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Introduction

　Signal transduction pathways are important for 

understanding homeostatic mechanisms and specific 

reactions1)－3). Many molecular mechanisms related to 

signal transduction pathways have been identified 

and are leading to the development of many useful 

medicines. Although the schema of these pathways is 

useful for understanding the specific hierarchical 

pathways, it is difficult to recognize concurrently 

activated signals and growing factors in one schema. 

Recently, new methodologies, such as various 

comprehensive analyses (proteome, metabolome, or 

genome) and computational studies, have been 

developed to investigate various hyper-complex 

systems in life sciences4)－7). These analyses identified 

numerous molecules that help in differentiating 

samples. However, growing factors identified by these 

high-dimensional approaches cannot always lead to 

discovery of a causal relationship in signal transduc-

tion pathways. Specifically, a comparison of the 

average molecular amount in cell lysis samples cannot 

easily clarify the pathways in heterogeneous cells and 

asynchronously activated cells8), 9). Furthermore, the 

pathways are spatio-temporally regulated by feedback 

mechanisms, protein modification mechanisms, or 

cell-to-cell communication7), 10). Thus, discovering the 

direct cause among the growing factors is very 

difficult.
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　Investigation of signal transduction mechanisms is important for development of therapy and 

understanding complex life systems. In this study, to establish a novel recognition method of signal 

transduction pathways, we investigated signal transducers using flow cytometry.

　The flow cytometric measurement shows a mean phosphorylation level (mean of fluorescence 

intensity, MFI) and a deviation of the phosphorylation level (coefficient variation, CV) in a cluster of 

cells. As a model of signal pathways, Jurkat cells (T cell leukemia cell line) were stimulated with 

interleukin-21 or interferon-α, and signal transducers and activators of transcription (STATs) and 

extracellular signal-regulated kinase (ERK) 1/2 were measured using flow cytometry. Furthermore, 

peripheral blood was stimulated, and then various signal transducers of the lymphocytes and 

neutrophils were analyzed with MFI and CV.

　After the stimulation, the increase of STATs MFI induced a temporal change of CV. On the other 

hand, the decrease of ERK1/2 phosphorylation accompanied the sustained increase of CV. Finally, we 

classified the signaling characters into five types using a combination of MFI and CV. These findings 

contribute to an explanation of the known relationship between signal transducers and stimulants on 

each cell subset. Therefore, this method may be useful to discover a causal relationship between 

stimulants and signal transducers in complex systems.
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　In this study, we analyzed signal transducers and 

activators of transcription (STATs) and extracellular 

signal-regulated kinase (ERK) 1/2 in the Jurkat cell 

line as a model of cell signaling. STATs are known to 

be activated in a receptor-specific manner11). For 

example, STAT1 is activated by stimulation from 

interferon-α (IFN-α)12), 13), and STAT3 is activated 

by stimulation from interleukin (IL)-2114), 15). ERK1/2 

(MAP kinase family) is a known regulator of cellular 

proliferation16), 17). Furthermore, the ERK1/2 pathway 

is subsequently activated by various stimulations 

such as lipopolysaccharide and redox status18), 19).

　Phospho-specific flow cytometry for signal network-

ing has several advantages, such as single cell analysis 

capability, multi-parameter data acquisition, rapid 

protocols, and the ability to analyze rare cell subsets, 

compared with traditional biochemical methods20). 

Recently, the analysis methods of flow cytometry 

have been combined with various comprehensive 

analyses21), 22). However, a percentage of positive cells 

or a value of mean of fluorescence intensity (MFI) 

have been used for these flow cytometric analyses. In 

this study, we postulated a theoretical method of 

signaling recognition in complex systems and applied 

the theory to analysis of signal transduction using 

coefficient variation (CV). We demonstrated the 

validity of a novel recognition method using flow 

cytometry and classification of STATs, ERK1/2, etc., 

as contractive or fluctuating signals. This novel 

method will allow the use of bioinformatics to 

discover a causal relationship between stimulants and 

signal pathways in complex systems.

Materials and Methods

Jurkat cells

　Jurkat cells were obtained from the Department of 

Immunology at Tohoku University School of Medicine 

(originally gifted from Ajinomoto Co. Ltd, Tokyo) and 

maintained in RPMI 1640 (Sigma-Aldrich, St. Louis, 

MO, USA) supplemented with 10% fetal calf serum 

(Biowest, Nuaillé, France), 50 U/mL penicillin G 

potassium, and 50 µg/mL streptomycin sulfate at 

37̊C in 5% CO2 with high humidity. 

