A note on the restriction of Fourier multipliers
from weighted L spaces to Lorentz spaces
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Abstract

Letpbeinl <p < oo, ¢ (x) a bounded continuous function on R, 7' f ()
=[.0(&E)F(E)e™dE, and Ty, F(x)=3 ¢ (m)E(m)e™. Anderson-Mohanty [1]
showed that if 7, is bounded on "2 weighted L” space on R then Ty, is
bounded on the corresponding weighted L” space on T, whose result is a
generalization of Berkson-Gillespie [2]. In this paper, we generalize the result
from weighted L” spaces to Lorentz spaces with an alternative proof.

1. Introduction

Let X be the real line R or the one dimensional torus T = [—m,7) and w(zx) a
nonnegative function on X. Also let L? (X) be the set of all measurable function
fon X with [[f||zz x) < 0o, where

1 1/p
Wllizen = (57 [ 1r@Pu@is) © 1<p <o)

In particular, we denote LP(X) = L% (X) and || f||z»(x) = || f|
on X.

1, (x) when w(z) =1

Definition 1. Let ¢(x) be a bounded continuous function on R and {¥(n)}.cz a
bounded sequence on the integer group Z. Then, we define

T, f(z) = /R (&) f(6)e*ede (f € CF(R)),

and

TyF(z) = > U(m)F(m)e™ (F € P(T)),

where we denote the Fourier transform of [ by f(§) = o o f(@)e %%dz, by
C°(R) the set of all infinitely differentiable functions on R with compact sup-
port, by F(n) = = [ F(x)e™dx the Fourier coefficient of F, and by P(T) the
set of all trigonometric polynomials on T. A bounded continuous function ¢ is
called an L, (R)-multiplier, if there exists a constant C' such that ||Ty f|pr ®) <
Cllfller, ) (f € CZ(R)), and a bounded sequence ¥ is called an LE,(T)-multiplier,
if there exists a constant C' such that ||[TyF||pe 1y < Cl|F||pemy (F € P(T)).

2010 Mathematics Subject Classification. Primary 42A45;Secondary 46E30.

Key words and phrases. Fourier multiplier, Ap condition, Lorentz spaces.

The first author was supported by Grant-in-Aid for Science Research (C) (No.24540167), Japan
Society for the Promotion Science. The third author was supported in part by Grant-in-Aid for
Scientific Research(C)(No.23540182), Japan Society for the Promotion Science.

17



Yuichi KANJIN, Ayako KANNO and Enji SATO

Here, we denote by M, .,(X) the set of all L (X)-multipliers, by ||Te||n, ,(x) the

w

operator norm on L% (X), and ||Ty|[rr,(x) = [Tsl|n1,... (x), when w(x) =1 on X.

In 1965, de Leeuw [4] proved the follwing:

Theorem A. If ¢ is an LP(R)-multiplier for 1 < p < oo, then ¢|z is an LP(T)-
multiplier.

In 2003, Berkson-Gillespie [2] obtained a generalization of de Leeuw’s result
under the A, condition (cf. [8]).
We say that for 1 < p < oo a nonnegative function w(z) on R satisfies A,
condition, if there exists a constant C' such that

(o) f ) <

for all bounded interval @, when |@Q)] is the length of Q). Then we denote w € A, (R).
Also we denote

Ap(T) = {w € A,(R) | w is a 27 periodic function onR}.

Berkson-Gillespie’s result is the following;:

Theorem B. Let 1 < p < oo and U € A,(T). Put u = Ulr, the restriction
of U on T. If ¢ is an LY, (R)-multiplier, then ¢z is an LE(T)-multiplier with

1. ag,. .0y < 1 TslIng,,0 @)

In 2009, Anderson-Mohanty [1] generalized Theorem B by the simple calcula-
tion. Their result is the following:

Theorem C. Let U be a nonnegative 21 periodic measurable function on R, and
1 < p<oo. Also we assume that uw = Uly € L*(T). Then we obtain that ¢|z is in
My, (T) with || Ty, ar,,,..cr) < N Tsllns,,0 )5 if @ s in Mpu(R).

In this paper, we shall generalize Theorem C to Lorentz spaces with an al-
ternative proof which is different from Anderson-Mohanty [1]. First we introduce
Lorentz spaces.

