
学 位 論 文

The maximal ideal cycles over two-dimensional
Brieskorn complete intersection singularities

(2次元ブリスコーン完全交叉特異点の極大イデアルサイクル)

September, 2013

Graduate school of Science and Engineering

Yamagata University

Fan-Ning Meng



DOCTORAL THESIS

The maximal ideal cycles over two-dimensional
Brieskorn complete intersection singularities

(2次元ブリスコーン完全交叉特異点の極大イデアルサイクル)

September, 2013

Graduate school of Science and Engineering

Yamagata University

Fan-Ning Meng



Contents

Introduction 1

Acknowledgments 5

Chapter 1. Preliminaries 6

1.1. Singularities 6

1.2. Blowing up 12

1.3. Resolution of normal surface singularities 17

1.4. Cyclic quotient singularities 24

1.5. Results of Konno and Nagashima 29

Chapter 2. The main results 35

2.1. The construction of a partial resolution with cyclic quotient

singularities 36

2.2. Zero divisors of the pull-back of the coordinate functions 45

2.3. The fundamental cycle and the canonical cycle 51

2.4. The maximal ideal cycle 57

2.5. Kodaira singularities 59

Bibliography 63

i





Introduction

Let (X, x) be a germ of a normal complex surface singularity and f : X̃ −→

X a good resolution with exceptional divisor E. It is known that the topology of

the singularity is determined by the weighted dual graph ΓE of E. A divisor on

X̃ supported in E is called a cycle. The fundamental cycle ZE is by definition the

smallest one among the cycles F > 0 such that −F is nef, i.e., FEi ≤ 0 for every

irreducible component Ei of E. The fundamental cycle is a topological invariant;

in fact, it is determined by ΓE. Let m be the maximal ideal of the local ring

OX,x. For a non-zero function h ∈ m, let (h)E denote the exceptional part of the

zero divisor divX̃(h). Then the smallest one among the cycles (h)E, h ∈ m \ {x},

is called the maximal ideal cycle and denoted by Zm. This cycle is an analytic

invariant and cannot be determined by ΓE in general. We have ZE ≤ Zm by the

definition of these cycles. Therefore it is a natural question to ask whether ZE =

Zm. This equality holds on the minimal resolution for rational singularities ([2]),

minimally elliptic singularities ([17]), weakly elliptic Gorenstein singularities with

rational homology sphere link ([22]), and for hypersurface {zn = f(x, y)} with

certain conditions ([5], [33]). However, in general, it is difficult to identify the

maximal ideal cycle (cf. [30], [23], [26]).

In this thesis, we consider a germ (X, o) ⊂ (Cm, o) of an isolated complete

intersection singularity of Brieskorn type defined by

X = {(xi) ∈ Cm|qj1xa11 + · · ·+ qjmx
am
m = 0, j = 3, . . . ,m},

1



where ai ≥ 2 are integers. Then (X, o) is a normal surface singularity by Serre’s

criterion for normality. Neumann [24] proved that the universal abelian cover of a

weighted homogeneous normal surface singularity with rational homology sphere

link is a complete intersection surface singularity of this type. It is known that

the resolution graph of the minimal good resolution of a weighted homogeneous

surface singularity can be recovered from the Seifert invariants of the link. The

Seifert invariant of the link of (X, o) is in fact obtained in [10, §7] ([27] for

hypersurface case); however the construction of the good resolution is needed for

the computation of the maximal ideal cycle.

In [13, §2], Konno and Nagashima constructed a good resolution of the

Brieskorn hypersurface singularity {xa00 + xa11 = xa22 } with 2 ≤ a0 ≤ a1 ≤ a2

using a covering method due to Tomaru ([34], [36]) and Fujiki ([7]). We employ

their method to construct a good resolution of (X, o) and the aim is to identify the

maximal ideal cycle on the minimal good resolution of (X, o). We give concrete

descriptions of the maximal ideal cycle and the fundamental cycle, a condition

for the coincidence of these cycles, and a condition for the singularity to be a

Kodaira singularity; every condition is expressed by the integers a1, . . . , am. The

thesis is divided into two chapters.

In Chapter 1, we introduce some basic facts about singularities, blowing up,

the resolution of normal surface singularities, the fundamental cycle and the max-

imal ideal cycle. We also introduce the cyclic quotient singularities and their

fundamental facts. In the last section, we review the main results of Konno and

Nagashima, that is, the concrete descriptions of the fundamental cycle and the

maximal ideal cycle over Brieskorn hypersurface singularities.

In Chapter 2, we describe our main results due to [20]. In Section 2.1, we give

the construction of a partial resolution of (X, o) with cyclic quotient singularities.

In Section 2.2, we compute the zero divisors of the pull-back of the coordinate

functions x1, . . . , xm. The main results are as follows:
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Theorem (Theorem 2.9 in Section 2.2). Let

Z(i) = λ
(i)
0 E0 +

m∑
w=1

sw∑
ν=1

ĝw∑
ξ=1

λ
(i)
w,ν,ξEw,ν,ξ (1 ≤ i ≤ m).

Then λ
(i)
0 and the sequence {λ(i)w,ν,ξ} are determined by the following:

λ
(i)
w,0,ξ := λ

(i)
0 := eim,

λ
(i)
w,sw+1,ξ :=


1 if w = i

0 if w ̸= i,

λ
(i)
w,ν−1,ξ = λ

(i)
w,ν,ξcw,ν − λ

(i)
w,ν+1,ξ.

The cycle Z(i) is the smallest one among the cycles Z > 0 such that −Z is nef

and the coefficients of E0 in Z is eim.

In Section 2.3, we give concrete description of the fundamental cycle, and

compute the fundamental genus and the canonical cycle.

Assume that a1 ≤ · · · ≤ am. Then we have the following main results.

Theorem (Theorem 2.13 in Section 2.3). Let

ZE = θ0E0 +
m∑
w=1

sw∑
ν=1

ĝw∑
ξ=1

θw,ν,ξEw,ν,ξ

be the fundamental cycle. Then θ0 and the sequence {θw,ν,ξ} are determined by

the following:

θw,0,ξ := θ0 := min(emm, α1 · · ·αm),

θw,ν,ξ = ⌈θw,ν−1,ξ/ϵw,ν⌉ (1 ≤ ν ≤ sw).

Lemma (Lemma 2.15 in Section 2.3). ZE = Z(m) if and only if emm ≤

α1 · · ·αm.

In Section 2.4, we identify the maximal ideal cycle and give a condition for

the coincidence of the fundamental cycle and the maximal ideal cycle.

We keep the assumption that a1 ≤ · · · ≤ am. The main result is as follows:
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Theorem (Theorem 2.18 in Section 2.4). We have Z(m) ≤ · · · ≤ Z(1). Hence

Zm = Z(m). Furthermore, the maximal ideal cycle coincides with the funda-

mental cycle on the minimal good resolution space and on X̃ if and only if

emm ≤ α1 · · ·αm.