Peripheral blood

　This study was approved by the Ethics Committee 

of Yamagata University Faculty of Medicine (approval 

number, 265). Peripheral blood was collected from 

healthy volunteers following informed consent and 

heparinized by 5 U/mL of low molecular weight 

heparin. The average age of the donors was 49.3 ± 2.6 

years (n = 4). Following sample collection, the blood 

was immediately transferred into 1.5 mL microtubes 

and used for experiments. 

Cell stimulation with cytokines

　Cell stimulation was performed as previously 

reported 23). Briefly, Jurkat cells (0.7 to 1 x 106 

cells/mL, 0.5 mL/tube) or whole peripheral blood cells 

(0.1 mL/tube) were stimulated with IFN-α (Takeda 

Pharmaceutical Co. Ltd, Osaka, Japan) or IL-21 

(Peprotech, Rocky Hill, NJ, USA) for 10 to 90 min in 

microtubes at 37°C. In several experiments, the cells 

were preincubated with MEK1/2 inhibitor (U0126, 

Thermo Fisher Scientific, Waltham, MA, USA) for 10 

min at 37̊C. After the stimulation, the cells were 

immediately fixed by Lyse/Fix buffer (BD Biosciences, 

San Jose, CA, USA) for 10 min at 37°C. The fixed cells 

were packed by centrifugation at 800 x g for 1 min 

and then stocked in 90% methanol (0.3 mL/tube) at 

－20°C until flow cytometric analysis.

Flow cytometric analysis

　The fixed cells were washed with 0.8 mL phosphate-

buffered saline (PBS) and suspended in PBS 

containing 1% bovine serum albumin and 0.1% 

sodium azide. The cells were transferred into 

V-bottom 96-well plates and were incubated with 

each antibody for 45 min at 22-25°C. The antibodies 

used in this study are summarized in Table 123). After 

the reaction, the cells were washed with PBS and 

measured by flow cytometry (ec800, Sony, Tokyo, 

Japan; FACSCanto II, BD Biosciences, Franklin 

Lakes, NJ, USA). Debris was excluded from the 

analysis by dim-forward and side-scatter gating. The 

fluorescence intensity and robust coefficient value 

(CV) were analyzed using FlowJo software (v6.2, 

TreeStar, Ashland, OR, USA). The calculation 

formula for robust CV is as follows: CV = 100 × 1/2 

[(Intensity at 84.13 percentile) –(Intensity at 15.87 
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percentile)] / Median. This calculation is not affected 

by the number of cell events.

Statistical analysis

　Comparison between each data set was performed 

by one-way or two-way analysis of variance with a 

post hoc Bonferroni test. A two group comparison was 

performed with a paired t-test. Correlation was 

calculated with the Pearson R test. Data analysis was 

performed using Prism Software (v5.03, GraphPad 

Software, San Diego, CA, USA). P values less than 

0.05 were considered significant. A bubble chart 

graph was plotted by Graph-R (v2.19, Vector, 

http://www.vector.co.jp/soft/winnt/business/se136959.

html). 

Results

Theoretical section

Theoretical recognition of biological systems

　Statuses of components (cells, signal transducers, 

or metabolites) in biological systems continuously 

fluctuate and are gradually drawn to attractants. The 

fluctuation and attraction are repeated, and the 

itinerant history of the attracted components decides 

the fate of biological responses24). This premise allows 

us to speculate as follows: When stimulation induces 

change of status, the representative change of status, 

i.e., observable action, can be discovered in the upper 

layer (Fig. 1A). In the lower layer, fluctuation and 

contraction of status simultaneously occur as 

undetectable actions (Fig. 1A). Furthermore, fluctua-

tion is required to change the status prior to 

attraction to the representative action. Therefore, 

undetectable action in the lower layer consists of 

fluctuation and contraction of status.

　From another point of view, statuses of components 

in biological systems are expressed by multi-paramet-

ric coordinates (Fig. 1B). For example, the status of a 

single cell is expressed as a dot (shown as a blue 

bubble in Fig. 1B) on the coordinate, so that the 

cluster of these cells is presented as a cluster of dots, 

which is similar to results obtained by flow cytometry 

analysis. As described above (Fig. 1A), the status of 

the cluster is changed to contraction from fluctuation 

by stimulation. Therefore, contraction of the dots 

indicates attraction, and divergence of the dots shows 

fluctuation. The contracted status is transited 

(recognized as a representative response) to the upper 

layer on another multi-parametric coordinate. Kinetic 

projection indicates the process of attraction to 

contractive status, such as time course, calcium 

influx, phosphorylation of signal transducers, etc. 

