4m次の特殊な相結魔方陣について

内田 伏一*

(Received July 7, 2014)

Abstract

A compact magic square of order n is a magic square where the four cells of all 2×2 squares contained within it are summed to 4/n of the magic constant.

In this paper, we consider two types of compact magic squares of order 4m. The one is a compact magic square of order 4m divided into m^2 parts of pandiagonal magic squares of order 4n, and the other is a compact magic square of order 4m which has similar property to Franklin's magic square.

0. はじめに 本稿において、2つの型の4m次相結魔方陣について考察する.

その1つは、汎4方陣集合型相結4m方陣についてである。若干の知られている実例を紹介し、その特徴的性質を整理し、このような魔方陣の簡明な作り方を示す。この結果、すべてのm>1に対して、汎4方陣集合型相結4m方陣が存在することも保証される。

1. 相結魔方陣 2 方 4 格の $(2 \times 2$ 小正方形に属する) 4 数の和が,その 2 方 4 格をどこにとっても一定である場合,その魔方陣を相結魔方陣であるといい,4 数の和の一定値を相結定和と呼ぶ.色々な性質を備えた魔方陣を作成する際に,相結性は重要な概念の 1 つとして,古くから活用されている.この相結性は偶数次の魔方陣にのみ意味のある性質である.

相結性がもつ顕著な性質で利用頻度の高いものを、ここに示しておく.

1) 相結魔方陣から3×3小正方形を任意に抜き出した図1.1aにおいて,等式

$$a_1 + b_2 = a_2 + b_1 \cdot \cdot \cdot \cdot (s_1)$$

が成り立つ.

a_1	a_2	a_1	x_1	a_2
		x_2	x_3	x_4
b_1	b_2	b_1	x_5	b_2
図 1.1	a	义	1.1	a'

等式 (s_1) が成り立つことを示すため、図 1.1a' を利用する. 相結性により、

$$(a_1 + x_1 + x_2 + x_3) + (b_2 + x_3 + x_4 + x_5) - (a_2 + x_1 + x_3 + x_4) - (b_1 + x_2 + x_3 + x_5) = 0.$$

よって, $a_1+b_2-a_2-b_1=0$ を得る. これを変形して, 等式 (s_1) を得る.

この等式 (s_1) を変形して, $a_1-b_1=a_2-b_2$ または $a_1-a_2=b_1-b_2$ と置いて考察することによって,次の図 1.1b において,等式

$$a_1 + b_3 = a_3 + b_1$$
, $a_1 + c_2 = a_2 + c_1$, $a_1 + c_3 = a_3 + c_1 \cdots (s_1)$

が成り立つことが分かる.

a_1	a_2	a_3
b_1	b_2	b_3
c_1	c_2	c_3

図 1.1b

2) 相結魔方陣から 4×4 小正方形を任意に抜き出した図 1.1c において, 等式

$$a_1 + a_2 + b_1 + b_2 = S \cdots (s_2)$$

が成り立つ. ここに、S は相結定和である.

a_1	x_1	x_2	a_2
x_3	x_4	x_5	x_6
y_1	y_2	y_3	y_4
b_1	y_5	y_6	b_2
	図 1	1c'	

等式 (s_2) が成り立つことを示すため、図 1.1c' を利用する. 相結性により、

$$\begin{array}{l} a_1+x_1+x_3+x_4=S\\ a_2+x_2+x_5+x_6=S\\ b_1+y_1+y_2+y_5=S\\ b_2+y_3+y_4+y_6=S\\ x_4+x_5+y_2+y_3=S \end{array} \begin{array}{l} x_1+x_2+x_4+x_5=S\\ y_2+y_3+y_5+y_6=S\\ x_3+x_4+y_1+y_2=S\\ x_5+x_6+y_3+y_4=S \end{array}$$

が成り立つ. 左側の5式の和から右側の4式の和を引いて、等式 (s_2) を得る. さらに、図1.1dにおける等式 (s_2') などを得る.

図 1.1d

$$a_1 + a_3 + b_1 + b_3 = S \cdot \cdot \cdot \cdot (s_2')$$

相結魔方陣についての性質 (s_1) , (s'_1) を利用して,相結魔方陣は汎魔方陣である ことを示してみよう.

相結8方陣の場合を例に、図1.2abを使って示そう.1つの汎対角線上の数の和と、その中の1つの数を通り直交する汎対角線上の数の和が一致することを示すのである.

a_1		b_1		\underline{c}_1		d_1	
	a_2		\underline{b}_2		c_2		d_2
d_3		\underline{a}_3		b_3		c_3	
	\underline{d}_4		a_4		b_4		c_4
\underline{c}_5		d_5		a_5		b_5	
	c_6		d_6		a_6		\underline{b}_6
b_7		c_7		d_7		\underline{a}_7	
	b_8		c_8		\underline{d}_8		a_8
			図 1	1.2a			

	e_1		f_1		g_1		\underline{h}_1
h_2		e_2		f_2		\underline{g}_2	
	h_3		e_3		\underline{f}_3		g_3
g_4		h_4		\underline{e}_4		f_4	
	g_5		\underline{h}_5		e_5		f_5
f_6		\underline{g}_{6}		h_6		e_6	
	$\frac{f}{2}$		g_7		h_7		e_7
\underline{e}_8		f_8		g_8		h_8	
			図 1	1.2b			

等式 (s_1) , (s'_1) を繰り返し使用して、次の等式を得る.

これらの等式より

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8$$
, $b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 + b_8$
 $c_1 + c_2 + c_3 + c_4 + c_5 + c_6 + c_7 + c_8$, $d_1 + d_2 + d_3 + d_4 + d_5 + d_6 + d_7 + d_8$

の値はいずれも $c_1 + b_2 + a_3 + d_4 + c_5 + b_6 + a_7 + d_8$ と等しい値を持ち、

$$e_1 + e_2 + e_3 + e_4 + e_5 + e_6 + e_7 + e_8$$
, $f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8$
 $g_1 + g_2 + g_3 + g_4 + g_5 + g_6 + g_7 + g_8$, $h_1 + h_2 + h_3 + h_4 + h_5 + h_6 + h_7 + h_8$

の値はいずれも $h_1 + g_2 + f_3 + e_4 + h_5 + g_6 + f_7 + e_8$ と等しい値を持つ、ことが分かる.

この中で、 $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8$ と $h_1 + g_2 + f_3 + e_4 + h_5 + g_6 + f_7 + e_8$ は、主 対角線上の数の和と副対角線上の数の和であり、この2つの値は魔方陣の定和に等しい。

上に示した結果は、右下がりの汎対角線上の数の和がいずれも魔方陣の定和に等しくなることを示している。全く同様の考察によって、左下がりの汎対角線上の数の和も魔方陣の定和に等しくなることが分かる。よって、相結魔方陣は汎魔方陣であることが示された。

文献 [4] においても、相結魔方陣は汎魔方陣であることを証明しているが、あまり見通しの良 い証明ではなかったので、改良した証明を述べてみた. 文献 [2],[3],[5] には相結性を持つ方陣と 完全方陣(汎魔方陣)とが一緒に記述されている項がたくさんあるが、相結魔方陣は完全方陣で あるとの記述は見当たらない. これは、フランクリンの魔方陣などのように、相結性を満たす 方形(対角線和が定和に一致しない)などが扱われている故かと思われる.