In Section 2.5, we give a condition for the singularity (X, o) to be a Kodaira

singularity following Konno and Nagashima. The main result is as follows:

Theorem (Theorem 2.25 in Section 2.5). (X, o) is a Kodaira singularity if

and only if dm−1 ≤ am.
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Chapter 1

Preliminaries

In this chapter, we mainly introduce some basic facts about singularities,

blowing up which is a useful tool for removing the singularities. We also introduce

the cyclic quotient singularities and their fundamental facts. At last, we review

the main results of Konno and Nagashima, i.e., the concrete descriptions of the

fundamental cycle and the maximal ideal cycle over the Brieskorn hypersurface

singularities (Va0,a1,a2 , o) := ({xa00 + xa11 = xa22 }, o), where ai’s are integers and

2 ≤ a0 ≤ a1 ≤ a2.

1.1. Singularities

By a complex variety we mean an irreducible reduced complex analytic space

defined over C. Let X = (X,OX) be a complex analytic space. Let x be a

point of X. We denote by dimxX the dimension of X at x, and denote by dimX

the global dimension of X. There exists the smallest positive integer e such

that a neighborhood U of x is biholomorphic to a closed complex subspace of a

domain in Ce. This integer is called the embedding dimension of X at x, and

denoted by embdimxX. It is clear that for any point x ∈ X, there exists an open

neighborhood U such that embdimxX ≥ embdimyY for any y ∈ U . Hence the

function defined by x 7→ embdimxX is upper semi-continuous, i.e., for any n ∈ Z

the set {x ∈ X|embdimxX ≥ n} is closed.
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We take an open neighborhood U of x ∈ X which is a closed complex subspace

of a domain D ⊂ Cm with coordinates z1, . . . , zm. Let f1, . . . , fk be functions on

D such that OX,x = OD,x/(f1x, . . . , fkx), where fix denotes the germ of fi at

x ∈ D. We denote by Jx(f1, . . . , fk) the Jacobian matrix at x, i.e.,

Jx(f1, . . . , fk) =

(
∂fi
∂zj

(x)

)
.

Theorem 1.1. In the situation above, we have

rankJx(f1, . . . , fk) + embdimxX = m.

Proof. Let x = (x1, . . . , xm) ∈ Cm. We put

e = embdimxX and r = rankJx(f1, . . . , fk).

By reordering suffices, we may assume that

det

(
∂fi
∂zj

(x)

)
1≤i,j≤r

̸= 0.

Set w1 = f1, . . . , wr = fr, wr+1 = zr+1 − xr+1, . . . , wm = zm − xm. Then, by

the implicit function theorem, we may regard the functions w1, . . . , wm as the

coordinates at x ∈ Cm. Hence a neighborhood of x ∈ X is a closed complex

subspace of an (m − r)-dimensional domain {w1 = · · · = wr = 0} ⊂ Cm. This

means that e ≤ m− r.

Next we show that e ≥ m − r. Since OX,x is a quotient of OCe,x, there exist

the functions g1, . . . , ge on a neighborhood of x ∈ Cm which generate the maximal

ideal of OX,x. Then the functions f1, . . . , fk, g1, . . . , ge generate the maximal ideal

of OCm,x, and thus rankJx(f1, . . . , fk, g1, . . . , ge) = m. Hence we see that r ≥

m− e. □

Example 1.2. Let f1 = x + y2, f2 = x + y be functions on C3. Then the

Jacobian matrix at the origin o := (0, 0, 0) is

Jo(f1, f2) =

∂f1
∂x

(o) ∂f1
∂y

(o) 0

∂f2
∂x

(o) ∂f2
∂y

(o) 0

 =

1 0 0

1 1 0

 ,
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and then rankJo(f1, f2) = 2. We may regard the functions f1 = x+y2, f2 = x+y, z

as the coordinates at o ∈ C3. Clearly a neighborhood of o ∈ X is a complex

line {f1 = f2 = 0}. This means that embdimoX = 1. Thus rankJo(f1, f2) +

embdimoX = 2 + 1 = 3.

Corollary 1.3. Let mx be the maximal ideal of OX,x. Then

embdimxX = dimC mx/m
2
x.

Proof. In the situation above, it suffices to show that dimC mx/m
2
x = m − r.

Let nx be the maximal ideal of OCm,x and f the ideal of OCm,x generated by

f1x, . . . , fkx. Then mx/m
2
x
∼= nx/(n

2
x + f). We define a map a : OCm,x −→ Cm by

a(f) =

(
∂f

∂z1
(x), . . . ,

∂f

∂zm
(x)

)
.

Then it is clear that dimC a(f) = r and that a induces an isomorphism a′ :

nx/n
2
x −→ Cm. Since a′ induces an isomorphism (f + n2x)/n

2
x −→ a(f), we obtain

that

dimCmx/m
2
x = dimC nx/n

2
x − dimC (f+ n2x)/n

2
x = m− r.

□

We denote by Ω1
X the sheaf of differential 1-forms on X. For any point x ∈ X,

Ω1
X,x is generated by df, f ∈ OX,x, with the properties

(1) for f ∈ C, df = 0;

(2) for f, g ∈ OX,x, d(f + g) = df + dg and d(fg) = fdg + gdf .

Lemma 1.4. dimC Ω
1
X,x/mxΩ

1
X,x = dimCmx/m

2
x.

Proof. The homomorphism Ω1
X,x/mxΩ

1
X,x −→ mx/m

2
x, defined by

(df mod mxΩ
1
X,x) 7→ (f − f(x) mod m2

x)

is an isomorphism. □

Corollary 1.5. In the situation above, we have the following:
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(1) dimxX ≤ embdimxX;

(2) dimxX ≤ dimCΩ
1
X,x/mxΩ

1
X,x;

(3) r ≤ m− dimxX.

If the equality holds in one of the above, then it holds in the others.

Proof. By Matsumura [19, p. 104, 5.14], dimOX,x ≤ dimCmx/m
2
x. Since

dimxX = dimOX,x, (1) follows from Corollary 1.3. Now the rest of the assertion

follows from (1), Theorem 1.1, Corollary 1.3 and Lemma 1.4. □

Definition 1.6. Let X be a complex analytic space. A point x ∈ X is called

a non-singular point if the equality dimxX = embdimxX holds. A point x ∈ X is

called a singular point if which is not a non-singular point. We denote by Sing(X)

the set of singular points of X, and call it the singular locus of X. A complex

analytic space X is said to be non-singular if any point of X is a non-singular

point, and said to be singular if it is not non-singular. A complex analytic space

X is said to be normal, Gorenstein or Cohen-Macaulay if the local ring OX,x has

such a property for any x ∈ X.

A point x ∈ X is a non-singular point if and only if OX,x is isomorphic to a

convergent power series ring. By definition, complex manifolds are non-singular

complex analytic spaces. Corollary 1.5 implies that a point x ∈ X is a non-

singular point if and only if r = m−dimxX: this assertion is called the Jacobian

criterion of non-singularity.