Thus, the changing status of cell clusters will also 

show the contraction or fluctuation on a multi-

parametric coordinate.

Utilization of CV and MFI to examine biological 

responses

　The status of components in biological systems is 

expressed by coordinates, and the status of clusters is 

projected on a planar view of simple parameters as 

shown in Fig. 1B. MFI is well used for the analysis 

using flow cytometry. However, MFI is not suitable for 

detection of contraction or fluctuation of biological 

responses, since MFI is value of average of the events. 

In this study, we propose to use CV to analyze 

contraction or fluctuation of the events.

　To understand the utilization of CV and MFI in 

biological responses, a schema of a single parametric 

phase of biological responses is shown in Fig. 2. The 

blue bubbles indicate single cells, and the red arrows 

show kinetic direction of cells after stimulation. 

Table 1. List of antibodies used in this study
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Dotted blue arrows indicate stochastic cell position or 

kinetic energy of cells before and after stimulation. 

The range of stochastic cell positions is applied to CV. 

Kinetic energy, i.e., the speed of fluctuating cells, to 

overcome the attractor (or another fluctuation) is 

related to MFI. Before initiation of attraction, both 

MFI and CV increase, and when cells enter the 

attraction (action), CV decreases and MFI increases. 

Experimental section

Verification of MFI and CV during stimulation

　To verify this hypothesis, Jurkat cells were 

stimulated with IFN-α or IL-21, and then the 

phosphorylated signal transducers were stained with 

each specific antibody. Finally, these cells were 

measured by flow cytometry. The fluctuations of cell 

clusters are detected as the CV of cell histograms, and 

the kinetic energy is considered as MFI. Representa-

tive analysis of flow cytometry is presented in Fig. 3. 

In this study, CV was calculated as robust CV, which is 

not affected by cell count (total event numbers). MFI 

was calculated as the average of the sums of 

fluorescence of a single cell. Although the MFI results 

are already known results, the CV results are 

completely new data.

　CV, i.e., cell fluctuation, should be increased during 

stimulation, and the decrease of CV should be 

observed after the initiation of attraction, i.e., action 

(Fig. 2). The time course (time kinetics) observations 

help to understand the relationship between CV and 

kinetics of signal transducers (Fig. 4). As shown in the 

%change of MFI (Fig. 4, left-hand side panels), which 

indicates kinetics of signal activation, IFN-α 

temporally induced the phosphorylation of STAT1 

(pSTAT1), and IL-21 also induced the temporal 

phosphorylation of STAT3 (pSTAT3) from 10 to 30 

min following treatment. After 30 min, the 

phosphorylation of STAT1 and STAT3 decreased. On 

the other hand, %change of MFI in pERK1/2 and 

pSTAT5 were not significantly changed by the 

stimulations. The change patterns (increase and 

Figure 1. Relationship between hierarchy of phenomena 
and transition of fluctuation to contraction.
 (A) Image schema of itinerant history of biological 
responses. The bubbles indicate components (cells, 
signal transducers, or metabolites), and the circles 
indicate clusters of these components in a biological 
system. The colors indicate change of status. The size of 
the circle represents contraction and fluctuation.
(B) Representation of biological response on multi-
parametric coordinates. The small blue bubbles are the 
components in the biological system. The light blue 
areas are clusters of bubbles. The gray geometries show 
simple parameters on multi-parametric coordinates.

Figure 2. A schema of a single parametric phase of 
biological responses using coefficient variation (CV) and 
mean of fluorescence intensity (MFI).
Utilization of CV and MFI from flow cytometry analysis 
for schema of biological responses on a single parametric 
phase. Blue bubbles indicate single cells. Red arrows 
indicate cell movement after stimulation. Dotted blue 
arrows indicate stochastic cell position or cell movement 
before and after stimulation. The range of stochastic cell 
position is applied to CV. The energy (or speed of cell 
movement) to overcome initial attraction or another 
fluctuation is related to MFI. 
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decrease) of CV of each signal transducer were similar 

to %change of MFI (Fig. 4, right-hand side panels). 

