7} is the number of non-zero compo-
nents of . The minimum non-zero weight of all codewords in C'is called the
minimum weight of C' and an [n, k| code of minimum weight d is denoted an
[n,k,d] code. Let A; (i = 0,...,n) be the number of codewords of weight
7, then Ag, Ay, ..., A, are called the weight distribution of C. Usually, only
the non-zero A; are listed. A code with only even weight codewords is called
even.

For two vectors @ = (x1,...,2,), ¥y = (Y1,...,y) € F}, the following
inner product

n
THxY = E sz»
=1

where — is given by 0 = 0,1 = 1, and @ = w, is known as the Hermitian
inner product. The dual code C+ of C' is defined as

Ct={xcF}|xrxc=0forallce C}.

A generator matrix for C'" is called a parity check matrix for C. If a k x n
matrix (I; A), where A = (a;;), is a generator matrix for an [n, k] code C,
then the (n — k) X n matrix (IT I, 1) is a parity check matrix for C' where
A = (@;). A code C is called Hermitian self-dual if C = C. Tt is known
that an [n, k] code C' is Hermitian self-dual if and ouly if C' is even and

n = 2k [5].
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3 Preliminaries

We have to check all odd weight vectors in F% as 7 in P(r), all addmissible
weight vectors in F’Z’l as r and all elements in Fy as a, 3,7 in B(r,a, 3,7)
to complete a classification of double circulant Hermitian self-dual codes of
length 2k. So we use some ideas to reduce the number of possible vectors
and borders.

For length 2, the code generated by P((1)) = (1 1) is the unique double
circulant Hermitian self-dual code up to equivalence. The code generated
by

P((10)) = B((1),1,0,0) = < L (1) (1J )

is the unique double circulant Hermitian self-dual code of length 4 up to
equivalence. Therefore, for the remainder of this section, we consider the
cases of lengths 2k not less than 6. Let A[i] denote the i-th row of a matrix
A. For a vector © = (21,79, ...,2,) € F}, 7, ™ and T provide the vectors
(Tny 1y ooy 1)y (TpyTp1,...,21) and (T1, Ta, ..., Tp), respectively. Also
let t(x) be the summation of all components of @, i.e.

t(x) = Zx

Following lemmas are useful for the achievement of our aim. Lemmas 2,
3, 5 and 10 are obvious, so we omit their proofs. The other lemmas are a
bit complicated, therefore we give their proofs.

Lemma 2. Let P(r) and B(r', «, 3,v) be generator matrices for pure and
bordered double circulant Hermaitian self-dual codes, respectively. Then both
Cir(r) and Cir(r") have no repeated rows.

Lemma 3. (i) Let C and C" be pure double circulant codes with genera-
tor matrices P(r) and P(r'), respectively. If v = v, then C and C' are
equivalent.

(11) Let C' and C" be bordered double circulant codes with generator ma-
trices B(r,a, 3,v) and B(r' o, 3,7), respectively. If v = v, then C and
C" are equivalent.

Lemma 4. (i) Let C and C" be pure double circulant codes with genera-
tor matrices P(r) and P(r'), respectively. If v = r7, then C' and C" are
equivalent.

(11) Let C' and C" be bordered double circulant codes with generator ma-
trices B(r,a, 3,7) and B(r',a, 3,7), respectively. If v' = r7, then C and
C" are equivalent.
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Proof. Note that

O 1 O 1
Cir(r) = Cir(r)" = Cir(r™).
1 O 1 O

From Lemma 3, the result follows. ]

Lemma 5. Let C' and C’ be pure double circulant codes with generator
matrices P(r) and P(r'), respectively. If v’ = sr for some non-zero element
s of Fy, then C and C' are equivalent.

Lemma 6. Let C' and C' be pure double circulant Hermitian self-dual codes
with generator matrices P(r) and P(v'), respectively. If v' =7, then C and
C" are equivalent.

Proof. Since C'is Hermitian self-dual, a parity check matrix (C’ir(r)T Iy) =
(Cir(7)" I) generates C itself. As seen in the proof of Lemma 4, Cir(777) =
Cir(7)T. Therefore, P(r) and P(T°") generate equivalent codes. Moreover,
by Lemmas 3 and 4, P(7°7) and P(7) generate equivalent codes. The proof
is complete. O

Lemma 7. Let P(r) be a generator matriz for a pure double circulant Her-
mitian self-dual code. Then t(r) # 0.

