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Abstract 

We introduce BRST symmetries into Yokoyama's gaugeon formalisms for 
Yang-Mills gauge fields. Owing to the BRST symmetry, Yokoyama's physical 
subsidiary conditions are replaced by a single condition of the Kugo-Ojima type. 
As a result , the formalisms become applicable even in the background gravita-
tional field. 

1 Introduction 

In the standard formalism of canonically quantized gauge theories (1, 2] we do not con-
sider the gauge transformation which connects field operators of different gauges. There 
are no such gauge freedom in the quantum theory since the quantum theory is defined 
only after the gauge fixing . In other words, the Fock space defined in a particular gauge 
is not wide enough to realize the quantum gauge freedom. 

Yokoyama's gaugeon formalism [3]-[9] provides a wider framework in which we can 
consider the quantum gauge transformation among a family of Lorentz covariant linear 
gauges . In this formalism a set of extra fields, so called gaugeon fields, is introduced as the 
quantum gauge freedom. This theory was first proposed for the quantum electrodynamics 
(3, 4, 5] to resolve the problem of gauge parameter renormalization [10]. It was also applied 
later to the Yang-Mills theory [6, 9]. Owing to the quantum gauge freedom it becomes 
very easy to check the gauge parameter independence of the physical S-matrix [7]. The 
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gauge dependence of the wave-function renormaliza.tion constant was also investigated in 
this formalism [8]. 

We should ensure t.hat the gaugeon modes do not contribute to the physical processes. 
In fact, the gaugeon fields yield negative normed states that would lead to the negative 
probability [3]. To remove these unphysical gaugeon modes Yokoyama imposed a Gupta-
Bleuler type subsidiary condHion [3, 6, 9]. However, this type of condiLion is not applicable 
if interaction exists for the gaugeon fields. Especia.lly, we cannot use the condition in the 
background gra.vi tational field. 

Yokoyama's subsidiary condition can be improved if we can int roduce the Becchi-
Rouet-Stora-Tyutin ( BRST) symmetry [llJ for the gaugeon fields . Izawa has proposed a 
BRST symmetric Lagrangian for t.he gaugeon formalism in the quantum electrodynamics 
(QED) [ 12]. Independently of lzawa's work, we also have presented a BRST symmetric 
gaugeon formalism for the QED [13]. Both theories1 include Faddeev-Popov (FP) ghosts 
for the gaugeon fields as well as the usual FP ghosts. As a result, the theories have larger 
BRST symmetry and corresponding conserved charges (BRST charges). Using the BR..ST 
charges, we can replace the Yokoyama's subsidiary condition by a single Kugo-Ojima type 
condition [2], which is applicable even to tbe interacting case. 

In the present paper, we extend our BRST symmetric gaugeon formalism for QED to 
the Yang-Mills gauge theories. We do this by simply introducing BRST symmetry into 
the original gaugeon formalisms for the Yang-Mills fields . There are two types of gaugeon 
formalisms for Yang-lVIills fields so far. One of them was proposed by Yokoyama [6]. It has 
a group vector valued gauge fixing parameter a = (o:0

). The gauge fixing is different from 
the standard one in the sense that it breaks not only the local gauge symmetry but also 
the rigid gauge symmetry. The other type of the formalism was proposed by Yokoyama, 
Takeda and Monda [9]. It has a (group scalar valued) single gauge fixing parameter o:. 
Thus the gauge fixing does not violate the rigid gauge symmetry; though the Lagrangian 
has nonpolynomial interaction terms. In the present paper we introduce larger BRST 
symmetry into both types of the gaugeon formalism for the Yang-Mills fields. 