Therefore, specific activations of signal transducers 

were observed with both MFI and CV. Interestingly, 

%change of MFI on pSTAT1 at 90 min was 

significantly augmented by stimulation with IFN-α 

compared with that of the vehicle at 90 min. However, 

CV was decreased (contractive) at 90 min. This 

contraction of CV and increase of MFI at 90 min were 

considered as the time of entrance into attraction. 

Thus, these results suggested that the change of MFI 

and CV was suitable for testing our hypothesis.

　To validate the relationship between the change of 

CV and dose of stimulants, the cells were stimulated 

with various doses of IFN-α (Fig. 5A and 5B) or IL-

21 (Fig. 5C and 5D). There was no discrepancy 

pattern between %change of MFI (Fig. 5A and 5C) 

and CV (Fig. 5B and 5D) at 10 and 30 min 

stimulations (before contraction). These results 

suggested that fluctuation (increase of CV) was not 

only augmented by low dose stimulations, but also by 

higher dose stimulations. 

　Finally, correlation of CV to %change of MFI 

(change ratio from the initial MFI at 0 min) at 10 and 

30 min stimulations (Fig. 6A and 6B) and level of MFI 

(Fig. 6C and 6D) were analyzed. Although %change of 

MFI was significantly correlated with CV, the levels of 

MFI were not correlated with CV. These results 

suggested that the initial states of MFI at 0 min were 

not correlated with CV at 0 min; furthermore, the 

attracted state of MFI at 90 min was also not 

correlated with CV at 90 min. These discrepancies at 

initiation and attraction points strongly suggest that 

fluctuating CV and contractive CV changed independ-

ently of MFI during stimulation. These observations 

also indicated that the change of MFI and CV was 

suitable for testing our hypothesis.

Pattern of CV change during decrease of MFI

　The ERK1/2 pathway is observed as oscillation and 

fluctuation. The pathway is activated in discrete, 

asynchronous pulses with frequency and duration 

determined by extracellular concentrations of 

stimulant 9). Furthermore, the frequency of pulse 

Figure 3. Representative analysis of coefficient variation (CV) and mean of fluorescence intensity (MFI) using 
histograms of phosphorylated signal transducers. Jurkat cells were stimulated with vehicle, IFN-α (100 U/mL), or 
IL-21 (1 nM) for 10 min. The representative overlay histograms of phosphorylated signal transducers, such as 
pSTAT1, pSTAT3, pSTAT5, and pERK1/2, are shown (blue shading = vehicle; red line = IFN-α or IL-21 
stimulation). Representative analysis of CV is shown in the upper left histogram panel. The CV was calculated as 
described in Materials and Methods.
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determines the signal characteristics25). In this study, 

we found that ERK1/2 fluctuation was induced by 

stimulation with IFN-α or IL-21 (Fig. 7). These 

stimulants significantly increased ERK1/2 (pERK1/2) 

CV (Fig. 7B), which accompanied the decrease of 

pERK1/2 MFI (Fig. 7A). In contrast to STATs CV, 

pERK1/2 CV, as shown in Fig. 7C, was inversely 

correlated with pERK1/2 MFI at all time point. 

Therefore, the stimulation might reduce activating 

frequency and result in an increase of CV.

　To clarify the inverse correlation between pERK1/2 

MFI and CV, we examined another condition to 

reduce the ERK1/2 activation. As shown in Fig. 8A, 

lower temperature (4°C) significantly reduced 

pERK1/2 MFI compared with normal conditions (37 

°C). Although not significant, an increase of pERK1/2 

CV was observed. Importantly, lower temperature 

was not sufficient stimulation to increase CV; 

however, an inverse correlation between pERK1/2 

MFI and CV was observed. We also examined U0126 

as an inhibitor of MEK1/2, which are upstream of 

ERK1/2 activation (Fig. 8B). Similarly, U0126 

significantly reduced pERK1/2 MFI, and an inverse 

correlation between pERK1/2 MFI and CV was 

observed. These observations indicated that reduction 

of the ERK1/2 activating frequency induces the 

increase of pERK1/2 CV. Conversely, the reduction of 

pERK1/2 CV suggests that the pERK1/2 pathway 

synchronizes the oscillation and/or increases the 

frequency of the activation. 

