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A note on the restriction of Fourier multipliers
from weighted Lp spaces to Lorentz spaces

Yuichi KANJIN, Ayako KANNO and Enji SATO

Abstract

Let p be in 1 < p < ∞, φ(x) a bounded continuous function on  , Tφf (x) 
=  φ(ξ) f (ξ)eixξdξ, and Tφ│  F(x)= 

φ(m)F(m)eimx. Anderson-Mohanty [1] 
showed that if Tφ is bounded on a weighted Lp space on   then Tφ│  is 
bounded on the corresponding weighted Lp space on  , whose result is a 
generalization of Berkson-Gillespie [2]. In this paper, we generalize the result 
from  weighted Lp spaces to Lorentz spaces with an alternative proof.
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Let X be the real line R or the one dimensional torus T = [−π, π) and w(x) a
nonnegative function on X. Also let Lp

w(X) be the set of all measurable function
f on X with ||f ||Lp

w(X) < ∞, where

||f ||Lp
w(X) =

(
1

2π

∫
X

|f(x)|pw(x)dx
)1/p

(1 ≤ p < ∞).

In particular, we denote Lp(X) = Lp
w(X) and ||f ||Lp(X) = ||f ||Lp

w(X) when w(x) = 1
on X.

Definition 1. Let φ(x) be a bounded continuous function on R and {Ψ(n)}n∈Z a
bounded sequence on the integer group Z. Then, we define

Tφf(x) =

∫
R

φ(ξ)f̂(ξ)eixξdξ (f ∈ C∞
c (R)),

and

TΨF (x) =
∑
m

Ψ(m)F̂ (m)eimx (F ∈ P (T)),

where we denote the Fourier transform of f by f̂(ξ) = 1
2π

∫
R
f(x)e−iξxdx, by

C∞
c (R) the set of all infinitely differentiable functions on R with compact sup-

port, by F̂ (n) = 1
2π

∫ π

−π
F (x)einxdx the Fourier coefficient of F , and by P (T) the

set of all trigonometric polynomials on T. A bounded continuous function φ is
called an Lp

w(R)-multiplier, if there exists a constant C such that ||Tφf ||Lp
w(R) ≤

C||f ||Lp
w(R) (f ∈ C∞

c (R)), and a bounded sequence Ψ is called an Lp
w(T)-multiplier,

if there exists a constant C such that ||TΨF ||Lp
w(T) ≤ C||F ||Lp

w(T) (F ∈ P (T)).

1. Introduction
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Here, we denote by Mp,w(X) the set of all Lp
w(X)-multipliers, by ||Tφ||Mp,w(X) the

operator norm on Lp
w(X), and ||Tφ||Mp(X) = ||Tφ||Mp,w(X), when w(x) = 1 on X.

In 1965, de Leeuw [4] proved the follwing:

Theorem A. If φ is an Lp(R)-multiplier for 1 ≤ p < ∞, then φ|Z is an Lp(T)-
multiplier.

In 2003, Berkson-Gillespie [2] obtained a generalization of de Leeuw’s result
under the Ap condition (cf. [8]).
We say that for 1 < p < ∞ a nonnegative function w(x) on R satisfies Ap

condition, if there exists a constant C such that(
1

|Q|
∫
Q

w(t)dt

)(
1

|Q|
∫
Q

(w(t))
1

p−1 dt

)p−1

≤ C

for all bounded interval Q, when |Q| is the length of Q. Then we denote w ∈ Ap(R).
Also we denote

Ap(T) = {w ∈ Ap(R) | w is a 2π periodic function onR}.
Berkson-Gillespie’s result is the following:

Theorem B. Let 1 < p < ∞ and U ∈ Ap(T). Put u = U |T, the restriction
of U on T. If φ is an Lp

U (R)-multiplier, then φ|Z is an Lp
u(T)-multiplier with

||Tφ|Z ||Mp,u(T) ≤ ||Tφ||Mp,U (R).