Definition 2. Let U be a nonnegative 27 periodic function on R, u = Ulr, u(E) =
[z U(z)dz and v(E) = [, u(z)dx for a measurable set E. We assume u € L*(T).
For1l <p<ooandl < q < oo, we define the Lorentz space LP9(p) = {f | || fl|Lr.a(u) <
oo}, where

Q=

(aJ5" (e e R f@)] > 7)) %) " (g< o)
sup tp({x € R | 1f(2)| > 1))

and we define LP9(v) = {F | ||F||1r.a() < 00} in the same way as LP(v), too. It
is known that LP9(u) = LP(u), where LP(u) is the usual LP space with respect to
the measure p1, and LP(v) = LP(v) for p = q. Also we define ||To|| Lo (u)—1ra(u) =

SUP| £l .y <t | Tof lloraquy and || Ty, [[ow)—Lraqw), too.
Throughout this paper, the letters C, C7, Cs and C5 will be used to denote

positive constants not necessarily the same at each occurrence.
Our main theorem is the following:

[fl|zowaquy =

=
—
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8
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Theorem 1. Let 1 <p < oo and 1l < g <oo. We assume that

T fllzracn) < NTollLe(wy—reawllfllrw  (f € CZ(R)).

Then, there exists a constant C such that

Ty, F | Loay < CllTl o (y— Lo [ Fllze ) (F € P(T)).
The following result is a special case of Theorem 1:

Collorary 1. Let1 < p < oo and ¢ be a bounded continuous function R. Then,
if we assume that

T fllLroe () < | TollLe(wy—ree | fllery  (f € C2(R)),

we obtain that

Ty, Fll ey < ClTollLe(y—rr | Fllery  (F € P(T)).

Zafran [10](cf. [3, Remark 3]) showed that if 1 < p < 2 then there exists a
Fourier multiplier operator 7" from LP(R) to LP'*°(R) such that 7" is not a Fourier
multiplier operator from LP(R) to LP(R). By this fact, we remark that Corollary 1
is not contained in Anderson-Mohanty [1].

2. The proof of Theorem 1

First we will prove a lemma.

Lemma 1. When we define ws(z) = e~ 37" (8§ > 0), we have that

(i) limso 02 [y, f(@)ws(x)dz = [T fwyde  (fe LY(T)),
(i) imso(VO)?ws Flleo ) = (5 ) “I1F Lo

Proof. (i) It is easy to prove, but let us give the proof for readers convenience

(cf. [1], [9](p.261)). .
Since 62 Jpws(z)e™®dx = 2me™5™ (m € Z), we have

6—0

lim (5é/RP(:c)w(;(:c)dx:/0 7rP(:l:)da: (P € P(T)).
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Also since for f € L1(T) and P € P(T) we have that

3 [ (7(0) = P@)ws(a)da

L 2+
<3 / () — P(a)|ws (2)da

=500t [ 1) - Pla)laste + 2mi)is
< 52/0 |f(x) —P(x)\2w<;(a:+27rj)da?

JEZL

<ot [T1rw - P (2 [ wstiar) o

2T
2 — P d
< ”/o 1F(z) — P(a)|da
= A7?||f — Pl (1)

Moreover, we have that

(55/f(:l:)w5(:c)dx— 7Tf(a:)dm

0

< |6t [ (@) - P)ws(a)da

27

54 /R Plaus(a)ds — [ Pla)da| + /0 f(2) — P(a)|da.

By the above facts we get the desired result, since we have that P(T) is dense in
LY(T).
(ii) By |F(x)|PU(x) € L*(T) and (i), we have

1 l
5 wsFIIL, ) = 0% /e B () [PU (2)da
27
— 27r\f/ x)[Pu(x)dz (0 — 0)
= \f H HLp(,/)a
B 1
and lims 0 (vV)? |[wsFllzo(n = (5) " IFllzo): 0

Proof of Theorem 1. According to Kaneko-Sato [6], we proceed the proof. First
we define that

oo

F(z)= Y F(m)e™ (FeP(T)),

m=—0oQ

Y5 (x) = ws(@)Ty), F(x) — Ty(wsF)(z),

20
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and

[5lleo = sup{t| [{z € R| |ys(z)| > t}| > 0},

where |F| is the Lebesgue measure of a measurable set E.

CASE 1 We show the proof in the case 1 < ¢ < oo.
By vs(x fR 7s(€)et*ed¢, we have that |ys(z)| < 27 || Vs | 1 (), and
V() = ws(@)Ty), F(x) — Ty(ws F)(x)
= ws(z) Y G(m)F(m)e™ — Ty(ws F)(x).

Then, we obtain that

BE = 5 [ e Ed
T JR
= > d(m)F(m)us (& —m) — ¢(&)ws F(€)
and
(1) wsF(&) = > F(m)us(§ — m).

and

N 1
|[Vs]lLr (r) = 277/1&

@) o
< SIBm)- 5 | e = m)lotm) — ol

On the other hand, by ws(x)Ty), F'(z) = v5(x) + Ty(ws F)(x), we have that

|ws () Ty, F'(2)] 1795 [loo +[Ts(ws F)(2)]

<
< 27 |95 o wy HTg(ws F) ()],

and

(3) {r € R | |ws(@)Ty, F(@)| > 1} C {& € R| [TylwsF) (@) > t — 27 || 55 |11y -

For a > 227 || 95 |11 (w), we have

(| ntts e R | osTu )] > 03) )

