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§0. Introduction

Any two circuits so arranged that energy can be transferred from‘ one to the other
" are often called a coupling network, even though this transfer of energy takes place
by some means such s a condenser, resistance, or inductance. common to the t_wo
circuits rather than by the aid of amutual inductance. And the network’s coupling
coefficient % represents the degree of electrical proximity between one circuit and
the other. '

In general, 4-terminal network expressed by using % may be considered as a coapling
network. In the present paper, we try to analysec any 4-terminal network by the
aid of the generalized @ coupling coefficient k.

In §1, we arrange and explain the fundamental cquations on general 4-terminal -
coupling network.

In §2, we take the network’s calculation exaiples (i.e. determination of 4-
terminal constants and the balanced condition of the impedance bridge and
others).

and §3, §4 contain some gencral remarks on the network analysis and calculations

(i.e. back-coupling osciilation circnits and filter circuits).

By this investgation it is seen that the caleulations by using & is useful in any

network analysis and make its physical meaning clear.

§1. Basic 4-terminal network equation counsidered as coupling network.

Only the linear passive network with lumped constauts is treated in this paper. In

Fig.l,if the elements of the general d-terminal network are chosen as follows:

N :a given linear passive g 2
network. o ] ()
) Vg L 4
points 1—17 2227 « source (or Ez . N .
input) and load { ) i
Qmmsammu—-n ——-——wulmn—o
(or output) tev- 7 2

minals.

) Fio‘cl General I3 Pacsi ter . 1
E, I : terminal voltage and te) inear Passive 4-terminal Network

current. .
Lty Zan : the open-circuit input impedances (or open cireuit driving point
impedances) with respect to terminals 1-17 and 2-2/ respectively.
(i. e. Z;; is the impedance looking into terminals 1-1/ with terminal¥

2-27 open, similarly, 7y is the impedance looking into terminals 2-27
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with terminals 1-17 open).

i, Ziny : the open-circuit mutual (or transfer) impedance with respect to
terminals 1—17 and 2-—-2/. '

Yi1, Yoo : the short-circuit input admittances (or short-circuit driving-point
admittances) with respect to terminals 1—1/ and 2—27.

Yis, Yo : the shortcircuit mutual (or transfer) admittance with respect to
terminals 1 —1’ and 2—27. '

Then the basic reiatiohs are as follows :

1 . Z—matrix representation

TV
E, IH Zuy T |l L | (1.1)
i——“ - N
Ezi Zor  Zog | L, and Zio=lgp =2,

Y—matrix representation

I _ Y Yol K (12)
ll_.I_g_. }filv}.riz _Ez, and Ym—‘:Ym:Ym
3  K-—matrix representation
B Ay, B ||E
p P : (1.3)
I C A I
! e and  A;A,—BC=1

(Al,' As, B, C are 4—terminal coustants)
If terminals 2—2 are short—circuited (E,=0) and 2—2’are open—circuited (l,=0),
Eq. (1.1) and (1.2) are as follows.

11Y22> . (1 ' 4)

Then, by the application of the theorem of cbupling networt, £ becomes

T = 1— .= L =Y
11( Z11Z20 > E 11
at E,==0 at I, ~._O

9 a
2 — Z m Ym

(1B
VAV on o (1.5

Further, the short and open ~circuit impedances are represented from the relation

of matrix (1), (2) and (3) in the following way, containing k.

E
Zig= —I: =Z11./1'""J117 )—711(1 kz.)—*j—
at E;=0
4B _ 1 I U Yo
oL Ty (1= Ye )y Yul=E) o C
at 12:0 1 \ Y11§722 /
: E, YA x
AQS= ‘12 = 2< /;{%:;‘/’ /Jz__,(]. kz) = ——1 i
at Bj=l
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7’2]‘: E?‘ = 1 1 A'2 6
T T Yi \ Ya(—FH~ C (1.6
I2 Y22<1"‘ Yuq ) 22( ) )
N ag I1=0
and
Z1°=Z21=Zm=‘é‘
_ 1
Y12'—Y21°‘ an_ﬁ
Here,

Zig=self-impedance looking into terminals 1-—1/ with 2—2 short-cireuited.
Z;y=self-impedance looking into terminals 1—1" with 2—2/ open- -circuited.
Zzs—self-lmpedcmce looking into terminals 2—2’ with 1—1’ short-circuited.
Zsr=self-impedance looking into terminals 2—2/ with 1—1’ open-circuited.