 

Figure 4. Change of mean of fluorescence intensity 
(MFI) and coefficient variation (CV) after the addition of 
IFN-α or IL-21.
Jurkat cells were incubated with vehicle (open circle), 
IFN-α (closed circle, 100 U/mL), or IL-21 (closed 
triangle, 1 nM) for 0, 10, 30, and 90 min. After the 
incubation, the cells were fixed and analyzed by flow 
cytometry. The cells were stained with each antibody to 
detect pERK1/2 (A and B), pSTAT1 (C and D), pSTAT3 
(E and F), and pSTAT5 (G and H). Left-hand side panels 
(A, C, E, and G) show %change of MFI, calculated as 
follows: %change of MFI = 100 × [(MFI of cytokine at 
incubation time)  – (MFI of vehicle at 10 min 
incubation)] / (MFI of vehicle at 10 min incubation). 
Right-hand side panels (B, D, E, and G) indicate CV. 
Data are mean ± SE, n = 4. The comparisons between 0 
min and each time point were performed using two-way 
ANOVA with Bonferroni’s post hoc test. Asterisks 
denote significant differences vs. vehicle (*, P < 0.05; 
**, P < 0.01; ***, P < 0.001). 

Figure 5. Effect of cytokine doses on %change of MFI 
and CV.
Jurkat cells were activated by various doses of cytokines 
for 10 min (open circle) or 30 min (closed circle). The 
doses of IFN-α (A and B) were 0, 33, 100, and 300 
U/mL, and the doses of IL-21 (C and D) were 0.33, 1, and 
3 nM. Left-hand side panels (A and C) show %change of 
MFI, and right-hand side panels (B and D) show CV. 
Data are mean ± SE, n = 4.
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Multi-parametric presentation of signal pathways 

using bubble charts

　To facilitate the visualization of fluctuation and 

contraction of signal transducers, we presented the 

IFN-α- and IL-21-induced signaling kinetics, fluctua-

tion of ERK1/2, and specific reactions of STATs on 

two-dimensional bubble charts. As shown in Fig. 9, 

each bubble is one sample of cell clusters. The color of 

the bubble indicates the time course kinetics, and the 

bubble diameter represents pERK1/2 CV. The x-axis 

and y-axis on each panel represent pSTAT1, 3, or 5. 

As indicated by arrows, the specific reactions to each 

stimulant are observed through the transition from 

fluctuation (blue bubbles to red bubbles) to 

contraction (yellow bubbles to green bubbles). The 

increase of pERK fluctuation by stimulation is 

detected by the comparison between blue bubble size 

and green bubble size. For example, when the cells 

were stimulated with IL-21, red and yellow bubble 

density decreased (10 min and 30 min) at higher 

pSTAT3 CV values, and green bubble density (90 

min) increased at lower pSTAT3 CV values. 

Figure 6. CV was significantly correlated to %change of 
MFI, but not MFI.
The CV was obtained from the results of Figure 4. Left-
hand side panels show the results of IFN-α treatment, 
and right-hand side panels show the results of IL-21 
treatment. The correlation between CV and %change of 
MFI (upper panels) and between CV and MFI (lower 
panels) are plotted with the Pearson R value. Asterisks 
denote significant correlation (**, P < 0.01; ***, P < 
0.001).

Figure 8. Down-regulation of pERK1/2 MFI and up-
regulation of ERK1/2 CV by low temperature and 
MEK1/2 inhibitor (U0126) treatment.
Jurkat cells were incubated at 37°C or 4°C for 10 min (A, 
B, and C). The cells were also treated with U0126 for 10 
min at 37°C (D, E, and F), and then MFI and CV of 
pERK were measured. Down-regulation of MFI is shown 
in (A) and (D), and up-regulation of CV is shown in (B) 
and (E). The correlations between CV and MFI are 
shown in (C) and (F). Statistical analysis was calculated 
with a paired t-test (A and B) and one-way ANOVA with 
Bonferroni’s post hoc test (D and E) (*, P < 0.05; ***, P 
< 0.001). Data are mean ± SE, n = 4.

Figure 7. Down-regulation of pERK1/2 MFI by IFN-α 
and IL-21 and the correlation between pERK MFI and 
pERK CV.
Jurkat cells were stimulated with IFN-α (100 U/mL) 
and IL-21 (1 nM) for 10 min. MFI and CV of pERK were 
measured. The correlations between CV and MFI are 
shown in (C). Comparison of vehicle to IFN-α or IL-21 
treatment was performed by one-way ANOVA with 
Bonferroni’s post hoc test (***, P < 0.001). Data are 
mean ± SE, n = 10.
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Subsequently, pSTAT1 CV also transitioned from 

fluctuation to contraction. The size of green bubbles 

(90 min) was larger than that of blue bubbles (0 min), 

and each bubble size was larger at lower pSTATs CV 

values compared to that at higher pSTATs CV values 

with IL-21 treatment. The positions of the blue 

bubbles (0 min) indicated by the blue dashed ellipses 

were changed to the reduced positions of the green 

bubbles (90 min) shown by the green dashed ellipses. 