2. 4方陣集合型相結 4m方陣 まず, 文献 [2] に記載されている 2 つの 4 方陣集合型相結 16 方陣とその解説を紹介しよう.

1	239	52	222	2	237	51	224	3	240	50	221	4	238	49	223
188	86	137	103	187	88	138	101	186	85	139	104	185	87	140	102
205	35	256	18	206	33	255	20	207	36	254	17	208	34	253	19
120	154	69	171	119	156	70	169	118	153	71	172	117	155	72	170
5	235	56	218	6	233	55	220	7	236	54	217	8	234	53	219
180	94	129	111	179	96	130	109	178	93	131	112	177	95	132	110
201	39	252	22	202	37	251	24	203	40	250	21	204	38	249	23
128	146	77	163	127	148	78	161	126	145	79	164	125	147	80	162
9	231	60	214	10	229	59	216	11	232	58	213	12	230	57	215
192	82	141	99	191	84	142	97	190	81	143	100	189	83	144	98
197	43	248	26	198	41	247	28	199	44	246	25	200	42	245	27
116	158	65	175	115	160	66	173	114	157	67	176	113	159	68	174
13	227	64	210	14	225	63	212	15	228	62	209	16	226	61	211
184	90	133	107	183	92	134	105	182	89	135	108	181	91	136	106
193	47	244	30	194	45	243	32	195	48	242	29	196	46	241	31
124	150	73	167	123	152	74	165	122	149	75	168	121	151	76	166
,	図 2	2.1a										1936	年こん	ろ境	新作

1	254	227	32	33	222	195	64	65	190	163	96	97	158	131	128
255	4	29	226	223	36	61	194	191	68	93	162	159	100	125	130
30	225	256	3	62	193	224	35	94	161	192	67	126	129	160	99
228	31	2	253	196	63	34	221	164	95	66	189	132	127	98	157
9	246	235	24	41	214	203	56	73	182	171	88	105	150	139	120
247	12	21	234	215	44	53	202	183	76	85	170	151	108	117	138
22	233	248	11	54	201	216	43	86	169	184	75	118	137	152	107
236	23	10	245	204	55	42	213	172	87	74	181	140	119	106	149
17	238	243	16	49	206	211	48	81	174	179	80	113	142	147	112
239	20	13	242	207	52	45	210	175	84	77	178	143	116	109	146
14	241	240	19	46	209	208	51	78	177	176	83	110	145	144	115
244	15	18	237	212	47	50	205	180	79	82	173	148	111	114	141
25	230	251	8	57	198	219	40	89	166	187	72	121	134	155	104
231	28	5	250	199	60	37	218	167	92	69	186	135	124	101	154
6	249	232	27	38	217	200	59	70	185	168	91	102	153	136	123
252	7	26	229	220	39	58	197	188	71	90	165	156	103	122	133
	図 2	2.1b										1938	年 岁	部元章	章 作

図 2.1a の 16 方陣の特徴的な性質は、次の通りである.

- 1. 完全方陣であり定和は2056である.
- 2. 上下左右に4等分すれば16個の定和514の完全4方陣に分割される.
- 3. 相結魔方陣であり、相結定和は514である.
- 4.16個の4方陣の同じ位置にある数は連続する16個の数(作り方の特徴)である.
- 5. 相隣る4個の4方陣で8方陣(9個)を作れば、どれも定和1028の完全方陣である.

- 6. 相隣る9個の4方陣で12方陣(4個)を作れば、どれも定和1542の完全方陣である.
- 7. 全 16 方陣,任意に取り出した 12 方陣,8 方陣,4 方陣の4 隅の数の和は,どれも 514 である.

図 2.1b の 16 方陣の特徴的な性質は、次の通りである.

- 1. 完全方陣であり定和は2056である.
- 2. 上下左右に4等分すれば16個の定和514の完全4方陣に分割される.
- 3. 相結魔方陣であり、相結定和は514である.
- 4. 相隣る 4 個の 4 方陣で 8 方陣 (9 個) を作れば、どれも定和 1028 の完全方陣である.
- 5. 相隣る9個の4方陣で12方陣(4個)を作れば、どれも定和1542の完全方陣である.
- 6. 広い意味でのフランクリン型が成り立つ.

図 2.1ab はどちらも素晴らしい作品である。 汎 4 方陣集合型の相結 16 方陣であることのみを 念頭に作成すれば、結果として、上記の特徴的性質を持つことになる。この事実を把握して作成したものと思われる。

次に,盆出芸の24次超完全方陣(作者の命名による)を文献[3],[5]から引用し,その解説と共に紹介しよう.

1	432	186	535	41	392	146	575	3	430	184	537	39	394	148	573	5	428	182	539	37	396	150	571
288	433	103	330	248	473	143	290	286	435	105	328	250	471	141	292	284	437	107	326	252	469	139	294
391	42	576	145	431	2	536	185	393	40	574	147	429	4	538	183	395	38	572	149	427	6	540	181
474	247	289	144	434	287	329	104	472	249	291	142	436	285	327	106	470	251	293	140	438	283	325	108
7	426	192	529	47	386	152	569	9	424	190	531	45	388	154	567	11	422	188	533	43	390	156	565
282	439	97	336	242	479	137	296	280	441	99	334	244	477	135	298	278	443	101	332	246	475	133	300
385	48	570	151	425	8	530	191	387	46	568	153	423	10	532	189	389	44	566	155	421	12	534	187
480	241	295	138	440	281	335	98	478	243	297	136	442	279	333	100	476	245	299	134	444	277	331	102
13	420	198	523	53	380	158	563	15	418	196	525	51	382	160	561	17	416	194	527	49	384	162	559
276	445	91	342	236	485	131	302	274	447	93	340	238	483	129	304	272	449	95	338	240	481	127	306
379	54	564	157	419	14	524	197	381	52	562	159	417	16	526	195	383	50	560	161	415	18	528	193
486	235	301	132	446	275	341	92	484	237	303	130	448	273	339	94	482	239	305	128	450	271	337	96
19	414	204	517	59	374	164	557	21	412	202	519	57	376	166	555	23	410	200	521	55	378	168	553
270	451	85	348	230	491	125	308	268	453	87	346	232	489	123	310	266	455	89	344	234	487	121	312
373	60	558	163	413	20	518	203	375	58	556	165	411	22	520	201	377	56	554	167	409	24	522	199
492	229	307	126	452	269	347	86	490	231	309	124	454	267	345	88	488	233	311	122	456	265	343	90
25	408	210	511	65	368	170	551	27	406	208	513	63	370	172	549	29	404	206	515	61	372	174	547
264	457	79	354	224	497	119	314	262	459	81	352	226	495	117	316	260	461	83	350	228	493	115	318
367	66	552	169	407	26	512	209	369	64	550	171	405	28	514	207	371	62	548	173	403	30	516	205
498	223	313	120	458	263	353	80	496	225	315	118	460	261	351	82	494	227	317	116	462	259	349	84
31	402	216	505	71	362	176	545	33	400	214	507	69	364	178	543	35	398	212	509	67	366	180	541
258	463	73	360	218	503	113	320	256	465	75	358	220	501	111	322	254	467	77	356	222	499	109	324
361	72	546	175	401	32	506	215	363	70	544	177	399	34	508	213	365	68	542	179	397	36	510	211
504			114	464	257	359	74		-	-	112	466	255	357	76	500	221	323	110	468	253	355	78
	図 :	2.1c					24	次超:	完全力	け 陣							1973	年	盆出	芸作	F		

図 2.1cの 24次方陣の性質は次の通りである.