Theorem 1.7. Let X be a complex variety. Then Sing(X) is a proper analytic

subset of X.

Proof. We follow the notation above. Set n = dimX. A point x ∈ U ⊂ X is a

singular point if and only if rankJx(f1, . . . , fk) < m − n. Hence Sing(U) is the

analytic subset of the domain D defined by the functions f1, . . . , fk and the all

determinants of (m−n)×(m−n) sub-matrices of the Jacobian matrix (∂fi/∂zj).

9



If U is sufficiently small, then U is a finite branched analytic covering of a domain

in Cn. This shows that Sing(U) is a proper subset of U . □

Theorem 1.8. Let X be a complex variety.

(1) If X is normal, then dimSing(X) ≤ dimX − 2.

(2) If X is Cohen-Macaulay and dimSing(X) ≤ dimX−2, then X is normal.

(3) The following are equivalent:

(a) X is normal;

(b) for any open subset U ⊂ X, the restriction

Γ(U,OX) −→ Γ(U \ Sing(X),OX)

is bijective.

Proof. See Fischer [6, p. 119-120]. □

Definition 1.9. Let (X, x) be a germ of a complex variety X at x. We simply

call it a singularity. A singularity (X, x) is said to be isolated if there exists an

open neighborhood U of x such that Sing(U) = {x}. A singularity (X, x) is

said to be normal, complete intersection, Gorenstein or Cohen-Macaulay if the

local ring OX,x has such a property. A hypersurface singularity is a complete

intersection singularity with embdimxX = dimX+1. Unless stated otherwise, X

denotes a Stein variety whenever we call (X, x) a singularity. We always assume

that Sing(X) = {x} if (X, x) is an isolated singularity.

Remark 1.10. By Theorem 1.8, any isolated Cohen-Macaulay singularity is

normal. For any singularity, we have the following implications:

hypersurface ⇒ complete intersection ⇒ Gorenstein ⇒ Cohen-Macaulay.

See Matsumura [19, p. 171].

Definition 1.11. Let X be a complex variety. The morphism ϕ : Xnorm −→

X is said to be the normalization of X if

(1) Xnorm is normal;
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(2) ϕ is finite and surjective;

(3) if N = {x ∈ X|(X, x) is not normal}, then Xnorm \ϕ−1(N) is isomorphic

to X \N .

Definition 1.12. Let f : Y −→ X be a morphism of complex varieties such

that

(1) f is proper and surjective;

(2) there exist proper analytic subsets A ⊂ X and B ⊂ Y such that the

restriction Y \B −→ X \ A of f is an isomorphism.

Then we call f a modification. Suppose that A and B are the minimal subsets

with the property above, and that X and Y are normal. The subset of B, which

is the sum of all irreducible components Bi with dimBi > dimf(Bi) is called the

exceptional set of f . The divisor on Y , which is the sum of all prime divisors

supported in the exceptional set, is called the exceptional divisor of f . Let V be a

closed complex subvariety of X such that V ̸⊆ A. Then the closure of f−1(V \A)

is called the strict transform of V by f , and denoted by f−1
∗ V . If D =

∑
aiDi

is a divisor on X with prime divisors Di, then we denote by f−1
∗ D the divisor∑

aif
−1
∗ Di.

Definition 1.13. Let M be a complex manifold and D a reduced divisor on

M . Then D is said to have only normal crossings if at each point of D, the

defining equation of D can be written as
∏k

i=1 zi, where {z1, . . . , zk} is a part

of suitable local coordinates. Moreover if each irreducible component of D is

non-singular, then D is said to have only simple normal crossings.

Definition 1.14. Let X be a complex variety. A modification f : M −→ X

is called a resolution of singularities of X if M is non-singular and the restriction

M \ f−1(Sing(X)) −→ X \ Sing(X)

is an isomorphism. We call M a resolution space. A resolution f : M −→ X

is called a good resolution if f−1(Sing(X)) is a subvariety of pure codimension
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1 and has only simple normal crossings. If (X, x) is isolated, then we write the

resolution as f : (M,A) −→ (X, x), where A = f−1(Sing(X)): in this case we

may regard f : (M,A) −→ (X, x) as a morphism of germs.

Theorem 1.15 (Hironaka [9]). Any singularity admits a good resolution.

1.2. Blowing up

Definition 1.16. Let X be a complex analytic space and I a sheaf of ideals

on X. Let f : Y −→ X be a morphism of complex analytic spaces. We de-

fine the inverse image ideal sheaf IOY ⊂ OY to be the image of the natural

homomorphism f ∗I −→ OY .

Definition 1.17. Let X be a complex variety, C a closed subvariety and I

its sheaf of ideals. Then there exists a unique proper morphism f : Y −→ X of

varieties which satisfies the following (see Fischer [6, 4.1]):

(1) the inverse image ideal sheaf IOY is invertible;

(2) if g : Z −→ X is a morphism of complex analytic spaces such that IOZ

is invertible, then there exists a unique morphism h : Z −→ Y such that

g = f ◦ h;

(3) the restriction Y \ f−1(C) −→ X \ C of f is an isomorphism;

(4) if X is a manifold and C is a submanifold, then Y is also a manifold.

We call the morphism f the blowing up of X with center C, or the blowing up

of X with respect to the ideal sheaf I. The morphism f is also called a blowing

down when X is viewed as constructed from Y .

A resolution of a singularity is obtained by a finite succession of blowing ups

with non-singular centers.

Example 1.18. We construct the blowing up of Cn with center the origin.

Let z1, . . . , zn be the coordinates of Cn, and (Z1 : · · · : Zn) the homogeneous
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coordinates of Pn−1. LetM be a subvariety of Cn×Pn−1 defined by the equations

ziZj − zjZi = 0, i, j = 1, . . . , n.

Then the blowing up f : M −→ Cn is induced by the projection Cn × Pn−1 −→

Cn :

M Cn × Pn−1

Cn

� � //

f

''OOOOOOOOOOOOOOOOOOOO

��

Let E = f−1(o). We put

Ui = {p ∈ Pn−1|Zi(p) ̸= 0}, Mi =M ∩ (Cn × Ui).

Then Mi is isomorphic to the affine space Cn and which has the coordinates

Z1/Zi, . . . , Zi−1/Zi, zi, Zi+1/Zi, . . . , Zn/Zi.

Let wi = Zi/Z1, i = 2, . . . , n. The restriction f1 : M1 −→ Cn of f is given by

z1 = z1, zj = z1wj, j = 2, . . . , n, and E ∩M1 is defined by the function z1 in

M1. This shows that E = {o} × Pn−1 ∼= Pn−1. Let Y be a hypersurface in a

neighborhood of the origin defined by a holomorphic function g(z) =
∑

i≥k gi(z),

where each gi(z) = gi(z1, . . . , zn) denotes a homogeneous polynomial of degree i

and gk(z) ̸= 0. Let

h(z1, w) = g(z1, z1w2, . . . , z1wn)/z
k
1 .