The changing of bubble position on the CV-axes with 

bubble size related to CV of another signal transducer 

may help visualization of contractive and fluctuating 

signals.

Categorization of signal transducers by combination of 

MFI and CV

　In a heterogeneous cell population, the determina-

tion of the activated signal transduction pathways is 

difficult, since the initial status of each cell is not 

same. However, heterogeneity is universal. In this 

study, lymphocytes, which were not divided into B 

cells or T cells, were used for analysis of signal 

pathways with CV and MFI. In spite of that, the 

signal pathways in lymphocytes could be categorized 

by a combination of MFI and CV (Table 2 and Fig. 

10). We categorized signals into three classes 

(contractive signals, fluctuating signals, and passive 

signals) by CV because the contraction is considered 

related to observable action in the upper layer (Fig. 

1). The contractive signals were further separated 

into two categories, attractive signals and negative 

arbiter signals, based on increase and decrease of 

MFI, respectively. The fluctuating signals were also 

separated into two categories, subsequent signals and 

counter signals, based on increase and decrease of 

MFI, respectively. The third category was passive 

signals, which do not induce a clear change in both 

CV and MFI. The categorization was consistent with 

the previous observations of signal transduction 

activated by IL-21, and could explain the function of 

IL-21 on lymphocytes14), 26), 27), i.e., IL-21 mainly 

activates STAT3 in various lymphocytes, and 

alternatively activated STAT1 and STAT3 depend on 

lymphocyte type. These results suggested that it is 

possible to analyze the signals not only under ideal 

Table 2. Categorization of signal transducer status and 
function

Figure 9. Bubble chart analysis of time course and 
pERK1/2 fluctuation plotted on pSTATs axes.
Bubble chart graphs were drawn with Graph-R software. 
Bubble color indicates time course: blue = 0 min; red = 
10 min; yellow = 30 min; green = 90 min. Bubble 
diameter represents the value of pERK1/2 CV. 
Combinations of x-axes and y-axes are as follows: upper 
panels = pSTAT1 CV (x) and pSTAT3 CV (y); middle 
panels = pSTAT1 CV (x) and pSTAT5 CV (y); lower 
panels = pSTAT3 CV (x) and pSTAT5 CV (y). The left-
hand side panels show results of stimulation with IFN-
α, and the right-hand side panels show results of 
stimulation with IL-21.
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conditions using the cell line but also with any gated 

cell population using heterogeneous peripheral blood 

cells.

　When neutrophils were stimulated with IL-21, the 

phosphorylation of STAT3 (MFI) was decreased, and 

the phosphorylation of other signal transducers was 

not induced 23). These responses are commonly 

considered to be due to non-responsive cells; however, 

MFI of p38 MAPK and STAT1 were decreased, and 

CV of STAT1, STAT5, and ERK1/2 were increased 

(Fig. 11). These results suggested that neutrophils 

were responsive to IL-21, which induced negative 

arbiter signals and counter signals. Therefore, the 

categorization provides an opportunity for novel 

Figure 10. Categorization of signal transducers in 
lymphocytes by combination of MFI and CV.
Whole blood was stimulated with IL-21 (1 nM) for 10 
min. For the determination of basal status, whole blood 
was added to the vehicle diluents of IL-21 (PBS) and 
incubated for 10 min. These bloods were immediately 
fixed after the 10 min, and then phosphorylation of 
various signal transducers was measured as described in 
Materials and Methods. Lymphocytes were detected as 
myeloid linage marker (CD16 or CD11b) negative cells 
and SSClow populations. The kinetics of increase (plus) 
or decrease (minus) were calculated as follows: MFI 
kinetics (blue column) = (the value of MFI at 10 min 
treatment with IL-21) – (the value of MFI at 10 min 
treatment with PBS) or CV kinetics (red column) = (the 
value of CV at 10 min treatment with IL-21) – (the 
value of CV at 10 min treatment with PBS). The 
categorization of the signals was based on the data 
shown in Table 2. Total pY indicates total phosphotyro-
sine. Similarly, the name of each signal transducer is 
indicated above the respective panels. Data are mean ± 
SD (n = 3).