- 1. 全体として見れば、定和6924の24次完全方陣である.
- 2. 罫線で区切った36個の4次配列はすべて完全方陣である.
- 3. 罫線で区切った 25 個の 8 次配列,16 個の 12 次配列,9 個の 16 次配列,4 個の 20 次配列も すべて完全方陣である.

- 4. 任意の 2 次配列の 4 数の和はすべて一定 1154 である. すなわち, この 24 次方陣は相結魔方陣である.
- 5. 任意の 4 次配列,6 次配列,8 次配列, \cdots ,24 次配列 (偶数次配列) の 4 隅の数の和はすべて一定 1154 である.
- 6. 上下左右の4方向の"フランクリン型"が成立する.

文献 [3],[5] にはこのように説明されている。この 24 方陣は,汎 4 方陣集合型相結魔方陣であり,これもまた,素晴らしい作品である.

3. 汎 4 方陣集合型相結 4m 方陣の作り方 筆者は文献 [4] において汎 4 方陣集合型相結 8 方陣の構造を解析し、その全体像を明らかにした。その副産物の 1 つとして、汎 4 方陣集合型相結 4m 方陣の簡明な作成法を見つけ、web-site に公開していた。

その中の 12 方陣 (m=3) と 16 方陣 (m=4) の例を図 3.1ab として、ここに示しておく.

ſ	1	124	30	135	2	125	29	134	3	126	28	133
	66	99	37	88	65	98	38	89	64	97	39	90
	115	10	144	21	116	11	143	20	117	12	142	19
	108	57	79	46	107	56	80	47	106	55	81	48
ľ	4	121	33	132	5	122	32	131	6	123	31	130
	69	96	40	85	68	95	41	86	67	94	42	87
	112	13	141	24	113	14	140	23	114	15	139	22
	105	60	76	49	104	59	77	50	103	58	78	51
ſ	7	118	36	129	8	119	35	128	9	120	34	127
	72	93	43	82	71	92	44	83	70	91	45	84
	109	16	138	27	110	17	137	26	111	18	136	25
	102	63	73	52	101	62	74	53	100	61	75	54

図 3.1a

1	221	52	240	2	222	51	239	3	223	50	238	4	224	49	237
116	176	65	157	115	175	66	158	114	174	67	159	113	173	68	160
205	17	256	36	206	18	255	35	207	19	254	34	208	20	253	33
192	100	141	81	191	99	142	82	190	98	143	83	189	97	144	84
5	217	56	236	6	218	55	235	7	219	54	234	8	220	53	233
120	172	69	153	119	171	70	154	118	170	71	155	117	169	72	156
201	21	252	40	202	22	251	39	203	23	250	38	204	24	249	37
188	104	137	85	187	103	138	86	186	102	139	87	185	101	140	88
9	213	60	232	10	214	59	231	11	215	58	230	12	216	57	229
124	168	73	149	123	167	74	150	122	166	75	151	121	165	76	152
197	25	248	44	198	26	247	43	199	27	246	42	200	28	245	41
184	108	133	89	183	107	134	90	182	106	135	91	181	105	136	92
13	209	64	228	14	210	63	227	15	211	62	226	16	212	61	225
128	164	77	145	127	163	78	146	126	162	79	147	125	161	80	148
193	29	244	48	194	30	243	47	195	31	242	46	196	32	241	45
180	112	129	93	179	111	130	94	178	110	131	95	177	109	132	96

3.1b

図 3.1ab 共,4 隅の4 方陣の中の4 か所の数を太字で記している。この数から出発して左から右へ(右から左へ)さらに上から下へ(下から上へ),4 方陣の同じ位置の数をたどってみれば,これらの方陣の作り方を把握できるものと思う。大きい次数の汎4 方陣集合型相結魔方陣の作成も容易であることが理解できよう。

もう1種類の汎4方陣集合型相結4m方陣について、12方陣(m=3)と16方陣(m=4)の例を図3.2abとして、ここに示しておく、これは、図2.1bの安部元章による16方陣と似た作り方で、数の配列が簡明になっているものである。

	1	100	47	142	5	104	43	138	9	108	39	134
	48	141	2	99	44	137	6	103	40	133	10	107
İ	98	3	144	45	102	7	140	41	106	11	136	37
	143	46	97	4	139	42	101	8	135	38	105	12
ĺ	13	88	59	130	17	92	55	126	21	96	51	122
İ	60	129	14	87	56	125	18	91	52	121	22	95
	86	15	132	57	90	19	128	53	94	23	124	49
	131	58	85	16	127	54	89	20	123	50	93	24
Ì	25	76	71	118	29	80	67	114	33	84	63	110
İ	72	117	26	75	68	113	30	79	64	109	34	83
Ì	74	27	120	69	78	31	116	65	82	35	112	61
	119	70	73	28	115	66	77	32	111	62	81	36
						1.34	20.					

図 3.2a

1	180	79	254	5	184	75	250	9	188	71	246	13	192	67	242
80	253	2	179	76	249	6	183	72	245	10	187	68	241	14	191
178	3	256	77	182	7	252	73	186	11	248	69	190	15	244	65
255	78	177	4	251	74	181	8	247	70	185	12	243	66	189	16
17	164	95	238	21	168	91	234	25	172	87	230	29	176	83	226
96	237	18	163	92	233	22	167	88	229	26	171	84	225	30	175
162	19	240	93	166	23	236	89	170	27	232	85	174	31	228	81
239	94	161	20	235	90	165	24	231	86	169	28	227	82	173	32
33	148	111	222	37	152	107	218	41	156	103	214	45	160	99	210
112	221	34	147	108	217	38	151	104	213	42	155	100	209	46	159
146	35	224	109	150	39	220	105	154	43	216	101	158	47	212	97
223	110	145	36	219	106	149	40	215	102	153	44	211	98	157	48
49	132	127	206	53	136	123	202	57	140	119	198	61	144	115	194
128	205	50	131	124	201	54	135	120	197	58	139	116	193	62	143
130	51	208	125	134	55	204	121	138	59	200	117	142	63	196	113
207	126	129	52	203	122	133	56	199	118	137	60	195	114	141	64

図 3.2b

4隅の4方陣の中の4か所の数を太字で記している。この4個の数たちから出発して左から右へ(右から左へ)さらに上から下へ(下から上へ)、4方陣の同じ位置の数をたどってみれば、この方陣の作り方を把握できるものと思う。この方法でも大きい次数の汎4方陣集合型相結魔方陣の作成が容易であることが理解できよう。

ここに、4m次の汎4方陣集合型相結魔方陣の特徴的性質について、記述しておく.