Then the strict transform of Y is defined by h(z1, w) in M1. Since f ∗g(z) =

zk1h(z1, w), we see that f ∗Y = kE + f−1
∗ Y .

Example 1.19. Let X ⊂ C3 be a hypersurface defined by g(z1, z2, z3) =

z21 + z22 + z23 = 0. Then Sing(X) = {(0, 0, 0)}. Let f : X̃ −→ X be the blowing

up of X at o := (0, 0, 0). Following the situation of Example 1.18, the strict

transform f−1
∗ X of X is defined by h(z1, w) := g(z1, z1w2, z1w3)/z

2
1 = 1+w2

2 +w
2
3

13



in M1 and f−1
∗ X is non-singular. Thus the blowing up f : X̃ −→ X is a good

resolution with exceptional set E = f−1(o) ∼= P1.

Let S be a non-singular surface, not necessarily compact. Let D =
∑
aiDi

be a divisor on S, where Di’s are mutually distinct prime divisors. We put

Dred =
∑

ai ̸=0Di. The divisor D is said to be connected if the support of D is

connected, and said to be positive if D is effective and D ̸= 0. If the support of

D is compact and each ai is an integer, then we call D a Z-cycle, or a cycle for

short.

Let D be a positive divisor on S and p ∈ Supp(D). Let x, y be local coor-

dinates at p, and f =
∑

i≥0 fi(x, y) ∈ OS,p a function defining D near p, where

fi(x, y) is a homogeneous polynomial of degree i. Then we define the multiplicity

of D at p, denoted mult(D, p), to be the least integer m such that fm ̸= 0. If p is

not a point of Supp(D), then put mult(D, p) = 0. Note that p is a non-singular

point of D if and only if mult(D, p) = 1. If h : S ′ −→ S is the blowing up of S

with center p and E the exceptional divisor of h, then h∗D = h−1
∗ D+mult(D, p)E.

Theorem 1.20. Let D be a reduced divisor on S. Then there exists a finite

sequence of the blowing ups

Sn −→ Sn−1 −→ · · · −→ S0 = S

such that each Si −→ Si−1 is the blowing up with center a point, and that the

support of the fiber of D on Sn has only simple normal crossings.

Proof. See Barth-Peters-Van de Ven [3, II, 7]. □

Proposition 1.21. A curve singularity (C, p) ⊂ (S, p) with mult(C, p) = 2 is

isomorphic to the germ of {xr − y2 = 0} ⊂ C2 at the origin for some r ≥ 2: if

r = 2 the singular point is called a node; if r = 3 it is called a cusp.

Proof. See Barth-Peters-Van de Ven [3, II, 8]. □
14



Example 1.22. Let C ⊂ S be a compact curve with a cusp p ∈ C. Let

S1 −→ S be the blowing up with center p. Then the strict transform of C on S1

is non-singular. However, we need three blowing ups so that the support of the

fiber of C has only simple normal crossings. See Figure 1.1: Ci denotes the strict

transform of Ci−1. Note that the fiber of C is the divisor C3 + 2E2 + 3F1 + 6G0

(see Example 1.18).

C = C0 E0 C1 F0 E1 C2 G0

F1

E2

C3

oo





































444444444444444444444

oooo

Figure 1.1. Resolution of a cusp

Let D and E be reduced divisors on S having no common irreducible com-

ponent. Suppose that p ∈ D ∩ E, and that D,E are defined by f, g ∈ OS,p,

respectively. We define the intersection multiplicity (D,E)p of D and E at p

by (D,E)p = dimC OS,p/(f, g). If (D,E)p = 1, then p is a node of D ∪ E.

For example, let C = {(z1, z2) ∈ C2|z21 − z32 = 0} ⊂ C2 and Di = {(z1, z2) ∈

C2|zi = 0} ⊂ C2 for i = 1, 2. Then (C,D1)o = dimC OC2,o/(z
2
1 − z32 , z1) = 3 and

(C,D2)o = dimC OC2,o/(z
2
1 − z32 , z2) = 2.

Let C be a compact curve on S. Let σ : C ′ −→ C be the normalization. For an

invertible sheaf L on S, the intersection number L·C is defined as degσ∗(L⊗OC).

Let D =
∑n

i=1miCi be a cycle on S, where each Ci is a compact curve. Then the

intersection number L ·D is defined by L ·D =
∑n

i=1miL ·Ci. For any divisor E

on S the intersection number E ·D is defined by E ·D = OS(E) ·D. If D and

E are cycles on S, then we have the following (see Barth-Peters-Van de Ven [3,

II,10]):

(1) D · E = E ·D;
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(2) if α : Y −→ S is a proper morphism of non-singular surfaces, then

(α∗D) · (α∗E) = deg(α)D · E;

(3) if D and E are positive, and have no common component, then

D · E =
∑

p∈D∩E

(D,E)p.

For a divisor D and cycle E, we can naturally define the intersection number

D · E, and also obtain the properties (1) and (2) above. We denote by D2 the

self-intersection number D ·D.

Definition 1.23. A curve C on a surface S is called a (−n)-curve if C ∼= P1

and C2 = −n.

Theorem 1.24 (Castelnuovo). Let C be a curve on a surface S. Then C is

a (−1)-curve if and only if there exists a blowing down f : S −→ S ′ such that f

induces an isomorphism S \ C ∼= S ′ \ f(C) and f(C) is a non-singular point of

S ′.

Theorem 1.25. Let f : S ′ −→ S be a modification of non-singular surfaces.

Suppose that there exists a finite set F of points on S such that f induces an

isomorphism S ′ \ f−1(F ) −→ S \ F . Then f is a finite sequence of blowing ups

S ′ = Sn −→ Sn−1 −→ · · · −→ S0 = S

such that each Si −→ Si−1 is the blowing up with center a point.

Proof. See Barth-Peters-Van de Ven [3, II, 7]. □

Proposition 1.26. Let α : Y −→ S be the blowing up of S with center

p ∈ S and E = α−1(p). Let D be a positive divisor on S, D1 = α−1
∗ D the strict

transform of D and n = mult(D, p). Then we have the following:

(1) (α∗D) · E = 0;

(2) D1 · E = n;
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(3) If C and D are positive cycles on S, then

C1 ·D1 = C ·D −mn,

where C1 = α−1
∗ C and m = mult(C, p).

Proof. Since α∗OS(D) is trivial near E, we have (1). The assertion (2) follows

from 0 = (α∗D) · E = (D1 + nE) · E, since E is a (−1)-curve. The formula

(α∗C) · (α∗D) = C ·D implies (3). □

Definition 1.27. Let D =
∑n

i=1Ci be a connected cycle on S, where Ci

are mutually distinct curves. Then the matrix (Ci · Cj) is called the intersection

matrix of D.

Theorem 1.28 (Artin [2, Proposition 2]). Let D be as above.

(1) If the intersection matrix (Ci · Cj) is negative definite, then there exists

a positive cycle Z =
∑n

i=1miCi such that Z · Ci ≤ 0 for i = 1, . . . , n.