The notation and convention used in this paper are the following. The metric we use is 
g~'"' = diag( +1, :::.. 1, - 1, - 1). The gauge group we consider is an-dimensional compact Lie 
group, the generators of which are denoted by ra (a= l , 2, ... n). Latin letters a, b, c, . .. 
denote the group vector indices, while Greek letters J.L, v , A, .. . express the space-time 
indices which run from 0 to 3. The summation convention is assumed for both group 
vector indices and space-time indices. The generators satisfy 

(Ta)f = T"' 

l-Iere the structure constant _{Obc is totally antisymmet.ric since we assume the normaliza-
tion for the generators as 

1 For the •·elation between lzawa's theory and oms, see R.efs.(!3 , 1-1] . 
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2 Gaugeon formalism with a group vector valued gauge pa-
rameter 

In the formalism we discuss in this section, the group vector valued gauge fixing 
parameter a = (a") is introduced.2 As a result, Yokoyama's gaugeon fields Y and Y. 
are group scalar, while the Nakanishi-Lautrup (Lagrange multiplier) field B = (B") and 
FP-ghost fields c = (c•) and c.= (c:) are group vector valued. 

2.1 Yokoyama's theory 

Yokoyama's Lagrangian for the Yang-~lills field A., = (A~) is given by 

Lv = -~F'"' F 1w- A"V~>B + o"Y.o,.Y + ~(Y. + aB? 

-i\l"c .. D.,c + Lmalter('l/J, D.,'if;), (2.1) 

F.,v = a ... Av- Ov A ,.+ gA ... X A .,, (2.2) 

D ... c o11c + gA 1, X c, D ... 'I/J = (o.,- igA~T")'if;, (2.3) 

v ... v = a,. v + ga oi"Y X v , (V = B , c.) (2.4) 

where a is t he group vector valued gauge fixing parameter, g the coupling constant, c. a 
sign factor(= ±1), Lmatter('if;,D,.'if;) the Lagrangian of a matter field 'if; minimally coupled 
with A", F 1w the field strength, Y andY. the gaugeon field and its associated field subject 
to the Bose-Einstein statistics, c and c. are the FP-ghost fields subject to the Fermi-Dirac 
statistics, D,. is the covariant derivative, and \7,. is called the form covariant derivative. 
Since the gauge parameter a is group vector valued, the gauge field propagator is different 
from the standard one. In fact, the tree level propagator in the momentum space is given 
by 

(2.5) 

which does not coincide with the propagator of the standard formalism unless the Landau 
gauge (a = 0) is chosen. 

The Lagrangian (2.1) admits q-number gauge transformations. Under the infinitesimal 
field transformation 

A" A,.+ rD1,(aY) =A .. + r(ao,.Y + gA ... x aY), 

.,j; = (l - igra"YT•)'if;, 

2We use Lhe group vector notation iu this section: Letters in boldface denote group vectors. For any 
two group vectors V = (V•) and W = (W"), we have an inner product 

and alt exterior product 
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B+rgB x aY, (2.6) 

Y, Y. = Y. - raB, 
c + rgc x aY, c. = c. + rgc. x aY 

with r being an infinitesimal parameter (group scalar), the Lagrangian is form invariant, 
that is, it transforms as 

(2 .7) 

where rf>A stands for any of the fields we are considering and & is defined by 

& = (1 +r)a. (2 .8) 

Similarly, under the infinitesimal group vector rotation 

B B+B x w, 
Y, f: = Y., {2.9) 

c+c x w, c.= c.+ c. X W 

with w = (w") being an infinitesimal group vector parameter, the Lagrangian transforms 
as (2. 7) with & given by 

a = a + a x w. (2.10) 

The form invariance (2.7) (under (2 .6) and (2.9)) means that rj>A and ~A satisfy the same 
field equation except for the parameter a which should be replaced by & for the ~A field 
equation. Thus, we can shift and rotate the gauge parameter a by the q-number gauge 
transformations (2 .6) and (2 .9) . Note that the sign factor c cannot be changed by these 
transformations. 