- 1. 縦横にm等分すれば、 m^2 個の汎4方陣に分割される.
- 2. 相結魔方陣である.
- 3. 縦横に k 個 $(k=2,3,\cdots,m-1)$ の 4 方陣を貼り合わせてできる 4k 方陣も (相結魔方陣だから) 完全方陣である. この 4k 方陣は見かけ上 $(m-k+1)^2$ 個であるが,上 4 行を切り離して下段に貼り合わせる操作と左 4 列を切り離して右端に貼り合わせる操作を繰り返してみれば,k の値に関係なく m^2 個の 4k 次の完全方陣が包まれている.

図 3.1ab および図 3.2ab の簡明な作り方を発見するに至った背景について、12 方陣の場合を例に説明しよう.

0	bdef	abc	acdef	a	abdef	bc	cdef	a_1
abce	acdf	e	bdf	bce	cdf	ae	abdf	
def	b	abcdef	ac	adef	ab	bcdef	c	c_1
abcdf	ace	df	be	bcdf	ce	adf	abe	
d	bef	abcd	acef	ad	abef	bcd	cef	
abcde	acf	de	bf	bcde	cf	ade	abf	
ef	bd	abcef	acd	aef	abd	bcef	cd	
abcf	acde	f	bde	bcf	cde	af	abde	
d_1								
		f_1						

図 3.3a

0	bdef	abc	acdef	a	abdef	bc	cdef	a_1	a_1bdef	bc_1	$c_1 def$
abce	acdf	e	bdf	bce	cdf	ae	abdf	bc_1e	$c_1 df$	a_1e	a_1bdf
def	b	abcdef	ac	adef	ab	bcdef	c	$a_1 def$	a_1b	bc_1def	c_1
abcdf	ace	df	be	bcdf	ce	adf	abe	bc_1df	$c_1 e$	$a_1 df$	a_1be
d	bef	abcd	acef	ad	abef	bcd	cef	a_1d	a_1bef	bc_1d	$c_1 ef$
abcde	acf	de	bf	bcde	cf	ade	abf	bc_1de	$c_1 f$	$a_1 de$	a_1bf
ef	bd	abcef	acd	aef	abd	bcef	cd	$a_1 e f$	a_1bd	bc_1ef	c_1d
abcf	acde	f	bde	bcf	cde	af	abde	bc_1f	$c_1 de$	a_1f	a_1bde
d_1	bef_1	$abcd_1$	$acef_1$	ad_1	$abef_1$	bcd_1	cef_1	a_1d_1	a_1bef_1	bc_1d_1	$c_1 e f_1$
$abcd_1e$	acf_1	d_1e	bf_1	bcd_1e	cf_1	ad_1e	abf_1	bc_1d_1e	c_1f_1	a_1d_1e	a_1bf_1
ef_1	bd_1	$abcef_1$	acd_1	aef_1	abd_1	$bcef_1$	cd_1	a_1ef_1	a_1bd_1	bc_1ef_1	c_1d_1
$abcf_1$	acd_1e	f_1	bd_1e	bcf_1	cd_1e	af_1	abd_1e	bc_1f_1	c_1d_1e	a_1f_1	a_1bd_1e

図 3.3b

図 3.3a において,汎 4 方陣集合型相結 8 方陣の標準形 (文献 [4] 参照) が記入されている.記述の簡略化のため,和の記号 + を省略している.例えば,abc と記入されているのは a+b+c の意味である.この図を汎 4 方陣集合型相結 12 方陣に発展させてみよう.中央の 4 列と右端の 4 列を置換すること,および中央の 4 行と下端の 4 行を置換することは汎 4 方陣集合型相結 12 方陣という性質を保った変換である.

このような変換を念頭に、a,c を a_1,c_1 に置き換えたり、d,f を d_1,f_1 に置き換えたりして、空欄を埋める作業を実行する。この結果、図 3.3b を得る。図 3.3b において、等式 $ac=a_1c_1,df=d_1f_1$ が成り立つ。

図3.1aは、図3.3bにおいて、

$$a = 1, b = 9, c = 19, d = 3, e = 36, f = 75, a_1 = 2, c_1 = 18, d_1 = 6, f_1 = 72$$

と置いて作成し、各項に1を加えたものに一致している.

図 3.2a は、図 3.3b において、

$$a = 4, b = 2, c = 40, d = 12, e = 1, f = 84, a_1 = 8, c_1 = 36, d_1 = 24, f_1 = 72$$

と置いて作成し、各項に1を加えたものに一致している.

4. フランクリン型魔方陣 文献 [2],[3],[5] に、政治家であり科学者でもあったフランクリン (1706-1790) が友人に宛てた手紙の中に記されていた8方形と16方形 (いずれも対角線和が方陣

の定和になっていない) が**フランクリン型魔方陣**として紹介されている.これは、対角線和が 方陣の定和と異なるが、たくさんの定和をもつ素晴らしいもの故である.

ここに、フランクリンの8方形を図4.1として記し、その解説を紹介しておく.

52	61	4	13	20	29	36	45
14	3	62	51	46	35	30	19
53	60	5	12	21	28	37	44
11	6	59	54	43	38	27	22
55	58	7	10	23	26	39	42
9	8	57	56	41	40	25	24
50	63	2	15	18	31	34	47
16	1	64	49	48	33	32	17

図 4.1 Franklin 作

この 8 方形の行和,列和は 260 であり、相結 (すなわち 2 方 4 格の 4 数の和が 130 で一定) である.この他の特徴的な性質を記しておく.

- 1. 上下左右に2等分してできる4個の4×4の表は定和130の4方形である.
- 2. 上向きの山の形 (8×26) の 8 数の和は 260 である. 16+63+57+10+23+40+34+17. 53+3+4+49+48+29+30+44 など.
- 3. 下向きの山の形 $(8 \, \text{組})$ の 8 数の和は 260 である. 52+3+5+54+43+28+30+45, 50+1+4+51+46+29+32+47 など.
- 4. 右向きの山の形 (8×1) の 8×1 の 8×1 の 8×1 の 8×1 である. 52+3+5+54+10+57+63+16, 61+62+12+43+23+56+2+1 など.
- 5. 左向きの山の形 (8 組) の 8 数の和は 260 である. 45+30+28+43+23+40+34+17, 13+62+60+11+55+8+2+49 など.
- 6. 上向きの 2 連山の形 $(8 \, \text{組})$ の 8 数の和は 260 である. 16+63+2+49+48+31+34+17, 50+8+57+15+18+40+25+47 など.
- 52+3+62+13+20+35+30+45, 14+60+5+51+46+28+37+19 など 8. 上向きの2 連とんがり山の形 (8 組) の8 数の和は 260 である.

