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Abstract

Let H be a finite group with an involution in Z(H). By the
Brauer-Fowler theorem, there are only finitely many non-isomorphic
simple groups which have H as a centralizer of the involution. We
will explain our automatic GAP [7] program for Michler’s algorithm
[6] which constructs finite simple groups from this H.

0 Introduction

For the classification of finite simple groups, the Brauer-Fowler theorem is
essential.

Theorem 1 (Brauer-Fowler [2]) Let H be a finite group having center
Z(H) of even order. Then there are only finitely many non-isomorphic sim-
ple groups G which contain a 2-central involution t for which Cg(t) = H.

From this theorem, we can see that there are only finitely many non-
isomorphic simple groups which have a given centralizer H of an involution.
But there is no concrete way to construct these simple groups from H in
general. Our GAP program which uses Michler’s algorithm [6] constructs
some finite groups which satisfies some conditions on the group H.
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0.1 Michler’s Algorithm

Before we start to explain our program, we will review Michler’s algorithm in
[6]. There are 3 main parts in the algorithm. Let H be a finite permutation
group with an involution t in Z(H).

1. Find an elementary abelian normal subgroup A of a Sylow 2-subgroup
S of H. Construct D := Ng(A) and C := Cy(A).

2. Find a group extension E of D which satisfies the following 3 condi-
tions.

i Aisnormal in F.
ii D= Cg(t).
iii |E: D] is odd.

3. Construct GG as an epimorphism image of a free product H*p £ with
the common subgroup D. (Amalgamation)

The first part is done by only GAP commands. The second part is a
main calculation of our program. Since Cp(A) = C, E/C is embedded in
Aut(A). The point of the second part is getting a group extension E/C of
D/C in Aut(A)= GL(d,2) where |A] = 2%. We can construct some group
extension E as a permutation group from the elementary abelian 2-group A
and the subgroup E/C of Aut(A) by using computational group theory [4].
The next diagram shows relations of subgroups in G.

H E GL(d,2) = Aut(A)
S/ \D/ N /

E/C
SN /
C D/C
SN S
A 1

The last part is also not so easy, but we can construct G by using represen-
tation theory. We call this last part amalgamation. We need to find a pair
of compatible characters. (see Section 2 and [5])

In the first section, we will explain our automatic program. To do ev-
erything automatically, we put additional conditions for . In the second
section, the detail of amalgamation is described. The second part of Mich-
ler’s algorithm (the main part of our program) is explained in the third
section. We will show an example of a calculation in the last section.
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1 The program MNGs

Our GAP program is made up of some independent functions of GAP. Thus
it is also possible to use these functions for getting a partial result. A
resulting group G is obtained by combination of these functions.

1.1 The output of the MINGs

We named our program MNGs from a phrase “Make New Groups”. The
purpose of this program is to construct a new group G from the centralizer
of an involution ¢ of GG. Let p be a prime which does not divide the order
of H and E. Let k be a finite field of characteristic p. The group G is
constructed as a matrix group over k. But we also need many local results
for D, C' and FE in process. We put each information in the output as a
record. Since different pairs (A, E') can produce different G, all data for i th
A and j th E are obtained by “OutputName[i] [j].RecordName” in GAP.
For example, if gs is the name of an output of MINGs, we can get a group
G by gs[1] [1] .G for the first A and the first £. This is a table of names of
records which our program stored.

H | an input group CharTableOfH | the character table of H
t | an involution A an elementary abelian nor-
mal subgroup of Sylow 2-
subgroup of H
D | the normalizer of A in H CharTableQfD | the character table of D
Ep | a group extension £ of D CharTableOfE | the character table of £
C | the centralizer of A in H delta A = D/C as a subgroup of
Aut(A)
eta | a homomorphism from D | GroupHomFromD | an isomorphism from D to
to A a subgroup F
Phi | & =E/C CP a pair of compatible char-
acters
G | a newly constructed group Ambs an ambiguity of G

The next example shows that the MNGs constructs the McLaughlin
group McL as the first new group from H = 2.Ag. The output gs[1] [1] .G
is a simple matrix subgroup of GL(22,11) whose order is 898,128,000.

gap> tom:=TableOfMarks("2.A8");;

gap> H:=UnderlyingGroup(tom);
<permutation group of size 40320 with 2 generators>

95



Katsushi Waki

gap> gs:=MNGs(H,22,300,0);;
< many messages ... >
gap> Size(gs[11[1]1.G);
898128000
gap> IsSimple(gs[1][1].G);
true
gap> IsomorphismTypeFiniteSimpleGroup(gs[1][1].G);
rec( series := "Spor", name := "Mc" )

MNGs needs a permutation group H and 3 numbers (like 22, 300 and 0
in the above example) as an input data. We will explain these numbers in
Section 2.