(2) Conversely, if there exists a positive cycle Z =
∑n

i=1miCi such that

Z · Ci ≤ 0 for i = 1, . . . , n, then (Ci · Cj) is negative semi-definite, and

if in addition Z2 < 0, then (Ci · Cj) is negative definite.

Theorem 1.29 (Grauert [8, p. 367]). Let D be as above. If the intersection

matrix (Ci · Cj) is negative definite, then there uniquely exists a blowing down

f : S −→ X such that X is normal and f induces an isomorphism S\D ∼= X\{x},

where {x} = f(D). In this situation, we say that f contracts D, and that D is

contractible to the singularity (X, x).

1.3. Resolution of normal surface singularities

Let (X, x) be a surface singularity and f : (X̃, E) −→ (X, x) a resolution.

Then any cycle on X̃ is supported in E. Let E =
∪n
i=1Ei be the decomposition

of E into irreducible components. We denote by KX̃ the canonical divisor on X̃.

Theorem 1.30 (Mumford [21]). The intersection matrix (Ei ·Ej) is negative

definite.
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Definition 1.31. A resolution f : (X̃, E) −→ (X, x) is called a minimal

resolution if for any resolution f ′ : X̃ ′ −→ X there exists a unique morphism

g : X̃ ′ −→ X̃ such that f ′ = f ◦ g.

By the definition, a minimal resolution is unique if it exists.

Theorem 1.32. Let f : X̃ −→ X be any resolution. Then the minimal

resolution of the singularity (X, x) is obtained from X̃ by successively contracting

all (−1)-curves.

Proof. See Laufer [15, Theorem 5.9]. □

Definition 1.33. A good resolution f : (X̃, E) −→ (X, x) is called a minimal

good resolution if for any good resolution f ′ : X̃ ′ −→ X there exists a unique

morphism g : X̃ ′ −→ X̃ such that f ′ = f ◦ g.

Theorem 1.34. For any surface singularity, there exists a unique minimal

good resolution.

Proof. See Laufer [15, Theorem 5.12]. □

Remark 1.35. From the minimal resolution, we obtain the minimal good

resolution by a finite succession of blowing ups (cf. Theorem 1.20 and Theo-

rem 1.25).

Definition 1.36. LetD be a reduced cycle on a non-singular surface. Suppose

that D has only simple normal crossings. Then the weighted dual graph of D

is the graph such that each vertex represents an irreducible component Ei of D

weighted by E2
i and g(Ei), while each edge connecting the vertices corresponding

to Ei and Ej, i ̸= j, corresponds to the point Ei
∩
Ej. For example, if E2

i = −bi

and g(Ei) = gi > 0 (resp. gi = 0), we write the vertex corresponding to Ei as

follows:

−biHOINJMKL
[gi]

(
resp. −biHOINJMKL) .
18



A graph obtained by removing the weights from a weighted dual graph is simply

called a dual graph.

Let (X, x) be a surface singularity and f : (X̃, E) −→ (X, x) the minimal

good resolution. Then the weighted dual graph of (X, x) means the weighted dual

graph of E. It is clear that giving the weighted dual graph of (X, x) is equivalent

to giving the information on the genera of the Ei’s and the intersection matrix

(Ei · Ej).

Example 1.37. Let C be a compact curve with a cusp on a non-singular

surface. Suppose that C2 = −d < 0. Then C is contractible to a surface singu-

larity by Theorem 1.29. From Example 1.22 and Proposition 1.26, we see that

the weighted dual graph of the singularity is as follows:

−1@GAFBECD−2@GAFBECD m@GAFBECD
−3@GAFBECD

[g]

where m = −d− 6 and g = pa(C)− 1.

Definition 1.38. Let D be a reduced connected cycle on X̃ having only

simple normal crossings. Then D is called a tree of curves if the dual graph of D

is a tree, and called a chain of curves if the dual graph is a chain.

Definition 1.39. A string S in E is a chain of non-singular rational curves

E1, . . . , Ek so that Ei · Ei+1 = 1 for i = 1, . . . , k − 1, and these account for all

intersections in E among the Ei’s, except that E1 intersects exactly one other

curve.

−b1HOINJMKL
E1

−b2HOINJMKL
E2

−bkHOINJMKL
Ek

· · ·· · ·
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Definition 1.40. Suppose that f : (X̃, E) −→ (X, x) is the minimal good

resolution. The weighted dual graph of (X, x) is called a star-shaped graph, if E

is not a chain of rational curves, and if E = E0+
∑β

i=1 Si, where E0 is a curve and

Si are the maximal strings. Then E0 is called the central curve, and Sj are called

branches. Let Si =
∪ri
j=1Eij be the decomposition into irreducible components,

where E0 · Ei1 = Eij · Ei,j+1 = 1. Let g = g(E0), b = −E2
0 and bij = −E2

ij. Then

we obtain the weighted dual graph in Figure 1.2.

−bHOINJMKL
[g]

E0

−b11PWQVRUST
E11

−b12PWQVRUST
E12

−b1r1X_ŶZ][\
E1r1

−bβ1PWQVRUST
Eβ1

−bβ2PWQVRUST
Eβ2

−bβrβX_ŶZ][\
Eβrβ

· · ·

· · ·

·
·
·

β−branches

�������

??
??

??
?

Figure 1.2. A star-shaped graph

For each branch Si, the positive integers ei and di are defined by

di
ei

= [[bi1, . . . , biri ]] := bi1 −
1

bi2 −
1

. . . − 1

biri

where ei < di, and ei and di are relatively prime. We call the set

{g; b, (d1, e1), . . . , (dβ, eβ)}

the data of the star-shaped graph.

Remark 1.41. Let D be a reduced connected cycle on a non-singular surface.

Suppose that the weighted dual graph of D is represented as in Figure 1.2. Then

the intersection matrix of D is negative definite if and only if b >
∑β

i=1(ei/di)

(cf. Pinkham [28, p. 185])
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Definition 1.42. Divisors D and C on X̃ are said to be f -numerically equiv-

alent, written D ≡ C, if (D − C) · Ei = 0 for all Ei. For a divisor D, −D is said

to be f -numerically effective, or f -nef for short, if D · Ei ≤ 0 for all Ei.

Lemma 1.43. Let D be an f -nef cycle. Then D = 0, or D < 0 and

Supp(D) = E.

Proof. Suppose that D ̸= 0 and write D in the form D = B−C, where B and C

are effective cycles without common components. Thus B·C ≥ 0. By assumption,

we have B2 − B · C = D · B ≥ 0. Thus B2 ≥ 0. Since the intersection matrix

is negative definite, B = 0. If Supp(C) ̸= E, then there exists a component Ei

such that C · Ei > 0 since E is connected. Hence Supp(D) = E. □

Definition 1.44. A positive cycle Z on X̃ is called a fundamental cycle if

−Z is f -nef and for any positive cycle D with this property, Z ≤ D.

Theorem 1.45. There exists a unique fundamental cycle Z.