In 2009, Anderson-Mohanty [1] generalized Theorem B by the simple calcula-
tion. Their result is the following:

Theorem C. Let U be a nonnegative 2π periodic measurable function on R, and
1 < p < ∞. Also we assume that u = U |T ∈ L1(T). Then we obtain that φ|Z is in
Mp,u(T) with ||Tφ|Z ||Mp,u(T) ≤ ||Tφ||Mp,U (R), if φ is in Mp,U (R).

In this paper, we shall generalize Theorem C to Lorentz spaces with an al-
ternative proof which is different from Anderson-Mohanty [1]. First we introduce
Lorentz spaces.

Definition 2. Let U be a nonnegative 2π periodic function on R, u = U |T, μ(E) =∫
E
U(x)dx and ν(E) =

∫
E
u(x)dx for a measurable set E. We assume u ∈ L1(T).

For 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, we define the Lorentz space Lp,q(μ) = {f | ||f ||Lp,q(μ) <
∞}, where

||f ||Lp,q(μ) =

⎧⎪⎨
⎪⎩

(
q
∫∞
0

(
tμ({x ∈ R | |f(x)| > t}) 1

p
)q dt

t

) 1
q

(q < ∞)

sup
t>0

tμ({x ∈ R | |f(x)| > t}) 1
p (q = ∞)

and we define Lp,q(ν) = {F | ||F ||Lp,q(ν) < ∞} in the same way as Lp,q(ν), too. It
is known that Lp,q(μ) = Lp(μ), where Lp(μ) is the usual Lp space with respect to
the measure μ, and Lp,q(ν) = Lp(ν) for p = q. Also we define ||Tφ||Lp(μ)→Lp,q(μ) =
sup‖f‖Lp(μ)≤1 ‖ Tφf ‖Lp,q(μ) and ‖ Tφ|Z ‖Lp(ν)→Lp,q(ν), too.

Throughout this paper, the letters C, C1, C2 and C3 will be used to denote
positive constants not necessarily the same at each occurrence.

Our main theorem is the following:
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Theorem 1. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. We assume that

||Tφf ||Lp,q(μ) ≤ ||Tφ||Lp(μ)→Lp,q(μ)||f ||Lp(μ) (f ∈ C∞
c (R)).

Then, there exists a constant C such that

||Tφ|ZF ||Lp,q(ν) ≤ C||Tφ||Lp(μ)→Lp,q(μ)||F ||Lp(ν) (F ∈ P (T)).

The following result is a special case of Theorem 1:

Collorary 1. Let 1 ≤ p < ∞ and φ be a bounded continuous function R. Then,
if we assume that

||Tφf ||Lp,∞(μ) ≤ ||Tφ||Lp(μ)→Lp,∞(μ)||f ||Lp(μ) (f ∈ C∞
c (R)),

we obtain that

||Tφ|ZF ||Lp,∞(ν) ≤ C||Tφ||Lp(μ)→Lp,∞(μ)||F ||Lp(ν) (F ∈ P (T)).

Zafran [10](cf. [3, Remark 3]) showed that if 1 < p < 2 then there exists a
Fourier multiplier operator T from Lp(R) to Lp,∞(R) such that T is not a Fourier
multiplier operator from Lp(R) to Lp(R). By this fact, we remark that Corollary 1
is not contained in Anderson-Mohanty [1].

2. The proof of Theorem 1

First we will prove a lemma.

Lemma 1. When we define ωδ(x) = e−
δ
4π x2

(δ > 0), we have that

(i) limδ→0 δ
1
2

∫
R
f(x)ωδ(x)dx =

∫ 2π

0
f(x)dx (f ∈ L1(T)),

(ii) limδ→0(
√
δ)

1
p ||ωδF ||Lp(μ) =

(
1√
p

) 1
p ||F ||Lp(ν).

Proof. (i) It is easy to prove, but let us give the proof for readers convenience
(cf. [1], [9](p.261)).