1.2 Additional Conditions for MNGs

For an automatic calculation, we put additional 5 conditions.

C.1 The order of A is at most 2°.
C.2 Both D and E are split with A.
C.3 Cisequal to A.

C.4 The restriction of a pair of compatible characters to D is multiplicity
free.

C.5 The characteristic p of the field k£ in 1.1 is small enough. (p < 23)

The order of Aut(A) is limited by the condition C.1. The conditions C.2
and C.3 make it possible to construct an extended group E automatically
by the semidirect product of A by E/C. The condition C.4 means each
constituent of the restriction of characters has multiplicity one. The con-
dition C.4 restricts the possibility of embedding D in E. We put the last
condition C.5 for the GAP function BrauerCharacterValue. If p is too big,
this function does not work.

In the next table, we show groups which are constructed automatically
by MNGs. We use the notations of the Atlas [3] of finite groups in this table.
The group G is a target simple group. H is constructed as a centralizer of
an involution in . The program MNGs does not only reconstruct G but
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also constructs some satellite groups (Fy, Fy, F3).

H G Fy Fy F;
2%:9, Moy | 2%:Ag 24 Aq 23.03(2):2
24+3 L3(2) M24 He 24:A8
23:9, Ag [ 23:L3(2) | (37x2%):L3(2)
25 : SG Alg Sp6(2)
2.Ag McL
2% A5 J1

There are some simple groups which are not constructed automatically by
MNGs because some conditions are not satisfied. But MNGs constructs
the following groups with some satellite groups by adding some manually
operated steps.

2

H G F Conditions not satisfied
24iL3(2) MQ?, 242147 C4or Ch
21+41A5 JQ 3]3 C.2
2.A11 Ly C.2
Amalgamation

In this section, we will explain the third part of Michler’s algorithm. Using
a pair of compatible characters (see [5]) of H and E, our program tries
to construct irreducible p-modular representations of G. This means the
output GG of our program is presented as a matrix group over a finite field
of characteristic p.

2.1

Outline of amalgamation

We can construct G as an image of the free product H *p E of H and F
with a common subgroup D by the following steps.

1.

2.

Construct the character tables of H, £ and D.

Find pairs of compatible characters (xy, 7r) such that xp = 7p. (the
restriction of characters to D)

Construct corresponding kH and kFE-modules Vi and Wg such that
the actions of D on these modules coincide.

The first step is done by some commands in GAP. The second step is
a combinatorial problem. The detail of this step is explained in [5]. In the
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last step, we construct p-modular representation V of G whose restrictions
to H and E correspond to the character yy and 7, respectively. A set of
representation matrices for both Vi and Wy can be generators of G. In
general, we cannot pick up a unique module from a character. But since the
order of H and £ are not divisible by p, we can construct Vi and Wg by the
direct sum of simple modules which correspond to irreducible constituents
in Yy and 7g.

As we said in 1.1, MNGs needs 3 numbers as an input data. The first
number is the upper bound of the degree of pairs of compatible characters.
If this number is 0, MNGs calculates all pairs. We will explain the second
number in 2.2. The third number is the characteristic p of the finite field k.
If this number is 0, MNGs sets the smallest prime which does not divide the
order of H and F.

2.2 Construction of simple kH or £E -modules

In the last step in 2.1, MNGs needs to construct simple modules which
correspond to irreducible characters in ygy and 7. Since H and FE are
permutation groups, we can get permutation modules for any finite filed k.
By a tensor product of composition factors in the permutation modules, it
is possible to construct all simple modules which we need. We set an upper
limit for a dimension of tensor products. This is the second number in the
input of MNGs. TIf this number is 0, no-limit is set for the dimension of
tensor products.

3 Group Extension

Now we start to explain the method to find F from D automatically. This
is the second part of Michler’s algorithm. Since we set the conditions C.2
and C.3 in 2.1, we can construct F by the semi-direct product of A and
E/C. Thus it is enough to find E/C in GL(d,2) for construction of E
automatically.

3.1 In case d is small

Since A is elementary abelian, we can see that £//C as a subgroup of GL(d, 2)
where d is the rank of A.

1-C—-F—E/C— GL(d,?2)
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If d is less or equal to 4 then the order of GL(d,2) is at most 20,160.
Then we can search E/C which satisfies our conditions in 0.1 from ALL
subgroups of GL(d,2). But the order of GL(d,2) increases dramatically.

| = 20, 160
| = 9,999, 360
| = 20,158,709, 760

IGL(4,2)
IGL(5,2)
IGL(6,2)

Thus if d is more than 4, it is impossible to search E/C from all subgroups
of GL(d,?2).