7. 下向きの2連山の形(8組)の8数の和は260である.

- 8. 上向さの2連とんかり山の形 (8組) の8数の相は200 である. 16+63+57+15+18+40+34+17, 53+3+4+51+46+29+30+44 など
- 9. 下向きの 2 連とんがり山の形 (8 組) の 8 数の和は 260 である. 52+3+5+51+46+28+30+45, 55+8+2+56+41+31+25+42 など
- 10. 右向きの 2 連とんがり山の形 (8 組) の 8 数の和は 260 である. 52+3+5+6+58+57+63+16, 29+30+44+27+39+24+34+33 など
- 11. 左向きの 2 連とんがり山の形 (8 組) の 8 数の和は 260 である. 45+30+28+27+39+40+34+17, 13+62+60+59+7+8+2+49 など

残念ながら,この8方形では右向きおよび左向きの2連山の形については8数の和は260にはならない.上記の性質のうち2,3,4,5を満たすものを(広い意味で)フランクリン型と呼ぶようである.

なお、中国では楊輝がフランクリンより 500 年も前にフランクリン型に近い 10 方形を得ていたことが、その 10 方形とともに文献 [2] に記されている.

5. 条件 針 を満たす相結 4m 方陣 文献 [1] において、阿部楽方は図 5.1a の 8 方陣と図 5.1b の 12 方陣を提示し、これらの 2 つの方陣が次に示すような優れた性質を持っていることを紹介している。

1	8	41	48	25	32	49	56
57	64	17	24	33	40	9	16
6	3	46	43	30	27	54	51
62	59	22	19	38	35	14	11
4	5	44	45	28	29	52	53
60	61	20	21	36	37	12	13
7	2	47	42	31	26	55	50
63	58	23	18	39	34	15	10

図 5.1a 1977 年 阿部楽方 作

1	34	74	107	75	108	3	36	110	143	73	106
111	144	38	71	37	70	109	142	2	35	39	72
31	4	104	77	105	78	33	6	140	113	103	76
141	114	68	41	67	40	139	112	32	5	69	42
7	28	80	101	81	102	9	30	116	137	79	100
117	138	44	65	43	64	115	136	8	29	45	66
25	10	98	83	99	84	27	12	134	119	97	82
135	120	62	47	61	46	133	118	26	11	63	48
22	13	95	86	96	87	24	15	131	122	94	85
132	123	59	50	58	49	130	121	23	14	60	51
19	16	92	89	93	90	21	18	128	125	91	88
129	126	56	53	55	52	127	124	20	17	57	54

図 5.1b

1977年 阿部楽方作

2つの方陣ともに汎魔方陣であり、さらに次の性質を持っている。その優れた性質について、8方陣の場合には図5.1cを使って、12方陣の場合には図5.1dを使って説明しよう。

8方陣の場合には、 \circ 印8ヵ所の山の形 (折斜と呼ぶ) の数の和および \bullet 印8ヵ所の2連山の形 (複折斜と呼ぶ) の数の和が共に260で方陣の定和に一致している。さらに上下に平行移動した8ヵ所,左右に2列平行移動した8ヵ所の数の和も260である。

また,図5.1cを90°,180°,270°回転した図についても全く同じような性質を持つ.

12 方陣の場合には、 \circ 印 12ヵ所の山の形 (折斜) の数の和および \bullet 印 12ヵ所の 3 連山の形 (複 折斜) の数の和が共に 870 で方陣の定和に一致している。 さらに上下に平行移動した 12ヵ所,左右に 2 列平行移動した 12ヵ所の数の和も 870 である。

また、図 5.1d を 90°, 180°, 270°回転した図についても全く同じような性質を持つ.

さらに、8 方陣の場合には類似の性質を持ったものの研究が知られていたが、12 方陣については図 5.1b が初めての例であることが述べられている.

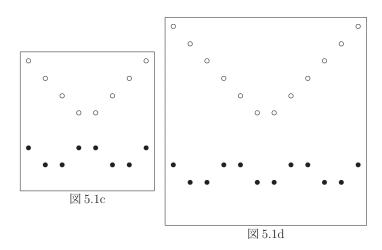


図 5.1a と図 5.1b の方陣について調べてみると、この 2 つの方陣はともに相結方陣であり、さらに

| 2行ごと2列ごとに線を引いて、2×2の小正方形に分割してみると、 | 各小正方形の斜め2数の和が一定の値になっている.

この条件を本稿では、条件||斜||と呼ぶことにする.

条件 を満たす相結 8 方陣は図 5.2a において a,b,c,d,e,f に 1,2,4,8,16,32 を代入し、各成分 に 1 を加えることによって実現できる。 実際、図 5.1a の 8 方陣は図 5.2a において

$$a = 8, b = 32, c = 16, d = 1, e = 4, f = 2$$

と置いたものに対応している. 図 5.2a では和の記号 + を省いており, abc は a+b+c を表す.

0	def	ab	abdef	ac	acdef	bc	bcdef
abc	63	c	cdef	b	bdef	a	adef
de	f	abde	abf	acde	acf	bcde	bcf
abcde	abcf	cde	cf	bde	bf	ade	af
df	e	abdf	abe	acdf	ace	bcdf	bce
abcdf	abce	cdf	ce	bdf	be	adf	ae
ef	d	abef	abd	acef	acd	bcef	bcd
abcef	abcd	cef	cd	bef	bd	aef	ad

図 5.2a

条件 を満たす相結 8 方陣に,数の置換 (2,8)(4,6) を行の置換と列の置換として続けて施した変換を実行すると,定和点対称型相結 8 方陣に変換され,逆に定和点対称型相結 8 方陣に同じ変換を実行すると,条件 を満たす相結 8 方陣に変換されることが分かる.

とくに、条件。針を満たす相結8方陣の全体と定和点対称型相結8方陣の全体は1対1に対応することが分かる。この結果、条件。針を満たす相結8方陣の総数は5,760個であることが分かる。

図 5.2a は、筆者が文献 [4] で考察した定和点対称型相結 8 方陣の標準形に上記の変換を施したものである.

図 5.2b は、条件 斜 を満たす相結 12 方陣である.