From the above results,if we give the 4-~terminal constants by using matrix (3)

B AB By | Zy, 1 ‘
=T ) ||
Iy ;C AZMIZE'
— |1 Zoy I
Z?TL Zm 2 (1 7)
T g
| Y 1 | E
'} -&Tﬂl 17‘7)1 f
i |
Ym -'1\ 18 o
i s Ym i L"
|

So this is a representation of K. ma’mx type and the propdg‘ztlon constant (&)

of a network has the following relations.

k2= /Jm — _:{MEL__ N
YA/ A/

. v o Y}

2 VR m ]
k REN /Y YouYom ‘ . (1.8)

and

T S 3

kA= m-—l 7. =1—tanh*@

Tus _ Zus_ Zs_ BC .
= R, S e T __t h2 3 ==
Ty T 7, Ak anh?g. g ,8*!-36(

y (B : attenuation constant, ¢¢ : phase constant)

In addition to the above,

coshf= /AR, An_% sinhf=+/BC= \/ o1 tanhd=y/1—k*  (1.9)

Next, from Eq. (1.7) image impedances Zgi, Zygs are as follows.
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Z
Zm=\/§l§‘1 = T/ T =2 15
o V1 ¥ 1.10)
BA, —7s . Las -
Zoz—JCAl =7sry/1 k T
In case of the symmetrical network.
o= BTz (1.11)

k shown here is, of cource, a vector. So it is important to note that this k, the
coupling coefficient, is of the form A 28 where both the magnitude A and the angle
' @ are changing with frequency. Let us attempt the analysis as the coupling network
to any given 4-terminal network, and we call this method temporalily the coupling
parameter. :
§2. Circuit’s calculation by using the coupling parameter

Here,we shall deal with some unsymmetrical circuits. Explanation will be made on
some examples of calculation.

(A) Determination of 4-terminal constants: In general, the determination of

d-terminal constants of a circuit is important for detailed analysis of 4-terminal
network. The ways usually used belong, after all, to the following two.

(i) Application of the Kirchhoff’s Taws. to the network (i.c. the constant can
be derived from the relations of the input and output terminal vol tages and
currents). Further, in case of the network connected incascade,the application
of matrix calculus to the networkis convenient to determine the constants of
nétwork. ' ‘

(ii) Application of the short and opem circnit impedances of network (i. e. the
constants can be derived from the relation of the both Impedances and A A
-BC=1). In this case,we need not take voltage and current into eonsiderat‘f
ion.

As the calculation by the aid of the coupling parameter described in this paper
is determined only by the network’s construction, the method naturally helongs to
section (ii). ’

The following are some merits of this method.

The determination of % is only due to the open and short-circuit impedances of
one side terminals(1—1' or 2—27). By a pair terminal impedance, a measure of total
coupling of the circuit is given.

Further, the determination of Z, of any circuit is very eusy, because Z, can be
caleulated immediately from the construction of circuits, as mentioned in the Table
(except the case that there are some mutual impedances between the circuit’s elem-
ents), that is
In the single—circuit which contains no loop (e.g. 7 (L), T I, -type networks

ete), '

Zy is the parallel -type impedance to terminals 1—1/, and 2—2/, that is, Z, in
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iy

T-type, Z. in T-type, Z, in I-type, °
L ¢ 7P e ype FoatToy - 7ic

+ 7d In —r—tvpe ete.

In the complex-circuit which contains some loops (e.g, T, D T X

type networks ete.)
The denominator of Z,, is the sum of the total impedances of the loop, that

8 Zat Zo-t-Zo T, TItypes ZatZot Zot-Zy in D, Xetype, ZatZy-+ ZZC-7;471
. e Lid

in B~tyee etc.

The numerator of Z,, isthe product of the parallel~type impedance, that is Z,Z,
in T, D-type, ZoZp in TT-type, ZoleZq in T-type, ZyZ.—7ale iInX-type éte.
After all, it can be seen that, 4-terminal constants are easily determined with

the use of couphng parameter especially in complex network.