Figure 11. Categorization of signal transducers in 
neutrophils by combination of MFI and CV.
 Whole blood was stimulated with IL-21 (1 nM) for 10 
min. For the determination of basal status, whole blood 
was added to the vehicle diluents of IL-21 (PBS) and 
incubated for 10 min. These bloods were immediately 
fixed after the 10 min, and then phosphorylation of 
various signal transducers was measured as described in 
Materials and Methods. Neutrophils were gated by CD16 
(or CD11b) positive and SSChigh populations. The 
kinetics of increase (plus) or decrease (minus) were 
calculated as follows: MFI kinetics (blue column) = (the 
value of MFI at 10 min treatment with IL-21) –(the 
value of MFI at 10 min treatment with PBS) or CV 
kinetics (red column) = (the value of CV at 10 min 
treatment with IL-21) –(the value of CV at 10 min 
treatment with PBS). The categorization of the signals 
was based on the data shown in Table 2. Total pY 
indicates total phosphotyrosine. Similarly, the name of 
each signal transducer is indicated above the respective 
panels. Data are mean ± SD (n = 3).
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recognition of phenomena, functions, cell subsets, and 

molecular interactions.

Discussion

　Predicting the reaction cascade of enzymes in 

signal transduction pathways, which are hyper-

complex systems, is extremely difficult because the 

pathways are amplified and controlled by various 

spatio-temporal mechanisms, such as cross-over 

interaction, feedback, or protein modifications, under 

heterogeneous conditions.

　In this study, we demonstrated that the CV of 

signal transducers indicated kinetics of signal 

pathways in the Jurkat cell line. The decrease of CV 

suggests a contraction of signal status, and the 

increase of CV indicates a fluctuation of signal status. 

In heterogeneous conditions (whole blood), the CV 

decrease was closely related with observable action. 

Furthermore, the combination of MFI and CV 

provides a novel categorization of signal pathways as 

follows: contractive signals (consisting of attractive 

signals and negative arbiter signals), fluctuating 

signals (consisting of subsequent signals and counter 

signals), and passive signals.

　Neutrophils are not a simple population. Five 

subsets were detected in a mouse neutrophil 

population by a 38-antibody panel using mass 

cytometry 28). However, there are limits in detection of 

minute differences among surface antigens because 

neutrophil surface antigens vary with methods of 

neutrophil separation or the process of neutrophil 

maturation 23), 29). Instead of high-dimensional surface 

analysis data, the dispersion information is one of the 

markers for functional cell clusters in heterogeneous 

cells29). These previous observations indicate that the 

categorization is useful to characterize signal 

pathways in these heterogeneous cell clusters.

　Many reports show efficacy of IL-21 for cancer 

treatment30)－33). Recently, combined IL-21-primed 

polyclonal CTL plus CTLA4 blockade controlled 

refractory metastatic melanoma34). The combination 

of IL-21 with IFN-α boosts STAT3 activation, 

cytotoxicity, and experimental tumor therapy15). It is 

expected that the combined treatment of cytokines 

and immune checkpoint inhibitors will become more 

common. The categorization of signals may be more 

useful for prediction of combined stimulations, such 

as drug or cytokine combinations, on heterogeneous 

blood samples. 

　We observed the counter signals belonging to the 

fluctuating signals. Observable action implies robust 

attraction among other signals. We speculate that the 

counter signals may maintain dynamic equilibrium as 

follows: Negative arbiter signals (a0) and attractive 

signals (a1) are important for action, but are risk 

factors for homeostasis. The subsequent signals (a2) 

are candidates for the next attractions; thus, the 

number of attraction signals (a = a0 + a1 + a2) should 

be lower than the number of counter signals (c), i.e., 

homeostasis is a < c, and prolapse of homeostasis is 

a > c. In Jurkat cells, ERK1/2 pathway is considered a 

counter signal during stimulation with IL-21 or low 

temperature. The investigation of counter signals 

may open a new avenue to analyze dynamic 

equilibrium.

　In this study, we proposed novel recognition 

methods of signal pathways using flow cytometry. The 

contraction and fluctuation of cell clusters are useful 

to categorize the signal characteristics. We expect that 

this method can be applied to various molecule 

statuses and evolve into an effective technique to 

replace high-dimensional analysis.
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