Proof. Suppose that t(r) = 0. Remark that the summation of any column of
Clir(r) is t(r) since Cir(r) is circulant. Hence, C' has the following codeword
c of weight k, which is obtained from the summation of all rows of P(r):

c=(1,...,1,0,...,0).
But this implies ¢« P(r)[1] = 1. This gives a contradiction. O

By Lemmas 27, the number of pure double circulant codes which must
be checked further for equivalences is reduced.

Lemma 8. Any bordered double circulant Hermatian self-dual code is equiv-
alent to some code which has a generator matriz of one of the following
forms:

Type A: B(r,1,0,0) where the first element of r is 1,

Type B: B(r,0,1,1) where the first element of v is 1,
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Type C: B(r,1,1,1) where the first element of r is 1,
Type D: B(r,w,1,1) where the first element of r is 1.

Type B occurs only for even k and Types C and D occur only for odd k.
Type A appears in both cases.

Proof. Let G = B(r,«,3,7) be a generator matrix for a bordered double
circulant Hermitian self-dual code C'. First, assume that § = 0. Since C
is Hermitian self-dual, G[1] * G[2] = a7y = 0. If a = 0, then wt(G[1]) = 1,
which contradicts that C' is Hermitian self-dual. Thus v = 0. Next, suppose
v =0and 3 # 0. Since G[2] x G[1] = t(r)3 = 0, B # 0 implies t(r) = 0.
Thus, C' has the following codeword ¢ which is obtained from the summation
of all rows of G:

c:(l,...,l,@,ﬁ,--'aﬁ)a

where the number of s is k. Since t(r)3 =0, G[2]xc=1+t(r)F =1 and
which againsts the assumption of C'. Hence, v = 0 leads to 5 =0. So 7 =0
if and only if v = 0. Therefore a, 3,7 are restricted within the following
three cases:

(i) a#0, f=7=0,

() a=0,8#0 v#0,

(i) a £0, 3#0,~#0.

Let us think cases (i), (i) and (iii).

(1) Multiply the (k+ 1)-th column of G by @. Moreover, from Lemma 2,
r is not the zero vector. If necessary, by multiplying all the (k + 2)-th
to the 2k-th columns of G by some appropriate non-zero element of IF
and performing ¢ appropriate times, one can get a generator matrix of
Type A.

(ii) If £ is odd, then wt(G[1]) is odd. Thus k is even. First, if r does not
have component of 1, multiply all the (k + 2)-th to the 2k-th columns
of G by some appropriate non-zero element of Fy, and furthermore,
perform o appropriate times, and one can make the first element of r
be 1. Next, multiply the (k + 1)-th column of G by 7, the first row of
G by 3 and the first column of G by 3. Then one can get a generator
matrix of Type B.
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(iii) If k£ is even, then wt(G[1]) is odd. Thus k is odd. Since G[2] x G[1] =
ay+t(r)3 =0, t(r) = afy # 0. Hence, there exists some x € [,
such that the number of x’s in 7 is odd. Furthermore, wt(r) is even,
then r has at least two non-zero elements of [F, in its components.
This implies that one can obtain two matrices such as B(ry,a,1,1)
and B(ry, b, 1,1) where a and b are distinct non-zero elements of F,
and the first elements of vy and r, are both 1. Then one can get a

generator matrix of Type C or Type D. ]

Remark 9. If we delete the condition about the first element of r in Lemma 8,
then any bordered double circulant Hermitian self-dual code is equivalent to
a code with generator matriz of Type A, Type B or Type C.

Lemma 10. Let C and C" be bordered double circulant codes with genera-
tor matrices B(r,«, 3,7) and B(r', «, 3,7), respectively. Suppose these two
matrices are of the same type which is either Type A or Type B in Lemma 8.
If v = sr for some non-zero element s of Fy, then C and C' are equivalent.

Lemma 11. Let C' and C' be bordered double circulant Hermitian self-dual
codes with generator matrices B(r,a, 3,v) and B(v',a, 3,7), respectively.
Suppose these two matrices are of the same type which is one of Type A,
Type B and Type Cin Lemma 8. If ¥’ =7, then C and C' are equivalent.