(B) On circuit calculations: In many cases of circuit calculatlons (e.g. the

determination of the balance? of impedance bridge), it. is convenient to treat a
given circuit as a coupling networt. Here, the magnitude of kB can bear some
relation to the physica! meaning of network from Xq. (1.9)

That is, when the network is in close coupling condition (%is large), cnergy with
respect to terminals 1—17 is transmitted to terminals 227 with little leakage,
and when the network is in loose coupling condition, much leakage is observable.
Now, let us suppose that the closest coupling means 2| =1 and loosest coupling
means | £ =0. Under this supposition the variations of network elements are indicateds
in the Table. '

Therefore, for instance, from fl:e Table, it is evident that the determination of the
balance of impedance bridge coincides with the condition of lattice—type network
where | B! =0. Because, the denominator of % is zero when Z,7,=7,7,.

And, in this case, R Is obtainable by a much simpler procedure.

. And the analysis of any back-coupling oscillation circuit which will be e‘(plamed

"0t he next chapter hecomes very easy when the oscillation circuit is considerel as
one of the coupling 4—terminal networks.

Further, in filter circuit, it is found that the generalized coupling coefficient
k is very useful to the circuit analysis if we suppose that 2 may be any number real

imaginary or complex.

§3. On back-coupling oscillation circuit

In case of oscillation circuif analysis, it is usual to solve the general differential
equation, of oscillation expressed by the instantaneous values of voltage and current.
- Especially the determination of oscillatory condition and frequency in steadyr state
may be got from the solution of equation represented by vector notation, under the
supposition that applied voltage and current are of pure sine wave form.

Then, as the oscillatory circuit can be considered, as mentioneld later, as one of

the coupling 4—-terminal networks, we analyse the oscillatory system in this chapter
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K--mat
Mutual Coupling- i i
Construction - _Zny - .
Type Impedance Coefficient A " B= Zm(k 1 )
. of Network : 1 A Ty
Zim -k Y T 7, * T
7 z IR 145 Za
Zy Zb Ztl +Z11 1 °
(L) A 1
: 1 L+Z5YD+Zs(Yp+YD Zs
————— ZsCY
1 vy, (VAT Yer Yt
Yo+ Yo+ Y 1
7 Zc 1 + Za Za Za+Z”- EE_ZQ
T - |VEma || ) o
. 7 -
2 s Tat T Bl ot T+ g Ty ) )
; S — 7
% N g+ Ty 77> 1 G
Zo+ZatZed |} 7= L+,
M +w-z§ e Z“ﬁzcg‘f (Zl -+ ; zl‘)
R Z 4
T =h M= Vi aEs AR RN o
* o A 1 +‘71b.z"
] P
Z
— 1 4+72 Z
Tip7ie T T Zo *
o \/CZL 0 (Fat 7D AN 1 +%e
A 7
H LAplag Zo
i
gy T T ZatZet 2 747
e \/ Fat Tyl o ||, ch o ,
&+Za V4T 1} o hla Za+7n+7q
F e + li) f 7b7c ZI;—-—
" N WS SR Y,
VBt Bn |} 2
12Tt ZDY || T L4z,
Bl | T e b 1y B T Z
Lot BoXZot Za) N Clat T){ZaClo I Tiod »
+Zchb +y )+7 7, (Za-f'zq)ch'{‘Za)'{'Zch 1+ Z&
, icia} § TraZocTia Tan
) li 4 Zo+7¢) ZDolo( 7 iy 73,
Toio—TiaZa | ToBo—TuZa [ B 26) (204 ) Gl Pt L) + Bl + )
- N 720 ZaZa TZo — Vil
Gkl N Ty ¥ 7)ot ) | s BT
Tiat T ) B+ T, A -2y fat+Zw )L Za)
(a7 XLy +Zg) 7 /L 7 7 T h, T
, Y. 1
LA =Tt T+ 7 2 =
IA o -k Ly -+ g \/ x/ A= Ym ] B o
O=ea + 7 C=Yu(-t —1 Ag= s
" ( ke ) C X,
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Properties

of Networks

Under the variation of the magnitude of k

[k =1

{k(: 0

7o = 0 (Series-type
Impedsnce)

or [ Zg—>Series Resonance
kZb:Palellel Resonance

1

Zpy=0 (FParallel-type
Impedanca)

or Zy==Series Resonance
(Za:-Parallel Resonance

Filter Circuit (Mid-
half Secétion)
Attenuation Equalizer

(Equivalent-Cireuit)