Proof. By Theorem 1.28 there exists a positive cycle D such that −D is f -nef.

Let D =
∑n

i=1 diEi and C =
∑n

i=1 eiEi be cycles having such the property. Let

ai = min{di, ei} and F =
∑n

i=1 aiEi. It suffices to show that −F is f -nef. If

aj = dj, then

F · Ej = djE
2
j +

∑
i ̸=j

aiEi · Ej ≤ djE
2
j +

∑
i̸=j

diEi · Ej = D · Ej ≤ 0.

Hence −F is f -nef. □

Proposition 1.46. The fundamental cycle Z is computed via a computation

sequence for Z:

Z1 = Ei1 , . . . , Zj = Zj−1 + Eij , . . . , Zt = Zt−1 + Eit = Z,

where Ei1 is arbitrary and Zj−1 · Eij > 0 for 1 < j ≤ t.
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Proof. Let Z ′ =
∑
a′iEi and Z =

∑n
i=1 aiEi. Suppose that Z ′ ≤ Z and a′j = aj.

Then by the argument in the proof above, we obtain that Z ′ · Ej ≤ Z · Ej ≤ 0.

This implies that Zj ≤ Z for any Zj occurring in a computation sequence. Hence

any computation sequence reaches the fundamental cycle. □

Example 1.47. Suppose that (X, x) is a surface singularity and f : (X̃, E) −→

(X, x) a resolution of (X, x) such that the weighted dual graph of the exceptional

set E is as follows:

−1HOINJMKL
E0

−2HOINJMKL
E1

−3HOINJMKL
E2

−7HOINJMKL
E3

��������

??
??

??
??

Let Z1 = E0, Z2 = Z1 + E1, Z3 = Z2 + E2, Z4 = Z3 + E3, Z5 = Z4 + E0, Z6 =

Z5 + E0, Z7 = Z6 + E1, Z8 = Z7 + E0, Z9 = Z8 + E2, Z10 = Z9 + E0, Z11 =

Z10 + E1, Z12 = Z11 + E0 = Z. Then {Zi} is a computation sequence for the

fundamental cycle Z on X̃. In fact, Z1 ·E1 > 0, Z2 ·E2 > 0, Z3 ·E3 > 0, Z4 ·E0 >

0, Z5 · E0 > 0, Z6 · E1 > 0, Z7 · E0 > 0, Z8 · E2 > 0, Z9 · E0 > 0, Z10 · E1 >

0, Z11 · E0 > 0 and Z · E0 = 0, Z · E1 = 0, Z · E2 = 0, Z · E3 = −1 < 0. We

obtain that Z = 6E0 + 3E1 + 2E2 + E3.

Proposition 1.48. Let g : X̃ ′ −→ X̃ be a modification, where X̃ ′ is a non-

singular surface. Let Z and Z ′ be the fundamental cycles on X̃ and X̃ ′, respec-

tively. Then Z ′ = g∗Z.

Proof. By Theorem 1.25, we may assume that g is the blowing up with center

p ∈ E. Let E ′
i = g−1

∗ Ei, the strict transform of Ei, and E
′ = g−1(p). Then

−g∗Z · E ′
i = −g∗Z · g∗Ei = −Z · Ei ≥ 0.
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Hence −g∗Z is f ◦ g-nef and Z ′ ≤ g∗Z. Let Z ′ =
∑n

i=1 a
′
iE

′
i + b′E ′ and g∗Z =∑n

i=1 aiE
′
i + bE ′. Suppose that a′i < ai for some i. Then

g∗Z
′ =

n∑
i=1

a′iEi <

n∑
i=1

aiEi = Z.

Thus there exists a component Ej such that

0 < g∗Z
′ · Ej = g∗(g∗Z

′) · g∗Ej = g∗(g∗Z
′) · E ′

j.

Let cE ′ = g∗(g∗Z
′) − Z ′, c ∈ Z. Since (g∗(g∗Z

′) − Z ′) · E ′
j > 0, we have c > 0.

But this implies that 0 = g∗(g∗Z
′) · E ′ = (Z ′ + cE ′) · E ′ < 0. Hence we obtain

that a′i = ai for all i. Since 0 ≥ Z ′ · E ′ = (Z ′ − g∗Z) · E ′ = −b′ + b, we have

b′ = b. □

Let (X, x) be a normal surface singularity and f : (X̃, E) −→ (X, x) a resolu-

tion with exceptional set E. For any non-zero function h ∈ OX,x, the zero divisor

of h ◦ f is written as

divX̃(h) := divX̃(h ◦ f) = (h)E +H

where (h)E is supported in E and H does not contain any irreducible component

of E.

Definition 1.49 ([37]). Let m be the maximal ideal of the local ring OX,x.

Then the smallest positive cycle among the cycles (h)E, h ∈ m\{x}, is called the

maximal ideal cycle.

Remark 1.50. The fundamental cycle Z is a topological invariant of the

resolution, in fact, it is determined by the weighted dual graph of exceptional

set E. The maximal ideal cycle Zm is an analytic invariant of the resolution

and cannot be determined by the weighted dual graph of E in general. We have

Z ≤ Zm by the definitions of these cycles.
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1.4. Cyclic quotient singularities

In this section, we introduce the cyclic quotient singularities and their funda-

mental facts.

Definition 1.51. Let n and µ be positive integers with µ < n and gcd(n, µ) =

1. Let ϵn denote the primitive n-th root of unity exp(2π
√
−1/n). Then the

singularity of the quotient

C2

/⟨ϵn 0

0 ϵµn

⟩

is called the cyclic quotient singularity of type Cn,µ.

A non-singular point is regarded as of type C1,0. For integers ci ≥ 2, i =

1, . . . , r, we put

[[c1, . . . , cr]] := c1 −
1

c2 −
1

. . . −
1

cr

Lemma 1.52. If n/µ = [[c1, . . . , cr]], then the weighted dual graph of the min-

imal resolution of the cyclic quotient singularity of type Cn,µ is as in Figure 1.3,

(H2) −c1HOINJMKL −crHOINJMKL (H1)

E1 Er

· · ·

Figure 1.3.

where all prime exceptional divisors Ei are rational and Hi denotes the strict

transform of the image of the coordinate axis {xi = 0} ⊂ C2 by the quotient map,

and (Hi) the vertex corresponding to Hi.

Proof. See Brieskorn [4]. □
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It is known that the complex structure of quotient surface singularity is de-

termined by its resolution graph (cf. [4], [16]).

In the situation above, for any positive integer λ0, let

L(λ0) :=

{
λ0E0 +

r∑
i=1

miEi

∣∣∣∣∣ m1, . . . ,mr ∈ Z

}
,

where E0 = H2. Then we define a set D(λ0) as follows:

D(λ0) := {D ∈ L(λ0) | DEi ≤ 0, i = 1, . . . , r}.

We see that D(λ0) is not empty and has the smallest element.

Lemma 1.53 ([18, Lemma 2.2]). Let D ∈ D(λ0). Assume that DEi = 0 for

i < r and DEr ≥ −1. Then D is the smallest element of D(λ0).