The Lagrangian (2.1) is invariant under the following BRST transformation: 

5sAJ.L DJ.Lc, Ds'I/J = -igcaTa'if;, 

5sc 
g --c x c 2 , 

58 c. iB, 58 B = 0, (2.11) 

osY osY. = 0, 

which obviously satisfies the nilpotency, 5s2 = 0. Corresponding to this invariance, there 
exists a Noether current J~ satisfying the conservation law 

(2.12) 

Thus we can define the BRST charge by 

Qs = j d3xJ~, (2.13) 
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which satisfies the nilpotency Qs 2 = 0. 
To remove the unphysical modes and define physical states , Yokoyama imposed two 

kinds of subsidiary conditions: 
Qa jphys) = 0, 

(Y. + aB)(+) jphys) = 0. 

(2.14) 

(2 .1 5) 

As shown by Kugo and Ojima (2], the first condition removes the unphysical gauge field 
modes from the total Fock space. The nilpotency and conserving property of Qa is essen-
tial in proving that this condition works well. The second condition is a Gupta-Bleuler 
type condition (1]; the superscript(+) denotes the positive frequency part . It removes 
the unphysical gaugeon modes. In this context, it is important that the combination 

A= Y.+aB (2.16) 

satisfies the free field equation 
Oi\ = 0. (2.17) 

Owing to the free equation, the decomposition of A into the positive and negative fre-
quency parts is well-defined. However, once we consider the gravitational interaction, 
the decomposition of A into i\ (±) is no longer well-defined. This is the limitation of the 
Gupta-Bleuler type subsidiary condition; the Kugo-Ojima type condition based on the 
conserved charge has no limitation of this kind. 

2.2 BRST symmetric theory 

As a BRST symmetric version of (2.1) we propose the following Lagrangian: 

L = -~F~'v F~'v ~ A~'\1 ~'B + o~'Y.o~'Y + ~(Y. + aB)2 

-i\l~'c.DJ.<c - io~' K.o~'K + Lmatter(7/J, Dp'l/J), (2.18) 

where group scalars K and K., subject to the Fermi-Dirac statistics, are FP-ghost fields 
for the gaugeon fields Y and :Y;.. 

By introducing I<. and K. we are able to extend the BRST transformation so that the 
gaugeon fields are also transformed. We consider the following larger ERST transforma-
tion: 

b"aAp Dl'c, oa¢ = ~igc .. T"¢, 

oac _ [!_c x c 2 ) 
h"sc. iB , b"aB = 0, (2 .19) 

b"aY K, b"aK = 0, 

b"aK. - iY., oaY.=O, 

19 



Minoru KOSEK!, Masaaki SATO and Ryusuke ENDO 

which satisfies 88 
2 = 0. Because of the nilpotency, the in variance under this transforma-

tion can be easily seen if we rewrite the Lagrangian as 

L = -l F 1
w F ~" + Lmatter( 'lj;, Dl,'lj;) 

-i58 [c. ( \l" A"-
6
; (Yk + aB)) + K. ( DY - ~(1~ + aB))] . (2.20) 

The ERST current is now given by 

J~ = - F"" D,c- i ~ \l1'c.(c x c) - (D~'c)B- Y.D''K, 

which yields the conserved ERST charge Qs = J d?xJ~. 

(2.21) 

As for the q-number gauge transformation, we now consider the following field trans-
formation: 

k 

B + rgB X aY- irgc. x aK, 

Y, :t = Y.. - raB, 
c + rgc x aY + raK, c. = c. + rgc. x aY 

]{, k. = IC - TO'C. 

(2.22) 

Under this transformation [ and the rotation (2 .9)] the Lagrangian (2.18) is again form 
invariant: 

(2.23) 

with a given by (2.8) [or by (2.10)]. Thus the theories with different gauge fixing param-
eters a are included in one theory described by the Lagrangian (2.18). 

The physical subsidiary condition becomes now simpler. We impose a single condition, 

Qs lphys) = 0. (2.24) 

Since our ERST operator acts on the gaugeon fields as well as usual gauge fields, the 
condition removes all the unphysical modes. (For example, as seen from (2.19), Y, Y., ]( 
and I<. form a BRST quartet [2], which is known to appear only as zero-normed states 
in the physical subspace.) Thus we are able to avoid the Gupta-Bleuler type subsidiary 
condition. Consequently, our physical condition works well even in the background grav-
itational filed. 