Proof. From the same discussion seen in the proof of Lemma 6, B *,a, 3,7)
generates a code which is equivalent to C. In addition, (@, 3,7) = («, 3,7)
since «, (3, are 1 or 0, respectively. This completes the proof. O

Lemma 12. Let C and C' be bordered double circulant Hermitian self-dual
codes with generator matrices B(r,a, 3,7) and B(v',a, 3,7), respectively.
Suppose these two matrices are of Type D in Lemma 8. If v’ = wF, then C
and C' are equivalent.

Proof. From the same discussion seen in the proof of Lemma 6, B(7,w, 1, 1)
generates a code which is equivalent to C'. Furthermore, it is easily verified
that B(7,w,1,1) and B(wF,w, 1,1) generate equivalent codes. The result
follows. O

Lemma 13. Let B(r,«, 3,7) be a generator matriz for a bordered double
circulant Hermitian self-dual code. If B(r,«, 3,7v) is a matriz of Type A in
Lemma 8, then t(r) # 0. If B(r,«, 3,7) is a matriz of Type B, Type C or
Type D in Lemma 8, then t(r) = @.
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Proof. Let G = B(r,«, 3,7) be a matrix of Type A and consider the code-
word ¢ which obtained from the summation of all rows of G. Since G is a
generator matrix for a Hermitian self-dual code, G[2] x ¢ = 0, which implies
the conclusion. Let G be a matrix of Type B, Type C or Type D. Since
G[2] % G[1] = @y + t(r)3 = 0, hence t(r) = @By, and = v = 1 implies the
conclusion. [l

From Lemmas 2, 3, 4 and 8-13, the number of bordered double circulant
codes which must be checked further for equivalences is reduced.

4 Results

We explain how to complete our classification. By exhaustive search with
MAGMA, we have found all double circulant optimal Hermitian self-dual
codes of lengths up to 26 which must be checked in order to complete the
classification under reductions based on the lemmas in Section 3. After that,
we completed the classification by using IsEquivalent(A,B) which is one
of the build-in-functions of MAGMA in order to determine the equivalence
of given two codes A and B.

We give the results of the classifications of pure (resp. bordered) double
circulant Hermitian self-dual codes with parameters [22, 11, 8], [24, 12, 8] and
[26, 13, 8] in Table 2 (resp. Table 3). In Table 2 (resp. Table 3), n gives the
lengths of the codes and 7 gives the first rows of Cir(r) in P(r) (resp.
B(r,a, 3,7)), respectively. WD and |Aut| give the weight distributions
and the orders of the automorphism groups, respectively. For the bordered
double circulant codes, the borders («, 3, ) are also listed in Table 3.

For length 22, there are three inequivalent extremal double circulant
Hermitian self-dual codes. These codes are all pure double circulant, in
other words, there is no extremal bordered double circulant Hermitian self-
dual code of length 22.

For length 24, there are four inequivalent optimal pure double circu-
lant Hermitian self-dual codes and two inequivalent optimal bordered dou-
ble circulant Hermitian self-dual codes. It was shown that there exist ex-
actly two inequivalent Hermitian self-dual [24,12, 8] codes with an auto-
morphism of order 11 [8]. Thus, any Hermitian self-dual [24,12, 8] code
with an automorphism of order 11 is equivalent to either Coy g1 or Coy po.
From computing by MAGMA, Cay py and Coy g are equivalent. Further-
more, Coy p1,Cas pa, Cog ps and Coy o are inequivalent to each other since
they have distinct automorphism groups. Hence there are exactly four in-
equivalent optimal double circulant Hermitian self-dual codes of length 24.
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Table 2: Pure optimal double circulant Hermitian self-dual codes