Since δ
1
2

∫
R
ωδ(x)e

imxdx = 2πe−
π
δ m2

(m ∈ Z), we have

lim
δ→0

δ
1
2

∫
R

P (x)ωδ(x)dx =

∫ 2π

0

P (x)dx (P ∈ P (T)).
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Also since for f ∈ L1(T) and P ∈ P (T) we have that∣∣∣∣δ 1
2

∫
R

(f(x)− P (x))ωδ(x)dx

∣∣∣∣
≤

∑
j∈Z

δ
1
2

∫ 2π(j+1)

2πj

|f(x)− P (x)|ωδ(x)dx

=
∑
j∈Z

δ
1
2

∫ 2π

0

|f(x)− P (x)|ωδ(x+ 2πj)dx

≤ δ
1
2

∫ 2π

0

|f(x)− P (x)|
∑
j∈Z

ωδ(x+ 2πj)dx

≤ δ
1
2

∫ 2π

0

|f(x)− P (x)|
(
2

∫ ∞

0

ωδ(t)dt

)
dx

≤ 2π

∫ 2π

0

|f(x)− P (x)|dx

= 4π2||f − P ||L1(T).

Moreover, we have that∣∣∣∣δ 1
2

∫
R

f(x)ωδ(x)dx−
∫ 2π

0

f(x)dx

∣∣∣∣
≤

∣∣∣∣δ 1
2

∫
R

(f(x)− P (x))ωδ(x)dx

∣∣∣∣
+

∣∣∣∣δ 1
2

∫
R

P (x)ωδ(x)dx−
∫ 2π

0

P (x)dx

∣∣∣∣+
∫ 2π

0

|f(x)− P (x)|dx.

By the above facts we get the desired result, since we have that P (T) is dense in
L1(T).
(ii) By |F (x)|pU(x) ∈ L1(T) and (i), we have

δ
1
2 ||ωδF ||pLp(μ) = δ

1
2
1

2π

∫
R

e−
pδ
4π x2 |F (x)|pU(x)dx

→ 1

2π
√
p

∫ 2π

0

|F (x)|pu(x)dx (δ → 0)

=
1√
p
‖ F ‖pLp(ν),

and limδ→0(
√
δ)

1
p ||ωδF ||Lp(μ) =

(
1√
p

) 1
p ||F ||Lp(ν). �

Proof of Theorem 1. According to Kaneko-Sato [6], we proceed the proof. First
we define that

F (x) =
∞∑

m=−∞
F̂ (m)eimx (F ∈ P (T)),

γδ(x) = ωδ(x)Tφ|ZF (x)− Tφ(ωδF )(x),
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and

||γδ||∞ = sup{t| |{x ∈ R | |γδ(x)| > t}| > 0},
where |E| is the Lebesgue measure of a measurable set E.

CASE 1. We show the proof in the case 1 ≤ q < ∞.
By γδ(x) =

∫
R
γ̂δ(ξ)e

ixξdξ, we have that |γδ(x)| ≤ 2π ‖ γ̂δ ‖L1(R), and

γδ(x) = ωδ(x)Tφ|ZF (x)− Tφ(ωδF )(x)

= ωδ(x)
∑
m

φ(m)F̂ (m)eimx − Tφ(ωδF )(x).

Then, we obtain that

γ̂δ(ξ) =
1

2π

∫
R

γδ(x)e
−iξxdx

=
∑
m

φ(m)F̂ (m)ω̂δ(ξ −m)− φ(ξ)ω̂δF (ξ),

and

ω̂δF (ξ) =
∑
m

F̂ (m)ω̂δ(ξ −m).(1)

Hence, by (1) we get that

γ̂δ(ξ) =
∑
m

F̂ (m)ω̂δ(ξ −m)
(
φ(m)− φ(ξ)

)
,

and

||γ̂δ||L1(R) =
1

2π

∫
R

∣∣∣∑
m

F̂ (m)ω̂δ(ξ −m)
(
φ(m)− φ(ξ)