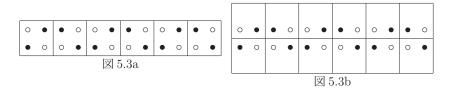
1	12	25	36	73	84	85	96	97	108	121	132
133	144	109	120	61	72	49	60	37	48	13	24
3	10	27	34	75	82	87	94	99	106	123	130
135	142	111	118	63	70	51	58	39	46	15	22
7	6	31	30	79	78	91	90	103	102	127	126
139	138	115	114	67	66	55	54	43	42	19	18
8	5	32	29	80	77	92	89	104	101	128	125
140	137	116	113	68	65	56	53	44	41	20	17
9	4	33	28	81	76	93	88	105	100	129	124
141	136	117	112	69	64	57	52	45	40	21	16
11	2	35	26	83	74	95	86	107	98	131	122
143	134	119	110	71	62	59	50	47	38	23	14
					- I						

図 5.2b

相結 8 方陣の場合と同じように、数の置換 (2,12)(4,10)(6,8) による変換を実行することによって、条件 を満たす相結 12 方陣の全体と定和点対称型相結 12 方陣の全体は 1 対 1 に対応することが分かる。この結果、条件 計を満たす相結 12 方陣の総数は 3,628,800 個であることが分かる。これは、定和点対称型相結 12 方陣の総数の計算結果による。

先に示したように、相結魔方陣は完全方陣 (汎魔方陣) である.ここでは、条件(斜) を満たす相結 4m 方陣は、図 5.1a と図 5.1b の方陣と同じように、4 方向の山の形 (折斜) 及び m 連山の形 (複折斜) の数の和が方陣の定和に一致することを示そう.

12 方陣の場合について説明する。下記の図では 2×2 の小正方形との位置関係が分かるように表示してある。まず、3連山の形 (複折斜) の場合について、図5.3aと図5.3bの2つの図を準備する。



この図 5.3a, 図 5.3b において、同じ記号の12ヵ所の数の和が方陣の定和に一致することを示したい

図 5.3a の場合には、条件 斜 によって。印の12ヵ所および●印の12ヵ所の数の和が方陣の定和に一致することは明らかである。図 5.3b の場合について考察しよう。次の図 5.3c を準備する.

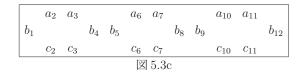


図 5.3c において、相結性を使うと次の等式が成り立つことが分かる.

$$a_2 + a_3 = c_2 + c_3$$
, $a_6 + a_7 = c_6 + c_7$, $a_{10} + a_{11} = c_{10} + c_{11}$

よって, 次の等式が成り立つ.

$$b_1 + a_2 + a_3 + b_4 + b_5 + a_6 + a_7 + b_8 + b_9 + a_{10} + a_{11} + b_{12}$$

= $b_1 + c_2 + c_3 + b_4 + b_5 + c_6 + c_7 + b_8 + b_9 + c_{10} + c_{11} + b_{12}$

すなわち,図 5.3c を利用すれば,図 5.3b の。印および。印の 12ヵ 所の数の和は,図 5.3a の ● 印および。印の 12ヵ 所の数の和に一致することになる.結局,図 5.3b の。印および ● 印の 12ヵ 所の数の和も方陣の定和に一致することが分かる.

次に,山の形(折斜)の場合について,図 5.3d と図 5.3e を準備する.

01	\bullet_1	\bullet_1	\circ_2	02	\bullet_2	\bullet_2	\circ_3	03	\bullet_3	•3	\circ_1
\bullet_1	\circ_1	\circ_2	\bullet_1	\bullet_2	\circ_2	03	\bullet_2	•3	\circ_3	\circ_1	•3
•3	\circ_2	01	\bullet_2	\bullet_1	\circ_3	\circ_2	•3	\bullet_2	\circ_1	03	\bullet_1
\circ_2	•3	\bullet_2	\circ_1	03	\bullet_1	•3	\circ_2	\circ_1	\bullet_2	\bullet_1	\circ_3
03	\bullet_2	•3	\circ_3	01	•3	\bullet_1	\circ_1	\circ_2	\bullet_1	•2	\circ_2
•2	\circ_3	03	\bullet_3	•3	\circ_1	\circ_1	\bullet_1	\bullet_1	\circ_2	\circ_2	\bullet_2
					107	5.3d					

 \circ_2 \circ_2 •2 \circ_3 \circ_3 •3 \circ_1 \circ_1 \circ_2 \bullet_1 \bullet_2 \circ_2 \circ_3 \bullet_2 \bullet_3 \circ_3 \circ_1 \circ_3 •3 \bullet_1 \circ_1 \bullet_3 \circ_2 \bullet_2 \circ_3 \circ_3 01 \bullet_3 \circ_3 \circ_1 •3 •3 01 \bullet_1 \circ_2 \circ_2 03 03 01 図 5.3e

この図 5.3d, 図 5.3e において、同じ記号の 12π 所の数の和が方陣の定和に一致することを示したい。

図5.3d の場合には、条件 斜 によって同じ記号の12ヵ所の数の和が方陣の定和に一致することは明らかである。図5.3e の場合について考察しよう、次の図5.3f を準備する.

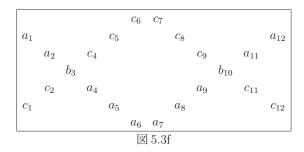


図 5.3f において、相結性によって次の等式が成り立つ.

$$a_1 + a_5 = c_1 + c_5$$
, $a_2 + a_4 = c_2 + c_4$, $a_6 + a_7 = c_6 + c_7$, $a_8 + a_{12} = c_8 + c_{12}$, $a_9 + a_{11} = c_9 + c_{11}$

この結果、図 5.3f の上下向きの山の形 (折斜) の 12ヵ所の数の和が一致することが分かる。図 5.3f を利用することによって、図 5.3e の各折斜の数の和は図 5.3d のある折斜の数の和に一致することが分かる。すなわち、図 5.3e の場合にも、同じ記号の 12ヵ所の数の和は方陣の定和に一致することが分かった。

ここまでの考察の結果,一般に条件 を満たす相結 4m 方陣について,図 5.3a,図 5.3b を 参考に, $16m(=2\times 4m\times 2)$ 個の m 連山の形 (複折斜) の定和性が分かり,図 5.3d,図 5.3e を 参考に, $16m^2(=2m\times 4m\times 2)$ 個の山の形 (折斜) の定和性が分かる.

これは、相結 4m 方陣について 8m 個の汎斜 (汎対角線) の定和性が分かることに比べて非常に多くの定和性が分かることを意味している.