3 Gaugeon formalism with a single gauge parameter 

In the present section we consider the gaugeon formalism in which the gauge fixing 
parameter is a group scalar. In this sense the theory is more similar with the standard 
formalism [2] than the theory discussed in the last section. And gaugeon fields have also 
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group vector indices (Ya. and Y;.a). We use the matrix notation for the group vector in 
this section. For any group vector V = (Va), we define3 

v = vara. 

3.1 Yokoyama-Takeda-Monda theory 

The Lagrangian of Yokoyama-Takeda-Monda theory [9] is given by 

LvTM 2tr {-~F"wF'"v+(N'-P')\i'I'B} 

+ 2tr { 8'"Y.a'"Y + ~}~ 2 - i'V'"c.D~<c} + Lmatter("I/;, DJJI/J) , (3.1) 

with 

Fl'v DI'Av -OvA, - ig[ AI', Av], 

D'" V = 8'" V- ig(A'" , V], 

'V,V a'"V- iga (F~', V]. 

-igaF~< s-1(a) a~'S(a), 

S(a) exp( -igaY), 

(3 .2) 

(3.3) 

(3.4) 
(3.5) 

(3.6) 

where a is the group scalar valued gauge fixing parameter, <; again a sign factor, and 
Y = yara. and Y. = Y.a.Ta are the Lie algebra valued gaugeon fields. The tree level 
propagator of gauge fields is given by 

(3.7) 

which coincides with the propagator of the standard formalism though the nonperlurba-
tive propagator difl:"ers from the standard one. Note that S(a) has its value in the group 
and consequently Fl'( = F;T") lives in the Lie algebra. As seen from (3.5), Fl' is a non-
polynomial function of Y. T he renormalizability of this theory with such nonpolynomial 
interactions is discussed in Ref. [9]. 

The Lagrangian admits the q-number gauge transformation defined by 

A.'" = s-1 (T) A,..S('r) t ~S-1 (7) o'"S(T), 
g 

'if; = s-1(r) '¢, 

f; s-1(-r) VS(r), (V = B, c, c.) (3.8) 
TV w, (W = Y, Y.) 

with r being a, finite parameter. Under this field transformation, the Lagrangian is form 
invariant: 

(3.9) 
3 In tb.is notation , a commutator corresponds to the exterior product: - i (V, W) = (V x W )"T". 
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where ¢>A stands for any of the fields and 6: is defined by 

6: =a + T. (3.10) 

The Lagrangian (3.1) is invariant under the following BR.ST transformation: 

Dl'c, 6s¢ = -igc'lj;, 

6sY = 6sY. = 0, (3.11) 

which obviously satisfies the nilpotenc.y, 8s2 = 0. Corresponding to this symmetry, we 
have a conserved BRST charge Qa. 

To remove the unphysical modes and define physical states , Yokoyama, Takeda and 
Monda imposed the following conditions: 

Qs lphys) = O, 

y_<+J lphys) = 0. 

(3.12) 

(3.13) 

The first. condition removes the unphysical modes of gauge field while the second eliminates 
unphysical gaugeon modes. It is essential in the second condition that the field Y. satisfies 
the free field equation, 

DY. = 0. (3.14) 

Owing to the free equation, the decomposition of Y. into the positive and negative fre-
quency parts Y.(±) is well-defined. However, once we consider the gravitational interaction, 
the Gupta-Bleuler type condition (3.13) no longer works well. 

3.2 BRST symmetric theory 

As a BRST symmetric version of (3.1) we present a Lagrangian given by 

L 2tr {- ~FI'vF. +(A"-F~')'V B+o~'Y.8 Y+~Y 2 } 4 JLV IL * I' 2 * 

+ 2tr { -i\l~'c.D!Lc - i8~" K.81'K} + Lmatter(¢, Dl''lj; ), (3.15) 

where ]{ = I<"T" and I<. = K;Ta have been introduced as Lie algebra valued FP-ghost 
fields for the gaugeon fields Y and Y.. 