)∣∣∣dξ
≤

∑
m

|F̂ (m)| · 1

2π

∫
R

ω̂δ(ξ −m)|φ(m)− φ(ξ)|dξ.
(2)

On the other hand, by wδ(x)Tφ|ZF (x) = γδ(x) + Tφ(wδF )(x), we have that

|ωδ(x)Tφ|ZF (x)| ≤ ‖ γδ ‖∞ +|Tφ(ωδF )(x)|
≤ 2π ‖ γ̂δ ‖L1(R) +|Tφ(ωδF )(x)|,

and

(3) {x ∈ R | |ωδ(x)Tφ|ZF (x)| > t} ⊂ {x ∈ R | |Tφ(ωδF )(x)| > t− 2π ‖ γ̂δ ‖L1(R)}.
For a > 2 · 2π ‖ γ̂δ ‖L1(R), we have(∫ ∞

a

(
tμ({x ∈ R | |ωδTφ|ZF (x)| > t}) 1

p
)q dt

t

) 1
q

≤
(∫ ∞

a

(
tμ({x ∈ R | |Tφ(ωδF )(x)| > t− 2π ‖ γ̂δ ‖L1(R)})

1
p
)q dt

t

) 1
q

≤
(∫ ∞

a−2π||γ̂δ||L1(R)

(
(t+ 2π||γ̂δ||L1(R))μ({x ∈ R | |Tφ(ωδF )(x)| > t}) 1

p
)q dt

t+ 2π||γ̂δ||L1(R)

) 1
q

≤
(∫ ∞

a−2π||γ̂δ||L1(R)

(( t+ 2π||γ̂δ||L1(R)

t

)
t
(
μ({x ∈ R | |Tφ(ωδF )(x)| > t}) 1

p

)q dt

t

) 1
q

.
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Therefore, by
t+2π||γ̂δ||L1(R)

t ≤ 1+
2π||γ̂δ||L1(R)

a−2π||γ̂δ||L1(R)
≤ 2 for t ≥ a−2π||γ̂δ||L1(R), we get

that (∫ ∞

a

(
tμ({x ∈ R | |ωδTφ|ZF (x)| > t}) 1

p
)q dt

t

) 1
q

≤ 2
(∫ ∞

0

(
tμ({x ∈ R | |Tφ(ωδF )(x)| > t}) 1

p
)q dt

t

) 1
q

= 2||Tφ(ωδF )||Lp,q(μ).

Also by the assumption of Tφ, we obtain that

||Tφ(ωδF )||Lp,q(μ) ≤ ||Tφ||Lp(μ)→Lp,q(μ)||ωδF ||Lp(μ),(4)

and for a > 2 · 2π||γ̂δ||L1(R), we get that(∫ ∞

a

(
tμ({x ∈ R | |ωδTφ|ZF (x)| > t}) 1

p
)q dt

t

) 1
q

≤ ||Tφ||Lp(μ)→Lp,q(μ)||ωδF ||Lp(μ).

(5)

Here, we show limδ→0 ||γ̂δ||L1(R) = 0. In fact, by ωδ(x) = e−
δ
4π x2

, we have that

ω̂δ(ξ) = δ−
1
2ω4π2/δ(ξ), and by (2)

||γ̂δ||L1(R) ≤
∑
m

|F̂ (m)| · 1

2π

∫
R

ω̂δ(ξ −m)|φ(m)− φ(ξ)|dξ

=
∑
m

|F̂ (m)| · 1

2π

∫
R

δ−
1
2 e−

π
δ (ξ−m)2 |φ(m)− φ(ξ)|dξ.

Let m ∈ Z be fixed. For ε > 0, there exists η0 > 0 such that |φ(m)− φ(ξ)| < ε for
|ξ −m| < η0. Then, we estimate that

1

2π

∫
R

δ−
1
2 e−

π
δ (ξ−m)2 |φ(m)− φ(ξ)|dξ

=
1

2π

∫
|m−ξ|<η0

δ−
1
2 e−

π
δ (ξ−m)2 |φ(m)− φ(ξ)|dξ

+
1

2π

∫
|m−ξ|>η0

δ−
1
2 e−

π
δ (ξ−m)2 |φ(m)− φ(ξ)|dξ

= (α) + (β), say.