3.2 Incased= 5or 6

As we have seen in 3.1, we need a smaller group which contains £/C. Let
w be an orbit of t under £/C. Since D should be Cg(t), the index |E: D|
is equal to the length of the orbit w. Moreover w is the union of some
orbits 0; of D on A. So we can make a list of candidates for the orbit w
by combinations of o;. Let S, be the stabilizer of w in GL(d,2). Since
E/C stabilizes w, E/C must be a subgroup of S,,. The next diagram shows
subgroups and its action domains.

D/C c E/CCS, C GL(d,2)
Action: -+ | 1l
teogUoyU... = w - A

We can hope S, is much smaller than whole GL(d,2). Indeed we can see
Sw is small enough in case d = 6 from the next table.

G ||wl| |E/C] [So]  |d| |GL(d,?2)]
A, | 3| 2338 2131 6| 23557231
Sps(2) | 7 | 2337 | 213257 | 6| 25.375.72.31
My, |3.7] 24327 | 24327 |6|25.345.7231
McL | 35253257 263257 4| 263257

On the other side, if w consists of all elements of A except identity, S,
becomes GL(d,2) as one can see in the last line of the table.

3.3 Transitive Extension

As d increases, the number of the candidates of w also increases. For exam-
ple,

e In case D = 2%:(S,x2) for My, there are 63 candidates of w.
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e In case D = 2°:5; for Ao, there are 255 candidates of w.

e In case D = 27:S; for A, there are 16,383 candidates of w.

Thus we also need to take off some hopeless candidates. Let us observe
E/C from another point of view. Since £/C' acts on w transitively and the
one point stabilizer of ¢ in £/C must be D/C, E/C must be a transitive
extension of D/C on w.

( Exists £ with > ( D/C has a transitive )

the orbit w of ¢ extension on w

Thus if we know a good criterion where w induces a transitive extension of
D/C, we can delete hopeless candidates of w from the list.

Let D be a permutation group acting on €. Let £ be a transitive exten-
sion of D. A subset X of D is called an S-subset with respect to the pair
(D, E) if and only if all F-conjugates Y of X are D-conjugate with X. Let
I(X) = {i € QVx € X,i® =i} and cx denotes the number of D-conjugates
of X.

Criterion 1 (Bannai [1]) Let D be a permutation group on Q. If D has
a transitive extension E then for any S-subset X with respect to the pair

(D, E), \I‘(S;(‘;}HCX is an integer.

Let z in D. We can say {z} is an S-subset if all y in D such that
[1(z)| = [1(y)| and the order of y equal with the order of = are D-conjugate

with . This means that we can find some S-subsets without 2. So let

2 = w\t. If there is some = such that {z} is an S-subset and u(‘{gﬂﬁcm is

NOT an integer, then this w is OUT! (You can forget it.) By using Bannai’s
criterion, we can decrease the number of candidates of w as follows.

e Tn case D = 29:(S9,;x2) for My, 63 candidates of w. = 48 candidates
e In case D = 2°:5; for A;,, 255 candidates of w. = 76 candidates

e In case D = 27: S for A, 16,383 candidates of w. = 206 candi-
dates

4 Demonstration

Let H := (ny,n9,n3,n4, N5, V1, Uz, V3,04, v5) be 2°: Sg by the following rela-
tions.

100



GAP program for uniform constructions of some finite simple groups

o (nj)?=1for (i=1...5), (ninie1)>=1for (i=1...4),
[ni,nj]zlfor (1§l—|—1<]§5)

o (v)2=1for (i=1...5), [v;,v;] =1for (1 <i<j<5)

Vi1 (i=7)
o v =¢ vy (i=74+1) for (j<5),
v, (else)
?]in‘s = V; U5 for (Z =1... 4), U5n5 = Vs

In this section, we will explain the detail of a concrete calculation. Let t =
v10ov3v4v5. The group H is isomorphic to the centralizer of the involution
t in the alternating group A;s. MNGs finds two subgroups A of order 64
and 32. But the group A of order 32 is not split. Thus we skip this group.
Generators of the group A of order 64 are {ny, ny, v3,n1"2, 14", ns""}. Let
Hy be the subgroup of H generated by a set {ng, ng, n4, ns, vo, v3, v4, Vs }.
Then Hy is isomorphic to 2*:S5. Since the index of Hy in H is 12, we can
get a permutation representation of degree 12 for H. The generators [ n,
N9, N3, Ny, N5, V1, Vg, U3, Vg, U5 | of H correspond to the permutations

[ 1,20(3, 5, 2,4(5, 7, 4,6)(7, 9, (6,8)(9,11), ( 8,10)(11,12),
(1,3)(10,12), (2,5)(10,12), (4,7)(10,12), (6,9)(10,12), ( 8,11)(10,12) ].