0	N	\bar{g}	$\bar{g}N$	\bar{f}	$\bar{f}N$	\bar{e}	$\bar{e}N$	\bar{d}	$\bar{d}N$	\bar{c}	$\bar{c}N$	\bar{b}	$\bar{b}N$	\bar{a}	$\bar{a}N$
M	MN	g	gN	f	fN	e	eN	d	dN	c	cN	b	bN	a	aN
\bar{n}	n	$\bar{g}\bar{n}$	$\bar{g}n$	$\bar{f}\bar{n}$	$\bar{f}n$	$\bar{e}\bar{n}$	$\bar{e}n$	$d\bar{n}$	$\bar{d}n$	$\bar{c}\bar{n}$	$\bar{c}n$	$\bar{b}\bar{n}$	$\bar{b}n$	$\bar{a}\bar{n}$	$\bar{a}n$
$M\bar{n}$	Mn	$g\bar{n}$	gn	$f\bar{n}$	fn	$e\bar{n}$	en	$d\bar{n}$	dn	$c\bar{n}$	cn	$b\bar{n}$	bn	$a\bar{n}$	an
\bar{m}	m	$\bar{g}\bar{m}$	$\bar{g}m$	$\bar{f}\bar{m}$	$\bar{f}m$	$\bar{e}\bar{m}$	$\bar{e}m$	$\bar{d}\bar{m}$	$\bar{d}m$	$\bar{c}\bar{m}$	$\bar{c}m$	$\bar{b}\bar{m}$	$\bar{b}m$	$\bar{a}\bar{m}$	$\bar{a}m$
$M\bar{m}$	Mm	$g\bar{m}$	gm	$f\bar{m}$	fm	$e\bar{m}$	em	$d\bar{m}$	dm	$c\bar{m}$	cm	$b\bar{m}$	bm	$a\bar{m}$	am
$\bar{\ell}$	ℓ	$\bar{g}ar{\ell}$	$\bar{g}\ell$	$\bar{f}\bar{\ell}$	$\bar{f}\ell$	$\bar{e}\bar{\ell}$	$\bar{e}\ell$	$d\bar{\ell}$	$ar{d}\ell$	$\bar{c}\bar{\ell}$	$\bar{c}\ell$	$ar{b}ar{\ell}$	$ar{b}\ell$	$\bar{a}\bar{\ell}$	$\bar{a}\ell$
$M\bar{\ell}$	$M\ell$	$g\bar{\ell}$	$g\ell$	$f\bar{\ell}$	$f\ell$	$e\bar{\ell}$	$e\ell$	$d\bar{\ell}$	$d\ell$	$c\bar{\ell}$	$c\ell$	$b ar{\ell}$	$b\ell$	$a\bar{\ell}$	$a\ell$
\bar{k}	k	$\bar{g}\bar{k}$	$\bar{g}k$	$\bar{f}\bar{k}$	$\bar{f}k$	$\bar{e}\bar{k}$	$\bar{e}k$	$d\overline{k}$	$\bar{d}k$	$\bar{c}\bar{k}$	$\bar{c}k$	$\bar{b}\bar{k}$	$\bar{b}k$	$\bar{a}\bar{k}$	$\bar{a}k$
$M\bar{k}$	Mk	$g\bar{k}$	gk	$f\bar{k}$	fk	$e\bar{k}$	ek	$d\bar{k}$	dk	$c\bar{k}$	ck	$b\bar{k}$	bk	$a\bar{k}$	ak
\bar{j}	j	$\bar{g}\bar{j}$	$\bar{g}j$	$\bar{f}\bar{j}$	$\bar{f}j$	$\bar{e}\bar{j}$	$\bar{e}j$	$d\bar{j}$	$\bar{d}j$	$\bar{c}\bar{j}$	$\bar{c}j$	$\bar{b}\bar{j}$	$\bar{b}j$	$\bar{a}\bar{j}$	$\bar{a}j$
$M\bar{j}$	Mj	$g\bar{j}$	gj	$f\bar{j}$	fj	$e\bar{j}$	ej	$d\bar{j}$	dj	$c\bar{j}$	cj	$b\bar{j}$	bj	$a\bar{j}$	aj
\bar{i}	i	$\bar{g}\bar{i}$	$\bar{g}i$	\bar{fi}	$\bar{f}i$	$\bar{e}\bar{i}$	$\bar{e}i$	$d\bar{i}$	$\bar{d}i$	$\bar{c}\bar{i}$	$\bar{c}i$	$\bar{b}\bar{i}$	$\bar{b}i$	$\bar{a}\bar{i}$	$\bar{a}i$
$M\bar{i}$	Mi	$g\bar{i}$	gi	$f\bar{i}$	fi	$e\bar{i}$	ei	$d\bar{i}$	di	$c\bar{i}$	ci	$b\bar{i}$	bi	$a\bar{i}$	ai
\bar{h}	h	$\bar{g}\bar{h}$	$\bar{g}h$	$\bar{f}\bar{h}$	$\bar{f}h$	$\bar{e}\bar{h}$	$\bar{e}h$	$d\overline{h}$	$\bar{d}h$	$\bar{c}\bar{h}$	$\bar{c}h$	$\bar{b}\bar{h}$	$\bar{b}h$	$\bar{a}\bar{h}$	$\bar{a}h$
$M\bar{h}$	Mh	$g\bar{h}$	gh	$f\bar{h}$	fh	$e\bar{h}$	eh	$d\bar{h}$	dh	$c\bar{h}$	ch	$b\bar{h}$	bh	$a\bar{h}$	ah

図 5.4a

この図 5.4a でも,和の記号 + を省いている.ここに,

 $a,b,c,d,e,f,g,h,i,j,k,\ell,m,n,\bar{a},\bar{b},\bar{c},\bar{d},\bar{e},\bar{f},\bar{g},\bar{h},\bar{i},\bar{j},\bar{k},\bar{\ell},\bar{m},\bar{n},M,N$

は正の整数で、次の等式を満たすものである.

$$\begin{array}{ll} a+b+c+d+e+f+g=3M, & h+i+j+k+\ell+m+n=3N \\ a+\bar{a}=b+\bar{b}=c+\bar{c}=d+\bar{d}=e+\bar{e}=f+\bar{f}=g+\bar{g}=M \\ h+\bar{h}=i+\bar{i}=j+\bar{j}=k+\bar{k}=\ell+\bar{\ell}=m+\bar{m}=n+\bar{n}=N \end{array}$$

図 5.4a の各成分は (1) の中の1つと (2) の中の1つとの和の全体に一致している.

$$0, a, b, c, d, e, f, g, \bar{a}, \bar{b}, \bar{c}, \bar{d}, \bar{e}, \bar{f}, \bar{g}, M \qquad \cdots \qquad (1)$$

$$0, h, i, j, k, \ell, m, n, \bar{h}, \bar{i}, \bar{j}, \bar{k}, \bar{\ell}, \bar{m}, \bar{n}, N \qquad \cdots \qquad (2)$$

全体として 0 から $255 (= 16^2 - 1)$ までの数がすべて現れるように a,b,c,\cdots の値を決めることができれば、その各成分に 1 を加えたものが求める 16 方陣である.

このようにして作った定和 2056 の 16 方陣の 1 つが図 5.4b である.