In (α), we have

(α) < ε · 1

2π

∫
R

δ−
1
2 e−

π
δ (ξ−m)2dξ ≤ ε

2π
· 1√

π

∫
R

e−t2dt =
ε

2π
.(6)

In (β), since

|φ(m)− φ(ξ)| ≤ |φ(m)|+ |φ(ξ)| ≤ 2 ‖ φ ‖∞,

we obtain that

(β) ≤ 2 ‖ φ ‖∞
2π

∫
|m−ξ|≥η0

δ−
1
2 e−

π
δ (ξ−m)2dξ

=
||φ||∞
π
√
π

∫ ∞
√

π
δ η0

e−t2dt → 0 (δ → 0).

(7)
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Therefore, for ε > 0, there exists δ0 > 0 such that (α) + (β) < 2ε for 0 < δ < δ0,
and we obtain limδ→0 ||γ̂δ||L1(R) = 0.
Also we show

lim inf
δ→0

√
δμ({x ∈ R | |ωδ(x)Tφ|ZF (x)| > t}) ≥ C1ν({x ∈ T | |Tφ|ZF (x)| > t}).

Putting G(x) = Tφ|ZF (x), we have ωδTφ|ZF (x) = ωδG(x). Since

μ({x ∈ R | |ωδ(x)G(x)| > t})

=
∞∑

j=−∞
μ({x ∈ [2πj, 2π(j + 1)) | e− δ

4π x2 |G(x)| > t})

=
∞∑

j=−∞
μ({u ∈ [0, 2π) | e− δ

4π (u+2πj)2 |G(u)| > t})

≥
∞∑
j=0

μ({u ∈ [0, 2π) | e− δ
4π (u+2πj)2 |G(u)| > t})

and for s ∈ [0, 2π) and u ∈ [0, 2π) we have that s + 2π(j + 1) ≥ u + 2πj and

e−
δ
4π (s+2π(j+1))2 ≤ e−

δ
4π (u+2πj)2 , we obtain that

∞∑
j=0

μ({u ∈ [0, 2π) | e− δ
4π (u+2πj)2 |G(u)| > t})

≥
∞∑
j=0

1

2π

∫ 2π

0

μ({u ∈ [0, 2π) | e− δ
4π (s+2π(j+1))2 |G(u)| > t})ds

=
1

2π

∫ ∞

2π

μ({u ∈ [0, 2π) | e− δ
4π s2 |G(u)| > t})ds

=
1√
πδ

∫ ∞
√
πδ

μ({u ∈ [0, 2π) | e−x2 |G(u)| > t})dx.

Then, we have that for 0 < δ < 1
2π

∞∑
j=0

μ({u ∈ [0, 2π) | e− δ
4π (u+2πj)2 |G(u)| > t})

≥ 1√
πδ

∫ 1

√
πδ

μ({u ∈ [0, 2π) | |G(u)| > te})dx

≥ C2√
πδ

ν({u ∈ [0, 2π) | |G(u)| > te}),

and we get that

√
πδ

∞∑
j=0

μ({u ∈ [0, 2π) | e− δ
4π (u+2πj)2 |G(u)| > t})

≥ C2ν({u ∈ [0, 2π) | |G(u)| > te})
for 0 < δ < 1

2π . Hence, we get that for 0 < δ < 1
2π ,

δ
1
2μ({x ∈ R | |ωδTφ|ZF (x)| > t})

≥ C2ν({x ∈ [0, 2π) | |Tφ|ZF (x)| > te})(8)
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and we obtain that

lim inf
δ→0

√
δμ({x ∈ R | |ωδ(x)Tφ|ZF (x)| > t})
≥ C2ν({x ∈ T | |Tφ|ZF (x)| > te}).