Proof. Suppose that D0 ∈ D(λ0) is the smallest element. Let △ = D − D0.

Then

△Er = (D −D0)Er ≥ −1.(1.1)

Assume △ =
∑r

i=kmiEi and mk ̸= 0. Then

△Ei = mi−1 − cimi +mi+1 (mk−1 = mr+1 = 0).

For 1 ≤ i < r, since △Ei = (D −D0)Ei = −D0Ei ≥ 0 and ci ≥ 2,

mi+1 ≥ cimi −mi−1 ≥ mi + (mi −mi−1).

Therefore, mi+1 > mi for k − 1 ≤ i < r, and

△Er = mr−1 − crmr < mr(1− cr) ≤ −1.

It contradicts (1.1). □

For any x ∈ R, we write ⌈x⌉ = min{t ∈ Z | x ≤ t}. Let ei := [[ci, . . . , cr]] for

1 ≤ i ≤ r, then ci = ei + 1/ei+1 for 1 ≤ i < r and cr = er.
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Lemma 1.54 ([13, Lemma 1.1]). Take a positive integer λ0 and define the

sequence {λi}ri=0 by the recurrence formula λi = ⌈λi−1/ei⌉ for 1 ≤ i ≤ r. Then

the cycle
∑r

i=0 λiEi is the smallest element of D(λ0).

Corollary 1.55. Let Y0 and Y
′
0 be the smallest element of D(λ0) and D(λ

′
0),

respectively. Then Y0 ≥ Y
′
0 if and only if λ0 ≥ λ

′
0.

Proof. If Y0 ≥ Y ′
0 , it is clear that λ0 ≥ λ′0.

Conversely, assume that λ0 ≥ λ
′
0. Then λ1 = ⌈λ0/e1⌉ ≥ ⌈λ′

0/e1⌉ = λ
′
1.

Suppose that λk ≥ λ
′

k for some integer k with 1 ≤ k < r. Then

λk+1 = ⌈λk/ek+1⌉ ≥ ⌈λ′

k/ek+1⌉ = λ
′

k+1.

By induction, we have λi ≥ λ
′
i for any i with 1 ≤ i ≤ r. Therefore, Y0 ≥ Y

′
0 . □

Lemma 1.56 ([13, Lemma 1.2]). Let the sequence {λi}ri=0 be as in Lemma 1.54,

and for 1 ≤ i ≤ r, take relatively prime positive integers ni and µi satisfying

ni/µi = ei. Put λr+1 := λrcr − λr−1.

(1) If λi−1 = λici − λi+1 holds for 1 ≤ i ≤ r, then λ1 = (µλ0 + λr+1)/n.

(2) If λ0 ≡ 0 (mod n), then λi = µiλi−1/ni for 1 ≤ i ≤ r. If µλ0 + 1 ≡ 0

(mod n), then λi = (µiλi−1 + 1)/ni for 1 ≤ i ≤ r.

(3) If either λ0 ≡ 0 (mod n) or µλ0+1 ≡ 0 (mod n), then λi−1 = λici−λi+1

holds for 1 ≤ i ≤ r. Furthermore, λr+1 = 0 when λ0 ≡ 0 (mod n), and

λr+1 = 1 when µλ0 + 1 ≡ 0 (mod n).

(4) If λ0 ≡ 0 (mod n), then λr = λ0/n. If µλ0 + 1 ≡ 0 (mod n), then

λr = ⌈λ0/n⌉.

Proof. (1) Note that we have n1 = n, µ1 = µ and cr = nr, µr = 1. Suppose

λi−1 = λici − λi+1 for 1 ≤ i ≤ r. Put nr+1 = 1, µr+1 = 0. For 1 ≤ i ≤ r, since

gcd(ni+1, µi+1) = 1 and

ni
µi

= ci −
1

ni+1

µi+1

=
cini+1 − µi+1

ni+1

,
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we have µi = ni+1 and ni = cini+1 − µi+1 = cini+1 − ni+2. Thus,

(µλ0 + λr+1)/n = (µλ0 + λrcr − λr−1)/n

= (µ1λ0 + (λr−1cr−1 − λr−2)nr − λr−1)/n

= (µ1λ0 + λr−1(cr−1nr − 1)− λr−2nr)/n

= (µ1λ0 + λr−1nr−1 − λr−2nr)/n

= · · ·

= (µ1λ0 + λ1n1 − λ0n2)/n

= λ1.

(2) Suppose λ0 ≡ 0 (mod n), then λ1 = ⌈λ0/e1⌉ = ⌈µ1λ0/n1⌉ = µ1λ0/n1.

Assume that λk = µkλk−1/nk for some integer k with 1 ≤ k < r. Then

λk+1 = ⌈λk/ek+1⌉ = ⌈µk+1λk/nk+1⌉

= ⌈µk+1µkλk−1/(nknk+1)⌉

= ⌈µk+1λk−1/nk⌉.

Since gcd(nk, µk) = 1, we have λk+1 = µk+1λk−1/nk = µk+1λk/µk = µk+1λk/nk+1.

By induction, we have λi = µiλi−1/ni for 1 ≤ i ≤ r.

Next, we suppose that µλ0 + 1 ≡ 0 (mod n). Then

λ1 = ⌈λ0/e1⌉ = ⌈µ1λ0/n1⌉ = ⌈(µ1λ0 + 1)/n1 − 1/n1⌉ = (µ1λ0 + 1)/n1.

Assume that λj = (µjλj−1 + 1)/nj for some integer j with 1 ≤ j < r. We have

µj+1λj + 1 =
nj+1

ej+1

λj + 1

= nj+1(cj − ej)λj + 1

= nj+1

(
cj −

nj
µj

)
λj + 1

= nj+1cjλj − nj+1λj ·
nj
µj

+ 1
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= nj+1cjλj − nj+1 ·
nj
µj

· µjλj−1 + 1

nj
+ 1

= nj+1cjλj − µjλj−1 − 1 + 1

= nj+1(cjλj − λj−1)

= nj+1λj+1.

By induction, we have λi = (µiλi−1 + 1)/ni for 1 ≤ i ≤ r.

(3) Suppose that λ0 ≡ 0 (mod n), then we have λi = µiλi−1/ni for 1 ≤ i ≤ r

from (2). Thus

λici − λi+1 = λici − λi/ei+1 = λici − λi(ci − ei) = λiei = (λi−1/ei) · ei = λi−1.

Assume that µλ0 + 1 ≡ 0 (mod n), then λj = (µjλj−1 + 1)/nj for 1 ≤ j ≤ r

from (2). Thus

λjcj − λj+1 = λjcj − (µj+1λj + 1)/nj+1

= λjcj − λj(cj − ej)−
1

nj+1

=
µjλj−1 + 1

nj
· nj
µj

− 1

nj+1

= λj−1 +
1

µj
− 1

nj+1

= λj−1.