A = =0 (Zp77=0
s Ypt+Ye+Y Yp+Yc+Y (ZipleZ=0)
7 ZZie Ze=0 Filter Circuits
lig ===
70—]—&8 .
7oy LelZetZa) Zig==0 Filter Circuit
at o= T+ 7o +Ze . L
Attenuating Circuit
ZoaZin D=0 | Filter Circuit
=
aqt iy Attenuating Circnit
Phase Corredtor Circuit
(Bridged-T-iype)
Figm—( T+ ) ZZie=0 Filter Circuit
D=2y, ZyZe=0 Filter Circuit
(]
Attenuating Circuit
Z0:~7Ja|-7;' CAx0) ZdZy=0 E ,OSCllla’tory Circuit
(back-coupling)
<7 + Zela ) Fralia=0 (Equivalent z-Circuit)
T Gl
o+ Zia

Za+Zb=0, ZC—’er:O

the condition of the
constant-current bridged-

ZgZia=Zn7 ¢

the general equation of .

balance for the impedance

Filter Circuit
Attenuation Fqualizer
Phase Corrector Circuit

network . bridge (Lattice-type)
When | kl=1, Z,; is equal When | k)=0,Z,; is equal
to 0. to Z;f.
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as,a spécial type of coupling network. _

In Fig. 1, any current or voltage (e.g.Es) appearing in terminals 2—2’, must
be the result of the application of source (E,) to terminals 1—1/.

Now when these voltages are represented by the vecter notation the gain of vol-
tage amplification is as follows.

b M 3E2 . - .
PA ’—"JE : @B.1

Here, A ., A are respectively voltage gain and gain wvector. ,
And A is equal to inverse A; and because of its utility in circuit analysis, the varia-
tion of A which changes with frequency is of considerable importance.®

Now it is necessary that the property of phase-shift oscillation is ‘connected with
the above condition. If we treat a given oscillatory’ circuit as a coupling 4—terminal
network and find Z,, and % of the circuit, we can easily find the relation of circuit’s

elments that satisfies the oszillatory condition.

Fundamental circuit (Single-tube circuit):

We shall deal with the oscillatory eircuit using
a triode tube only in this section. Fig.2 (a) shows
u typical back-coupling circuit. Here, let it be
suppcsed that the grid of the tube has no current.
Then, even if the cireuit is opened as in Fig.
(2) (b), the circuit’s conditien is not changed. So,

as shown in (c), a given circuit is transformed

into a ccupling «b—terminal  ~type network. (refer.
the Tahle)

Next, we shall consider about the phuse—shift

action; that is, the amplification facter ;o becomes
~p as a result of the phase—slﬁft action in case of
a single tute. If any circuit whose attenuation and
phase-shift constant are 1 and— i respectively,

is connected with a tubefb this (-,h/'cuit as a whole

hecomes A=(-u) (— i)\:l. So the oscillatory

-, . - c o
condlition is (C)

. Fig.2 . .
A=1 3.2 " Back-coupling Oscillatory
If we counsider only the voltage ratio Xy/15, Network Csmgle—Tube).
except the phase-shift constant under the conditio that the grid current is zero,
1 _E
A 1_ El .
From Eq. (3.1) (3.2), when A; becomes unity, the circuit keeps on oscillating.

So we arrange the fundamental equations of oscillatory condition as follows: (refer
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Eq. (1.7) (1.8) and the Table)

Ay=1(u) .
Zlf = —-‘m(uﬂl - - . (33)
or - (e ke _—:\/12_1( = ﬁ;lf, = \/# >
X 2\ Loy Los

ot phase-shift constant
‘Then, by using any equation of Eq. (3.3), the oscillatory condition gives
(1) ZaZy=T(Za+ T+ 2s) + T+ Z) 34
But Eq. (3.4)is introduced when no mutual impedance is found between the circ-
uit elements. ’ ‘
And when Eq. (3.4) s satisfied, the value of % becomes as follows, except

the phase-shift constant.
Z - (3.5)

Here, in oscillatory condition, |Zq+7; o Z,and Z,, Z, are always imepdances of
opposite signs. So the magnitude of & hecomes larger than unity in some cases. (e.
g. in resonance state)

In many practical cases the clements of circuit can be cbanged according to

the sorts of the network, for example, in the Hartley cireuit Z,= Twl(—?-“ ,Zb== ]-(—ch,—;
Ze=y+ijoli, Zy=rp,py=—p.

Iu aldition, as the plate-tuning type and the grid-tuning type oscillatory ecircuits
can he transformed into a fundamental coupling 4—terminal network in Fig.2(a),
Xq.(3.4) is app'ied to these circuits too.