(9)

Now by (5), (9) and Fatou’s Lemma, we have that(∫ ∞

a

(
tμ({x ∈ R | |ωδ(x)Tφ|ZF (x)| > t}) 1

p
)q dt

t

) 1
q

(δ
1
2 )

1
p

≤ C(δ
1
2 )

1
p ||Tφ||Lp(μ)→Lp,q(μ)||ωδF ||Lp(μ)

(10)

and

lim inf
δ→0

(∫ ∞

a

(
tμ({x ∈ R | |ωδ(x)Tφ|ZF (x)| > t}) 1

p
)q dt

t

) 1
q

(δ
1
2 )

1
p

≥
(∫ ∞

a

lim inf
δ→0

(
t
(
δ

1
2μ({x ∈ R | |ωδ(x)Tφ|ZF (x)| > t})) 1

p

)q dt

t

) 1
q

≥
(∫ ∞

ae

(
C3tν({x ∈ [0, 2π) | |Tφ|ZF (x)| > t}) 1

p

)q dt

t

) 1
q

,

and by Lemma 1(ii) we have that

(δ
1
2 )

1
p ||ωδF ||Lp(μ) →

( 1√
p

) 1
p ||F ||Lp(ν) (δ → 0).(11)

After all, when δ → 0, by (10) and (11) we obtain that(∫ ∞

ae

(
tν({x ∈ [0, 2π) | |Tφ|ZF (x)| > t}) 1

p

)q dt

t

) 1
q

≤ C||Tφ||Lp(μ)→Lp,q(μ)||F ||Lp(ν)

(12)

and for a ↓ 0 in (12),

||Tφ|ZF ||Lp,q(ν) =
(∫ ∞

0

(
tν({x ∈ [0, 2π) | |Tφ|ZF (x)| > t}) 1

p

)q dt

t

) 1
q

≤ C||Tφ||Lp(μ)→Lp,q(μ)||F ||Lp(ν).

CASE 2. We prove the case q = ∞.
We can show it in the same way as the case 1. In fact, for a > 2 · 2π ‖ γ̂δ ‖L1(T),
we have that

sup
t>a

tμ({x ∈ R | |ωδ(x)Tφ|ZF (x)| > t}) 1
p

≤ sup
u>a−2π‖γ̂δ‖L1(R)

(u+ 2π ‖ γ̂δ ‖L1(R)

u

)
uμ({x ∈ R | |Tφ(ωδF )(x)| > u}) 1

p

≤ 2 sup
t>0

tμ({x ∈ R | |Tφ(ωδF )(x)| > t}) 1
p = 2 ‖ Tφ(ωδF ) ‖Lp,∞(μ)

≤ C ‖ Tφ ‖Lp(μ)→Lp,q(μ)‖ ωδF ‖Lp(μ),

and we obtain that

sup
t>a

tμ({x ∈ R | |ωδ(x)Tφ|ZF (x)| > t}) 1
p

≤ C ‖ Tφ ‖Lp(μ)→Lp,q(μ)‖ ωδF ‖Lp(μ) .
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Also since by (9)

δ
1
2μ({x ∈ R | |ωδ(x)Tφ|ZF (x)| > t}) ≥ C2ν({x ∈ [0, 2π) | |Tφ|ZF (x)| > te})

for sufficiently small δ > 0, we have for t > a,

C1tν({x ∈ [0, 2π) | |Tφ|ZF (x)| > te})
≤ sup

t>a
(δ

1
2 )

1
p tμ({x ∈ R | |ωδ(x)Tφ|ZF (x)| > t}) 1

p

≤ C2(δ
1
2 )

1
p ‖ Tφ ‖Lp(μ)→Lp,q(μ)‖ ωδF ‖Lp(μ),

for some constants C1 and C2. By Lemma 1(ii) we have that

C1tν({x ∈ [0, 2π) | |Tφ|ZF (x)| > te}) ≤ C2 ‖ Tφ ‖Lp(μ)→Lp,q(μ)‖ F ‖Lp(μ)

for t > a. Hence, when a ↓ 0, we obtain that

tν({x ∈ [0, 2π) | |Tφ|ZF (x)| > t}) ≤ C3 ‖ Tφ ‖Lp(μ)→Lp,q(μ)‖ F ‖Lp(ν)

for t > 0 and

||Tφ|ZF ||Lp,∞(ν) ≤ C3||Tφ||Lp(μ)→Lp,q(μ)||F ||Lp(ν).