Let d;=(1,2,3,5)(4,9,10,8,7,6,12,11), d»=(1,9,4,2,11,12) (3,6,7,5,8,10).
Then {d;, d>} generates D. Moreover let h=(1,10,8,6,4,2)(3,12,11,9,7,5).
Then {h,d;,ds} are generators of H. MNGs constructs 2 group extensions
E; and E; which are isomorphic to 2°: L3(2) and 2°:(3%:5,), respectively.

Let 1, and 19 be group homomorphisms from D to E; and FEs, respectively.
Then the images 11(d;) = n2(dy) and n1(d2) = n2(ds) are

[ (1,18,42,59, 7,24,48,61)( 2,26,43,55, 8,32,45,49)( 3,22,44,63, 5,20,46,57)
( 4,30,41,51, 6,28,47,63)( 9,19,38,60,156,21,36,62) (10,27,39,56,16,29,33,50)
(11,23,40,64,13,17,34,68) (12,31,37,52,14,26,35,64),

(1,64,37,30,35,58)( 2,52,53,29,47,42)( 3,60, 5,32,39,26)( 4,566,21,31,43,10)
( 6,20,55,25,15,44)( 7,28)( 8,24,23,27,11,12)( 9,16,40,22,19,59)
(13,48,38,18,51,57)(14,36,54,17,63,41) (33,62) (34,50,49,61,45,46)].

Let e; =
(1,41,30, 8,48,27)( 2,42,29, 7,47,28)( 3,38,21, 6,35,200( 4,37,22, 5,36,19)
(9,44,18,16,45,23)(10,43,17,15,46,24) (11,39,25,14,34,32) (12,40,26,13,33,31)
(49,57,60,56,64,61) (50,58,59,55,63,62) (51,54) (562,53)
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and ey =

( 3,55,43)( 4,56,44)( 5,38,33)( 6,37,34)( 7,20,11)( 8,19,12)( 9,49,58)
(10,50,57)(13,22,26) (14,21,25) (15,36,52) (16,35,51) (17,62,46) (18,61,45)
(23,47,40) (24,48,39)(27,60,63) (28,59,64) (29,41,53) (30,42,54) .

Then {n(d1),n(dz), e1} and {na(dy1), n2(da), ea} are sets of generators of E
and Ey, respectively. The degree of a pair of compatible characters (x1, 7z, )
is 7. x1p is a sum of 2 irreducible characters of degree 1 and 6. 7p, is an
irreducible character. The restriction of these characters to D is decomposed
into 2 irreducible characters of degree 1 and 6. The degree of a pair of com-
patible characters (x2y, 7r,) 18 11. X2y is a sum of 2 irreducible characters
of degree 5 and 6. 7, is a sum of 2 irreducible characters of degree 2 and
9. The restriction of these characters to D is decomposed into 3 irreducible
characters of degree 2, 3 and 6. The irreducible characters of H with degree
6 in x14 and xap are the same. By using these compatible characters, the
program MNGs succeeded to construct Sp,(2) and A;y automatically. The
pair H and E; induced G; = Sp,(2) as a subgroup of GL(7,11). The pair
H and Es, induced Gy = Ay, as a subgroup of GL(11,7). The generators of
(1 which correspond to {h,d;,dy, e} are

X ... .. X ... 889 1. .
L4 2. . .19 235 141 8X6 2653 864
X 493 . X . 1635 1418 .5 9653 864
X 585 .|, TX8T 3X X 8 37 .5 8.1
X R 1409 .. .6 934
X L .X 342 D 6X35
X342 XL 1879 66X 44
(X is 10 in GF(11))
The generators of Go which correspond to {h,d;,ds, es} are
1213 ... ... 36 . N /2N A
ig.46 .00 T4 IR 630
56524 000 63600 SLdgg 3555 (43
151350 ... 0" S E: DA 265 . T 66 .25 .
4545 00 Y E: DI Ao 2277
.......... 3 I RS I I A | Sl
..... 6.1 Y B S | SRR |
...... 6 LT 6 R C5 0133
....... 6.0 Y S I HRE:S E:
........ 6. N R Sid6 .43
......... 6 RS DI AN N I ¥ I
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