Two-tubes and multi-tuhes circuit:

In this case, we consider a given circuit as a circuit which is conmected in
cuscade, then . k ‘
A=AAge A=l (3.6)
After all, as mentioned alove, the solution of Eq. (3.6) gives the oscillatory
condition for mulsi-tubes cireuit,
But in this case the morles of oscillation which change with the phase-shift cons-

tant are omitted here. @

8. Application to wave filter.

In general, wave filter is one of the continuous networks. Usually each unig
element of the network is of equal cobstruction and is connected by the same method.
The main properties of wave filter are as follows. In ideal networks:

(a) passing band (P.B.) A frequency band has zero attenuation. From. Eq
(1.8), the attenuation constant G=0, and the image impedance is real
in this band. '

(M)  Attenuting band (A.B.) A frequency band has not zero attenuation..
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As mentioned above, B=c0 and the image impedance is imaginary.
(¢) Cub-off frequency (c¢.F.), The frequencies which separate the above two
bands are called the cut-off or critical frequencies.
In practical networks :
The theoretical network should be constructed with pure reactance clements and
the practical network must be of a small attenuation inside these bands because
of unavoidable coil resistance and condenser losses; but the properties of frequency
discrimination are so much greater than those ©of simple tuning dJevices that the
practical forms may with justice and convenience be called wave filters.
Remembering the above proprties, we shall study the wave filters by the aid of the
generalized coupling coefficient 2. Here we will deal with some ideal filter net-
works. v
(1) P.B
From (a), B=0 s O0=ja

n P.B, therefore, the follow ing conditions are given.

tztnl)ﬁ-——jtana:\/lwk?:\/__z_st

2y
k2=,_:‘.lﬁi= 1 =1_Z§ A (‘4’1)
cosh?@  cos?x 7y

To=r/77,;

In order that Eq, (4,1) is satisfied
(1) It is necessary that Zs and Zs are reactances of opposite sign.
(ii) % can De of positive or negative real number, but from Rq. (4.1.),
0<cos’a< 1, so the critical value is b=-+1.
(iii) when « is mz, then cosw=-r1, % =—1and « becomes (2n+1)w in one
P-B. (m,n are zero or any integer)
After all, in P.B, %k must lie between —1 and 41

0< %231 (4.2)

 and the image impedance Z; is as follows.
Zy=real quantity (resistve component only) (4.3)
@) _AB_
From (b), B=:0, s0 % can be any number eXcept (4.2)

1 1
21 and A<
=t and L <0

From Eq. (4.1), as mentioned above,
(1) It is necessary that Zs anl Z, are reactances of the same sign
For P>_}, Ly > Zy—Zs| and Zs, Zy are of the same sign.
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For %ﬂ,so, Zy, (Zy—Zs) are of the opposite signs.

(i) tanhf=+/T—F%> becomes real number and in order that tanh 6 is real,

_mw
a==,
* a1 . ~_  tanhB-+jtanc
Here > [tanhe——tdnﬂ(ﬁ*}*]a) = j’m
(A.B.—1)
' tanh@=tanhB<1 (m=even number)
F=1—tanh?B<1 (a:%”—) (4.5)

k is real and when S=o00, % is zero and when S=0, %® is equal to unity.

So the critical value of the two bands is k=z=x1.

(A.B.—ID) \
tanhf=cothB3>1 : (mu==0dd number)
BF=l-coth?g<0  [(a=-GRtDT) (4.6)

k is imaginary and when 8=0, k? is equal to—occ, and when S=oo,
k is equal to zero. So the critical vale is k==jco.
And the image impedance 7y is as follows.

Fe=imaginary quantity (reactive component ouly) .7

Fundamental circuit (L-tyqe)

In general, the simple form of a continuous network is a ladder, a latice

or a bridged~T type. It can be devided into two unsymmetrical -j(L)-sections, as

shown in Fig.3.

=21 asmw%

Now we will 1
[]
+Zi

consider  this (L)~

section eircuit as a 1
fundamental circuis

and  study its chara-
cteristics.