IN

1 gdt\q
[ Cutt € BRI Tatsb)@)] > ¢ = 2014 ) ) F)

Q=

IN

o0 1 dt
(t + 27| |95 L1 () ) ({z € R | | Ty(ws F)(z)| > t})7)* -
/a 27rH’y§||L1(R)( ® v ) t+27T||’Y§|L1(R)>

/Oo - ((t+27f||j5||Ll(R))t(p({xGR||T¢(W5F)( )|>t}) )qcit> ‘
a—2n] 1951 11 gy
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t+27||vs || 1 27| Vsl 1w o
Therefore, by 8 <14 a_%”%ﬁ;ll()m < 2fort > a—27||75]| L1 (r), we get
that

(lm(tﬂ({x ER| |w5ch>|ZF(JI:)| - t})ll’)qit);

IN

o 1 th %
2|tttz € RIITs(@P)@)] > 7))
2| Ty (ws )| Loa(pu)-

Also by the assumption of Tj, we obtain that

(4) T (ws F)l|raguy < Tl oy Lo [lws Fl | Lo )
and for a > 2 - 27||7s|[ L1 (m), we get that

([ nte e B sy )] > 103)7 50

< Toll ey —Loaqw lws Fll Lo -

(5)

Here, we show lims_o ||7s|[z1(r) = 0. In fact, by ws(x) = e~ =% we have that
U/‘)E(g) = 5_%("}471'2/5(5)7 and by (2>

il < 1P -5 [ @ = m)iom) - o(o)lde

- 1 1 2
= IRl g [ 5 g(m) — a6l

m

Let m € Z be fixed. For € > 0, there exists 19 > 0 such that |¢(m) — ¢(£)| < & for
|€ —m| < ng. Then, we estimate that

1 1 s 2
3 [ 57T EE o) - ool
1

= 5 2e” 36T 6(m) — ¢(€)|de

2m |m—¢&[<no

1 1 _m 2
WL 5be HE 6(m) — o(¢)de
T Jim—¢|>no

= (@) + (D), say.
In («), we have

1 1

1 2 €
- §RemFEm ge < £ / Tt = —.
(6) (a) <e 21 Jr e €_27r T Re 2

In (f3), since
[¢(m) — ¢(E)] < |p(m)[ + [6(E)] <2 ¢ [loo,

we obtain that

(B) < M"/ §-FeFE-m) e
[m—&|>no

2m
™ lolle [*
= = e dt -0 (6 —0).
/T VE0
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Therefore, for € > 0, there exists g > 0 such that («)+ (8) < 2e for 0 < § < dp,
and we obtain lim5_>0 ||’}7§| |L1(R) = 0.
Also we show

lim nf Vou({z € R | |ws(z)Typ, F(x)| > t}) > Crv({z € T | [Ty, F(x)| > t}).
Putting G(x) = T, F(r), we have wsTy|, F(r) = wsG(x). Since
p(fz € R [ ws(2)G ()] > t})

[ee]

= Z n({z € [2mj, 2m(j+1) | €737 |G(x)| > £})

[ee]

= Y u(fuco, 2m) | e d= G )] > 1))

j=—o0

> S u({ue 0, 2m) | e @2 Gw)| > 1))
7=0

and for s € [0,27) and u € [0 27) we have that s + 27(j + 1) > u + 27j and
e~ (s+2m(+1)* < o= 15 (u+2m)” e obtain that

S ulfu € [0,2m) | e @ Gw)] > 1))

=0

- 1 o S v
S o | utue pam e RO Gl > s
j=0

%

= % OOM({UE[O,27T)\6*%32|G(u)\>t})d3

B f/ ufu € [0,2m) | e~ |G (w)| > t})da

Then, we have that for 0 < 0 < ﬂ

> ul{u € [0,2m) | e E= 2 |G| > 1)

1 1
> = /ﬁ u({u € [0,27) | 1G(w)| > te})du
> 2 yfueo,2m) | G)] > te}),

Vo

and we get that

Vo p({u € 0,27) | e T2 G )| > t})
> Cov({u€0,2n) | |G(u)| > te})
for 0 <9 < % Hence, we get that for 0 < 6 < 2i,

62 p({z € R | jwsTy), F(x)| > t})

8
) > Cov({ € [0,27) | [Ty, F(2)]| > te})

23
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and we obtain that
o) lim inf Vopu({z € R | |ws(2)Ty), F(z)| > t})
> Cov({x € T | [Ty, F(@)] > te}).