We may consider the q-number transformation defined by 

s-1(r) AILS(r) + ~S-1 (r) a!LS(r), 
g 

s-1(r) 1/;, 

s-1 (r) VS(r), 

W W, 

22 
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where, and in the following, V stands forB, c, and c. and lV denotes Y, Y., /{, and K •. 
The Lagrangian is form invariant under this transformation: 

(3.17) 

with & being & =a+ 7. To check the form invariance (3 .17) we have used the identities, 

AI'- &F,. = s-1(7) (AI' - aFp)S(7), 

PJLV = s-1(r) F,.vS(7), 
vI' v = s-l ( 1') vI' v s ( 1' ), 

D"V = s-1 (r) D~'VS(r). 

The BRST transformation we propose here is 

58 A,. 

oa'I/J 
osB 

58 c 
6ac. 
5sY 
5sY. 
6aK 

68 K. 

where K is defined by 

K 

- igaF0 

By using the identities 

Dl'(c + aK:), 
- ig( c + aK:)'I/J, 
iga[K,B] , 

ig {ic + aK,c}, 
- iB + iga{K, c.}, 

J( , 

0, 

o, 
-i}:, 

KaFa, 

s-1 (a) o~" S(a). 

lisF1, = VI'K, 

liaK = igaK2
, 

(3 .18) 

(3.19) 

(3 .20) 

(3.21) 

(3.22) 

(3.23) 

we can easily check the nilpotency of our BRST transformation (3 .19). Furthermore we 
can show the BRST invariance of the Lagrangian since we may rewrite the Lagrangian as 

L = 2tr { - ~F~'vFI'v}+Lmatter('I/J,DI'tp) 

- ills [2tr { c.o"(A~'- aF")- 8" KAY - ~I<.Y.} J. (3.24) 

We have thus a conserved and nilpotent BRST charge Qs corresponding to the symmetry 
under (3 .19). Using the BRST charge we impose the physical subsidiary condition as 

Qs lphys) = 0, (3.25) 
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by which we replace the two subsidiary conditions (3.12) and (3.13) of Yokoyama, Takeda 
and Monda. In particular, we do not need any Gupta-Bleuler type subsidiary condition. 
Consequently, our theory is applicable even in the background gravitational field . 

4 Summary and remarks 

We have presented two kinds of gaugeon formalisms for Yang-Mills fields with larger 
BRST symmetries. One is an extension of Yokoyama's theory [6] in which a group vector 
valued parameter .is used in the gauge fixing term. The other is an extension of the 
theory by Yokoyama, Takeda and Monda [9] which has a group scalar valued gauge fixing 
parameter. By using BRST charges corresponding to the larger BRST symmetries, we 
have been able to replace the Yokoyama's physical subsidiary conditions by a single Kugo-
Ojima type condition in each case. As a result , the formalism becomes applicable to the 
case of the background gravitat.ional field. 

We emphasize that in both cases (of sections 2 and 3) our physical condition is invariant 
under the q-number gauge transformation. As seen from (2.19) and (2.22), or from (3.19) 
and (3.16), the BRST transformation and the q-number gauge transformation commute 
with each other . This fact leads us to 

(4.1) 

that is, the BRST charge is invariant under the q-number gauge transformation. Con-
sequently, our physical subsidiary conditions, and thus, our physical subspace are gauge 
invariant. In the case of quantum electrodynamics, this kind of structure of the physical 
subspace plays an essential role in the proof of the gauge parameter independence of the 
physical 5-matrix (15]. 

Note added 

After submitting this paper, we were informed of the work by M. Abe ("The Sym-
metries of the Gauge-Covariant Car1mucal Formalism of Non-Abelian Gauge Theories", 
Master Thesis, Kyoto University, 1985) in which he already proposed and studied the 
ERST-symmetrized Yokoyama-Takeda-Monda. theory. His Lagrangian and BRST sym-
metry are the same as ours discussed in the section 3. 
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