1	241	4	244	6	246	7	247	9	249	12	252	14	254	15	255
16	256	13	253	11	251	10	250	8	248	5	245	3	243	2	242
49	193	52	196	54	198	55	199	57	201	60	204	62	206	63	207
64	208	61	205	59	203	58	202	56	200	53	197	51	195	50	194
81	161	84	164	86	166	87	167	89	169	92	172	94	174	95	175
96	176	93	173	91	171	90	170	88	168	85	165	83	163	82	162
97	145	100	148	102	150	103	151	105	153	108	156	110	158	111	159
112	160	109	157	107	155	106	154	104	152	101	149	99	147	98	146
129	113	132	116	134	118	135	119	137	121	140	124	142	126	143	127
144	128	141	125	139	123	138	122	136	120	133	117	131	115	130	114
177	65	180	68	182	70	183	71	185	73	188	76	190	78	191	79
192	80	189	77	187	75	186	74	184	72	181	69	179	67	178	66
209	33	212	36	214	38	215	39	217	41	220	44	222	46	223	47
224	48	221	45	219	43	218	42	216	40	213	37	211	35	210	34
225	17	228	20	230	22	231	23	233	25	236	28	238	30	239	31
240	32	237	29	235	27	234	26	232	24	229	21	227	19	226	18
							Jul								

図 5.4b

図 5.4b は条件 を満たす相結 16 方陣だから,64 個の 4 連山の形 (複折斜) と 256 個の山の形 (折斜) の定和性が分かる. さらに,図 5.4c に示す。印 16ヵ所の 2 連山の形の数の和で方陣の定和に一致するものが $128(=4\times16\times2)$ 個存在する.

図 5.40

このように、条件|斜|を満たす相結|4m方陣について、|0m0値が大きくなれば、折斜、複折斜の定和性だけでなく、類似の図形の定和性についての性質が次々に増えてくる。

6. 条件 | を満たす相結 4m 方陣の作り方 条件 | を満たす相結 4m 方陣の簡明な作り方を考案した。その作り方により作成した 8 方陣,12 方陣,16 方陣を示しておく。各方陣について,数の配置を $1,2,3,\cdots$ と 8 個,12 個,16 個を組にしてたどって確認してほしい。

最後の図 6.1c は、条件 会 を お 方 体 集合型相結 16 方 陣である。上下左右に 2 等分する と 4 個の 8 方 陣に分割される。シフト変換により、この他に 12 個の 8 方 陣が隠れていることが分かり、合計 16 個の 8 方 陣が存在する。この 16 個の 8 方 陣はいずれも条件 会満たす相結 8 方 陣である。これらの 8 方 陣および 16 方 陣は、いずれも相結 魔方 車だから 汎魔方 陣である。

1	57	7	63	6	62	4	60
8	64	2	58	3	59	5	61
49	9	55	15	54	14	52	12
56	16	50	10	51	11	53	13
41	17	47	23	46	22	44	20
48	24	42	18	43	19	45	21
25	33	31	39	30	38	28	36
32	40	26	34	27	35	29	37

図 6.1a

1	133	11	143	3	135	9	141	8	140	7	139
12	144	2	134	10	142	4	136	5	137	6	138
121	13	131	23	123	15	129	21	128	20	127	19
132	24	122	14	130	22	124	16	125	17	126	18
25	109	35	119	27	111	33	117	32	116	31	115
36	120	26	110	34	118	28	112	29	113	30	114
97	37	107	47	99	39	105	45	104	44	103	43
108	48	98	38	106	46	100	40	101	41	102	42
85	49	95	59	87	51	93	57	92	56	91	55
96	60	86	50	94	58	88	52	89	53	90	54
73	61	83	71	75	63	81	69	80	68	79	67
84	72	74	62	82	70	76	64	77	65	78	66

図 6.1b

1	241	15	255	14	254	4	244	5	245	11	251	10	250	8	248
16	256	2	242	3	243	13	253	12	252	6	246	7	247	9	249
225	17	239	31	238	30	228	20	229	21	235	27	234	26	232	24
240	32	226	18	227	19	237	29	236	28	230	22	231	23	233	25
209	33	223	47	222	46	212	36	213	37	219	43	218	42	216	40
224	48	210	34	211	35	221	45	220	44	214	38	215	39	217	41
49	193	63	207	62	206	52	196	53	197	59	203	58	202	56	200
64	208	50	194	51	195	61	205	60	204	54	198	55	199	57	201
65	177	79	191	78	190	68	180	69	181	75	187	74	186	72	184
80	192	66	178	67	179	77	189	76	188	70	182	71	183	73	185
161	81	175	95	174	94	164	84	165	85	171	91	170	90	168	88
176	96	162	82	163	83	173	93	172	92	166	86	167	87	169	89
145	97	159	111	158	110	148	100	149	101	155	107	154	106	152	104
160	112	146	98	147	99	157	109	156	108	150	102	151	103	153	105
113	129	127	143	126	142	116	132	117	133	123	139	122	138	120	136
128	144	114	130	115	131	125	141	124	140	118	134	119	135	121	137

図 6.1c

次数が8の倍数の場合には、図6.1a、図6.1cのように作り方は明快であるが、次数が8の倍数でない場合には、図6.1bのように作り方が明快ではない。

図 6.1b の作り方について補足しておく、上 2 行の太数字の部分を如何に決めるかが鍵になる、相結性を保つように、左から順に (1,12)(2,11)(3,10)(4,9)(5,8)(6,7) を上下に配置し、行の定和性を保たせると、図 6.1b の上 2 行の配置になる。左 2 列の配置についても同様の考察を行う。

図 6.1c の 16 方陣に関して, 定和の個数について,

- 1.16 方陣の定和 2056 を与えるものが、行和、列和、汎斜和の 64 組
- 2.8 方陣の定和 1028 を与えるものが、行和、列和、汎斜和の合計 256 組
- 3. 相結定和 514(256 組)
- 4.16 方陣全体での, 4 方向の山の形が与える定和 2056(合計 64 組)
- 5.16 方陣全体での,4 方向の2 連山の形が与える定和2056(合計64組)
- 6.16 方陣全体での、4 方向の 4 連山の形が与える定和 2056(合計 64 組) 1+256+2+255+14+243+13+244+5+252+6+251+10+247+9+248、 16+17+239+242+3+30+228+253+12+21+235+246+7+26+232+249 など
- 7. 16 方陣全体での、横長と縦長のジグザグにとった 16 数の和 2056(32 組) 1+256+15+242+14+243+4+253+5+252+11+246+10+247+8+249, 16+241+2+255+3+254+13+244+12+245+6+251+7+250+9+248 など
- 8.8 方陣の広い意味でのフランクリン型が与える定和 1028(合計 448 組) 128+129+146+111+158+99+116+141, 161+192+79+130+115+190+77+84 など
- 9.8 方陣の4方向2連山の形が与える定和1028(1088組) 113+112+146+143+126+99+157+132、65+144+114+191+78+131+125+180 など
- 10. 8 方陣の横長と縦長のジグザグにとった 8 数の和 1028(256 組) 65+192+161+96+145+112+113+144, 177+80+81+176+97+160+129+128 など

他にも定和を与える図形が存在するが省略する.

参考文献

- [1] 阿部楽方:3種類のすぐれた方陣,別冊数理科学,パズルⅡ,1977年,サイエンス社
- [2] 平山諦, 阿部楽方: 方陣の研究, 1983年, 大阪教育図書
- [3] 大森清美:新編魔方陣,1992年,富山房
- [4] 内田伏一:魔方陣にみる数のしくみ,2004年,日本評論社
- [5] 大森清美:魔方陣の世界,2013年,日本評論社