Now by (5), (9) and Fatou’s Lemma, we have that
/ (tu{ € B | [ws(@) Ty, F@)] > thH)" ) 513

< C(62) 7 ||Tyl | Loy 10 ) |95 F | Lo )

and

< 1 1yadty g
> ( / liminf (163 p({w € R | Jws(2) Ty, F ()] > t}))p) =)
e adt
> ([T (cutta e 02m) | T F @] > 19)F)
and by Lemma 1(ii) we have that
(11) ) lesF oy > (=) 1Pl (6= 0)
VP
After all, when 6 — 0, by (10) and (11) we obtain that
e adt
) (| (wtte e 02m) | B F @) > 19) ")
< OlTgller(uy—rrawllFllLe @)
and for a | 0 in (12),
> \edt\ g
TPl = ([ (tvilo € 0.2m) | T P)l > 1h7)" F)
0

IN

ClTo|| e (y—Le-a ) 1 Fl Lr (1)

CASE 2. We prove the case ¢ = o
We can show it in the same way as the case 1. In fact, for a > 2- 27 || ¥5 || 1 (1),
we have that

sup tp({z € R | lws(2) Ty, F(@)| > )7

u+27 || Vs |z (r 1
< sw O un{z € R| |Ty(ws F)(@)] > u})?
u>a—=27||Vsl L1 (g, u
< 2§1>ugtu({w ER||Ty(wsF)(z)| > t})? =2 || Ty(wsF) || Lrooo(p)
< O Ty leey—rragll @sF [|Le (),

and we obtain that

1
sup tu({z € R [ |ws(z) Ty, F(z)| > t})?
<O Ty lleeuy—rragll ws F o) -

24
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Also since by (9)
55 u({e € R | lws(@)Ty, F(@)| > 1)) > Cov({a € [0,21) | [Ty, F(a)] > te})
for sufficiently small § > 0, we have for t > a,
Critv(fa € [0,27) | [Ty, F(@)] > te})
< sup(0)ptu({r € R ||y (2) Ty, F(2)] > th)

1.1
< Co(62)% || Ty o (uy—rraull wsF ||Le (),
for some constants C7 and Cy. By Lemma 1(ii) we have that
Citv({x € [0,27) | [Ty, F ()| > te}) < Co || Ty || Lo (uy—rrau | F [l ze ()
for t > a. Hence, when a | 0, we obtain that
tv({w € [0,2m) [ [Ty, F ()] > t}) < Cs || Ty [|o(uy—Loall F e @)
for t > 0 and
Ty, Fll ey < C3||Tgll Lo (uy—Lra () | F Lo 0)-
Therefore, we get the desired result. U

3. The converse of Theorem 1
We shall consider the converse of Theorem 1 by the method of Igari [5].

Definition 3. For e > 0, let ¢(x) be a bounded continuous function on R, and

T.F(z) =Y ¢lem)F(m)e™  (F € L*(T)).

Also let U(x) be a nonnegative function on R with homogeneous of degree v € R i.e.
Uex) =e"U(x) (e > 0), and u(x) the 2w periodic function on R such that u(x) is
the restriction of U(x) on [—m, ). For example, we give U(z) = |x|7 (v € R).

Then we obtain the result which is the converse result of Theorem 1.

Theorem 2. Let 1 < p < oo. Under the above notation, we assume that there
exists a constant C' independent of € > 0 such that ||T-F||p ey < C||F||pe ) for
all F € C(T), where C*°(T) is the set of all infinitely differentiable functions on
T. Then we obtain that

T fllr® < Cllfllr® — (f € CC(R)).
Proof. For f € CX(R), we define f.(x) = f(%£). Since supp f. C (—m, ) for

sufficiently small € > 0, we may assume f. € C°°(T). Then, we have

Tsfa ($) = Z d)(é‘n)f; (n)emw

On the other hand, we get that f-(n) = ef(en), and T. f-(z) = don d(en)ef(en)ei ™,
Since by the assumption || T f: ||pe )< C || fe ||z (m), we have that [[f[[7, @ =

25



Yuichi KANJIN, Ayako KANNO and Enji SATO

e bl On the other hand, we calculate

p
Ly, (®)
p

L(T)

ITefelle iy = |2 ¢len)ef(en)e™
Z d(en) f(en)eete pU(t)dt cev
and we have that

Ly
- 2r ) =
1

~ . P
o | X220 emfenyeete Ut 7 < O .

Moreover, by the definition of the Riemann integral, we have that
. R inet _
lim x (=, 5)(?) Zn: p(en)f(en)e™ e = T4f(t),
and

p _
HTCZ)fHLIL’](R) 27 Jp €0

liminf x (= =)(?) ‘Z gb(sn)f(an)emste‘pU(t)dt

e—=0 27

< liminfl/X(_gg)(t)‘zqﬁ(sn)f(sn)emate‘pU(t)dt
R n

P
< Ol

Therefore, we obtain that
|Ts fllee ) < ClifllLe )y (f € CE(R)). =
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