n | Code r WD |Aut|
22 0227]:)1 (1, 1, 1, w, 1, 1, w, 1, w,w, w) 122 in [5] 1330560
Cha,p2 (1,0,1,0,l,w,1,w,w, 1,w) 792 in [5] 66
Caa,p3 (1,1,,0,0,1,1,0,0,, 1) n22 in [5] 66
24 0247]:)1 (1,1,0,1,1,1,1,0,1,0 0 0) W2471 m [2] 734469120
Co4,P2 (Lw,w,w,l,w, 1, w,w,w, 1,0) Waa 2 in [2] 144
Corps | (Lw,w,ww wwo,w,l,1,0) Was s in [2] 72
26 CQG,PI (1,@, 0,w,w,0,w,1,1,0,w,0, 1) W2671 n [2] 156
CQG,PQ (1,@, w0,0,0,w,0,0,w,w,0,w, w) W2671 n [2] 78
026,P3 (1,0,0,&1,@,&), 0, 0,&),@,&),0,0) W2671 n [2] 78
Co,pa | (L, w,w,w,0,1,0,0,1,1, T, w,w) | Wa1 in [2] 39
026,P5 (1,0,&),&),0,0,&),@, 1,w, w,O,w) W2671 n [2] 39
Co%.ps | (1,w,0,0,0,1,1,1,w,0,w,0,&) | Wago in [2] 39
CQG,P? (1, 1,0, 1,0, 1, 1,w 0 W, W, 0 ) W2673 m [2] 156
Co%.ps | (Liw,l,w,w,0,1,&0,w,1,0,w,w) | Waa in [2] 78
026,P9 (1,&1,@, O,W,l,l,w,w,o,l,w,l) W2674 n [2] 39
CQG’Pl() (1, 1,w, 0, O,w,w, 1, w, 1,@, 1,@) W2674 1n [2] 39
026,P11 (1,1,w,w,1,w,1,1,1,1,1,w,1) W2675 mn [2] 16848

Table 3: Bordered optimal double circulant Hermitian self-dual codes

n | Code T (o, B,7) WD |Aut|

24 | Coy,B1 (1,0,1,0,0,0,1,1,1,0,1) (0,1,1) | Woyy in [2] 734469120
Co4, B2 (1,0,1,0,@,0,1,1,0,w, 0) (0,1,1) | Wagyq in [2] 66

26 026,31 (1 0,0,0,1,0,w0,0,w,0,w w) (1,1,1) W26,1 n [2] 144
Ca6,B2 (l,w,O,w,0,0,0,l,w,(),w,()) (1,1,1) | W in [2] 36
Co%.p3| (1,0,0,0,1,0,0,w,1,0,w,0) | (w,1,1) | Wy in [2] 432
Cos,pa | (1,1,@0,1,1,0,0,w,w,w,0,0) | (1,1,1) | Woe7 in [2] 72
Co%.p5 | (1,w,w,0,1,w,0,0,0,w,0,w) | (1,1,1) | Waysg in [2] 72
Cos.6 | (1,0,1,w,0,0,0,0,w,w,@,0) | (1,1,1) | Wysg in Table 4 72
Co.p7 | (1,w,w,0,w, W, w,w,0,w,w,1) | (1,1,1) | Was 1 in Table 4 72
026,38 (1,@, w,w,w,0,w,w,0, 1,0),@) (]_, 1, 1) W26711 in Table 4 864

89



Hiroki Miyabayashi

Table 4: New weight distributions of [26, 13, 8] codes

Was,9 Wae,10 Woe 11
Weight | Number Number Number
0 1 1 1
8 210 417 705
10 9675 8640 7200
12 152940 153768 154920
14 1374780 1380576 1388640
16 6819825 6799539 6771315

18 18028890 | 18060768 | 18105120
20 23934540 | 23905660 | 23865240
22 13974060 | 13989792 | 14011680
24 2738820 2734059 2727435
26 75123 75744 76608

Table 5: Numbers of the classified [n,n/2, pp(n)] codes

n | pn(n) | N Np Np n pn(n) | N N, N
2 2 1 1 — 16 6 2 2 1
4 2 1 1 1 18 6 5 3 2
6 4 1 1 1 20 8 1 1 0
8 4 1 1 1 22 8 3 3 0
10 4 1 1 1 24 8 4 3 2
12 4 3 3 1 26 8 19 11 8
14 6 1 1 1

For length 26, there are 11 inequivalent optimal pure double circulant
Hermitian self-dual codes and 8 inequivalent optimal bordered double circu-
lant Hermitian self-dual codes. Furthermore these 19 codes are inequivalent
to each other. Therefore we have Theorem 1. Note that Gulliver [2] gave
eight weight distributions of double circulant Hermitian self-dual [26, 13, §]
codes and mentioned that any such code has one of them as its weight dis-
tribution. But there exist three more weight distributions Wag 9, Wag 10 and
Wog 11 given in Table 4.

Finally, we give the numbers N of all inequivalent double circulant Her-
mitian self-dual [n,n/2, pp(n)] codes of lengths n < 26 in Table 5, where
Np and Npg give the numbers of all inequivalent pure and bordered double
circulant Hermitian self-dual [n,n/2, py(n)] codes, respectively.
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