From the Table,

the given circuit's — =e=« FI—
. RY
R becomes ——2- . 8
ecomy AT : g
Here, if we substitute hoomsanmoed
K= _47:/1 . as mention- Fig.3 T and -} sections (fundamental cireuit)
ed above, the whole circuit’s characteristics are as follows.
(1) P. 8.
1 7 () 7 7
0<,=1 (—1=<K=<0 s K=1>1, K="1 <0
=1 ( ) 17, 17s =
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71 and 7, are reactances of opposite signs.

and (7 < 47, .

1S;,];7 <0 (0=£K<—-1)

X3

So
_ 2 . . Z1 __an'
(A-B.—[) F<l o K=gi>0  a=7

71 and 7, are reactances of same signs.

Zy

_ . DR D _ Cn+Dm
(A.B.—[) k<0 .. K g ST a=

7y and 7, are reactances of opposite signs.

and 7y > 47,

3) C.F. C.F. is given by j—

General circuit (I.D.—type)

If Z=joT:, ¥Y=joC, from I, D-type
netwoyk in the Table, % and § of the

two circuits are indicated as follows.

2 1
e coshf= "
T wie L 14

() C. F. The cut-off frequency

is a frequency when Z£%=1; therefore
' 2

= E

(ii) Filter characteristics

As we can consider these circuits

as syminetrical networks these circuits

can be devided into the above funda- &

mental circuits (refer. Fig. 3) .
( i Flg-4f 1 and D Sections

So the coupling purameter K of the

fundamental eircuit, from Sinh g =\/ i-(coshé‘——l)

1—k w3l /@ o . “ , @
= o0 T = T V=K Here, o= ——= Ke=—
K 2k 4 \wy/ K, PVTVIC s Ty
P. B.
A7)
0=sKy=1 (=k>-1) s 0<w=, or (<o — 7
' £ 1L.C
Here, Sinh tZ’ = sin’::é: cos ? -+ jeosh -fz‘sin g (B=0)

. o
Sin% = © =K,
=

|
gl
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A.B.

(A.B—1) Kp=1 (b<—1) . o>w, aq=297

B_o _
RS coshi = o =1,

So the attenuation of the circuit Lecomes large in proportibn to the magnitude
of K. ‘ '
(A.B.—D) Kp<0  (k=l—coth®8<0)

. ¢ .
when k=0, @ is equal to infinite and = @_ii@_
. P
(iii) Inverse caiculation
This filter’s C. F. (w,) and attenuation constant are determined by L ant
C with the aid of the coupling parameter, as mentioned above. when =0
(K=0), the image impedance of the circuit is as follows.
=k S AN T Y R
C @) Rl Vy VITR

(D]

where @)= so the desired element’s constants arc given as follows:
LC :
9 2 1
I_‘z: i ‘]‘0’ C: e
W, s wy. Ly

The utility of the generalizesd coupling eoefficient (k) in the filter network analysis
is as follows. ’

(a) If we find &k of any filter network, the filter characteristics of this eircuit can
be analysed cntirely on the hase of this %, and from the relation of § and &,
the physical meanings of this filter network become very easy to understand.

(b) Im any filter network analysis, the conception about P.B., A.B. and C.F.
of ‘the filter network based upon the normalized frequency and the image
voltage transfer comstant, coincides with the idea, which contains the coupling
coefficient (k), that we consider any filter nework as s coupling 4-terminal

network.

§5. Conclusion

If we counsider any --terminal network as a coupling uetwork, the para--

meter which contains £ is very useful in the following calculations, as mentionel
above, that is, (a) determination of 4-terminal constants sbout any complex net-
work, (bh) ecircuit calzulations (e.g. caleulation of halanced condition ete.) (¢)
anaiysis of oscillatory circuit and filter circuit. On the frequency characteristics
of k and the application to the circuit design, we wish to continue our stiudy in
tuture. . o

I take this opportunity of many thanks to Prof. 1S. Otaka, S.Okala and

T.Hasegawa and others for very helpful suggestions in regard to this prohlem.
g it 88 5
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—4 conditio ' condition
468 —12 ,then cosqe=-+1,k=-—1and--- ,then cosq=:t1, k== 1 and-...~
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tanhf=tanhB<1

vale

1L <0 (0<K<—1)

netwoyk

Sin, Sinh
(k=1—coth*B<0)
k=0 '

(2n+17z)
7

the relation

o=

as s coupling

10

tanhf=tanhB <1

value

%2

network

sin, sinh )
(k*=1—coth*B=<0)
k=0

= (211:;— Dm

kA

the relation

as a coupling

L1, %socxzo, K<—1)