Therefore, we get the desired result. �

3. The converse of Theorem 1

We shall consider the converse of Theorem 1 by the method of Igari [5].

Definition 3. For ε > 0, let φ(x) be a bounded continuous function on R, and

T̃εF (x) =
∑
m

φ(εm)F̂ (m)eimx (F ∈ L2(T)).

Also let U(x) be a nonnegative function on R with homogeneous of degree γ ∈ R i.e.
U(εx) = εγU(x) (ε > 0), and u(x) the 2π periodic function on R such that u(x) is
the restriction of U(x) on [−π, π). For example, we give U(x) = |x|γ (γ ∈ R).

Then we obtain the result which is the converse result of Theorem 1.

Theorem 2. Let 1 ≤ p < ∞. Under the above notation, we assume that there
exists a constant C independent of ε > 0 such that ||T̃εF ||Lp

u(T) ≤ C||F ||Lp
u(T) for

all F ∈ C∞(T), where C∞(T) is the set of all infinitely differentiable functions on
T. Then we obtain that

||Tφf ||Lp
U (R) ≤ C||f ||Lp

U (R) (f ∈ C∞
c (R)).

Proof. For f ∈ C∞
c (R), we define fε(x) = f(xε ). Since supp fε ⊂ (−π, π) for

sufficiently small ε > 0, we may assume fε ∈ C∞(T). Then, we have

T̃εfε(x) =
∑
n

φ(εn)f̂ε(n)e
inx.

On the other hand, we get that f̂ε(n) = εf̂(εn), and T̃εfε(x) =
∑

n φ(εn)εf̂(εn)e
inx.

Since by the assumption ‖ T̃εfε ‖Lp
u(T)≤ C ‖ fε ‖Lp

u(T), we have that ||fε||pLp
u(T)

=

3. The converse of Theorem 1
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εγ+1||f ||p
Lp

U (R)
. On the other hand, we calculate

||T̃εfε||pLp
u(T)

=

∣∣∣∣∣
∣∣∣∣∣
∑
n

φ(εn)εf̂(εn)einx

∣∣∣∣∣
∣∣∣∣∣
p

Lp
u(T)

=
1

2π

∫ π
ε

−π
ε

∣∣∣∑
n

φ(εn)f̂(εn)einεtε
∣∣∣pU(t)dt · εγ+1,

and we have that

1

2π

∫
R

χ(−π
ε ,πε )(t)

∣∣∣∑
n

φ(εn)f̂(εn)einεtε
∣∣∣pU(t)dt · εγ+1 ≤ Cεγ+1||f ||p

Lp
U (R)

.

Moreover, by the definition of the Riemann integral, we have that

lim
ε→0

χ(−π
ε ,πε )(t)

∑
n

φ(εn)f̂(εn)einεtε = Tφf(t),

and

||Tφf ||pLp
U (R)

=
1

2π

∫
R

lim inf
ε→0

χ(−π
ε ,πε )(t)

∣∣∣∑
n

φ(εn)f̂(εn)einεtε
∣∣∣pU(t)dt

≤ lim inf
ε→0

1

2π

∫
R

χ(−π
ε ,πε )(t)

∣∣∣∑
n

φ(εn)f̂(εn)einεtε
∣∣∣pU(t)dt

≤ C||f ||p
Lp

U (R)
.

Therefore, we obtain that

||Tφf ||Lp
U (R) ≤ C||f ||Lp

U (R) (f ∈ C∞
c (R)).
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