When λ0 ≡ 0 (mod n), we have

λr+1 = λrcr − λr−1 = µrλr−1cr/nr − λr−1 = λr−1 − λr−1 = 0.

When µλ0 + 1 ≡ 0 (mod n), we have

λr+1 = λrcr − λr−1 = (µrλr−1 + 1)cr/nr − λr−1 = λr−1 + 1− λr−1 = 1.

(4) Let µ
′
be the positive integer determined by µµ

′ ≡ 1 (mod n) with 1 ≤

µ
′
< n. Then n/µ

′
= [[cr, . . . , c1]]. Thus, by (1), we have λr = (µ

′
λr+1 + λ0)/n.

When λ0 ≡ 0 (mod n), we have λr+1 = 0 from (3), and then λr = λ0/n.

When µλ0 + 1 ≡ 0 (mod n), we have λr = (µ
′
+ λ0)/n = ⌈λ0/n⌉ following

(3) and the definition of µ′. □
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1.5. Results of Konno and Nagashima

In 2012, Konno and Nagashima consider the Brieskorn hypersurface sin-

gularities (Va0,a1,a2 , o) := ({xa00 + xa11 = xa22 }, o), where ai’s are integers and

2 ≤ a0 ≤ a1 ≤ a2, and give the concrete descriptions of the fundamental cycle

and the maximal ideal cycle over (Va0,a1,a2 , o). We consider the two-dimensional

Brieskorn complete intersection singularity which is a generalization of Brieskorn

hypersurface singularity. In order to compare with the results of Konno and Na-

gashima, we mainly review the main results of Konno and Nagashima in this

section.

Let f = xaii + x
aj
j and let C ⊂ C2 be the plane curve defined by f = 0. We

define the positive integers d, n1 and n2 as follows:

d := lcm(ai, aj), n1 := ai/ gcd(ai, aj), n2 := aj/ gcd(ai, aj).

In addition, we define the non-negative integers µ1, µ2 by the following conditions:

n2µ1 + 1 ≡ 0 (mod n1), 0 ≤ µ1 < n1,

n1µ2 + 1 ≡ 0 (mod n2), 0 ≤ µ2 < n2.

Let ϕ : Y −→ C2 be the minimal embedded good resolution of the curve

singularity (C, o) with exceptional set F and C̄ the strict transform of C. Using

a result in [34, Theorem 2.3], Konno and Nagashima give the following results:

• F is a chain of rational curves with unique (−1)-curve F0.

• The multiplicity of the zero divisor divY (f ◦ ϕ) along F0 is d.

• The strict transform C̄ of C has gcd(ai, aj) irreducible components.

The weighted dual graph of the minimal embedded good resolution of C is

given as in Figure 1.4.

In the Figure 1.4, Fm,νm is the exceptional curve arising from Cnm,µm with

self-intersection number −cm,νm , where nm/µm = [[cm,1, . . . , cm,sm ]], and ρm,νm is

the multiplicity of the zero divisor divY (f ◦ ϕ) along Fm,νm , where m = 1, 2 and

1 ≤ νm ≤ sm (see [13, §2]).
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For i ∈ {0, 1, 2}, we define the integers l, li, αi as follows:

l := gcd(a0, a1, a2), li :=
gcd(aj, ak)

l
, αi :=

ai
ljlkl

({i, j, k} = {0, 1, 2}).

Furthermore, we define p0, p1, p2 be the integers determined by

piαjαkli + 1 ≡ 0 (mod αi), 0 ≤ pi < αi, {i, j, k} = {0, 1, 2}.

When αw > 1, we put αw/pw = [[dw,1, dw,2, . . . , dw,rw ]]. For w ∈ {0, 1, 2}, let

ew,ν := [[dw,ν , dw,ν+1, . . . , dw,rw ]],

where 1 ≤ ν ≤ rw.

By [27], there exists a resolution π : (X̃, Eπ) −→ (Va0,a1,a2 , o) where Eπ :=

π−1(o) is the exceptional set such that the weighted dual graph of Eπ is as in

Figure 1.5.

Theorem 1.57 ([13, Proposition 1.3, Theorem 2.1]). The genus g and the

self-intersection number −d0 of E0 are given respectively as follows:

2g − 2 = l(l0l1l2l − l0 − l1 − l2), d0 = l

(
2∑

w=0

pwlw
αw

+
1

α0α1α2

)
.
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Figure 1.5.

Furthermore, let Z(k) := (xk)Eπ , k = 0, 1, 2. Then

Z(k) = λ
(k)
0 E0 +

2∑
w=0

rw∑
ν=1

lwl∑
ξ=1

λ
(k)
w,ν,ξEw,ν,ξ (0 ≤ k ≤ 2),

where λ
(k)
0 and the sequence {λ(k)w,ν,ξ} are determined by the following:

λ
(k)
w,0,ξ := λ

(k)
0 := αiαjlk ({i, j, k} = {0, 1, 2}),

λ
(k)
w,rw+1,ξ :=


1 if w = k,

0 if w ̸= k,

λ
(k)
w,ν−1,ξ = λ

(k)
w,ν,ξdw,ν − λ

(k)
w,ν+1,ξ.
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Lemma 1.58 ([13, Lemma 3.8]). We have −(Z(k))2 = lkl⌈αiαjlk/αk⌉, where

{i, j, k} = {0, 1, 2}.

Theorem 1.59 ([13, Theorem 1.4]). Let

Z = θ0E0 +
2∑

w=0

rw∑
ν=1

lwl∑
ξ=1

θw,ν,ξEw,ν,ξ

be the fundamental cycle for resolution π. Then θ0 and the sequence {θw,ν,ξ} are

defined by the following:

θw,0,ξ := θ0 :=


α0α1α2 if α2 ≤ l2,

α0α1l2 if α2 ≥ l2,

θw,ν,ξ = ⌈θw,ν−1,ξ/ew,ν⌉, 1 ≤ ν ≤ rw.

Proposition 1.60 ([13, Proposition 1.6]). The self-intersection number of

the fundamental cycle is given by

−Z2 =


lα0α1α2 if α2 ≤ l2,

l2l⌈α0α1l2/α2⌉ if α2 ≥ l2.

Lemma 1.61 ([13, Theorem 3.2]). We have Z = Z(2) if and only if α2 ≥ l2.

The arithmetic genus of the fundamental cycle Z, namely,

1− χ(Z) = (1/2)Z(KX̃ + Z) + 1

is called the fundamental genus of (Va0,a1,a2 , o). This invariant is independent of

the resolution and denoted by pf .

Theorem 1.62 ([13, Theorem 1.7]). The fundamental genus pf of (Va0,a1,a2 , o), 2 ≤

a0 ≤ a1 ≤ a2 is given as follows.

(i) If α2 ≤ l2, then

pf =
1

2
l {lcm(a0, a1, a2)− α1α2l0 − α0α2l1 − α0α1l2 − α0α1α2 + 1}+ 1.
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(ii) If α2 ≥ l2, then

pf =
1

2

{
(a0 − 1)(a1 − 1)−

(
2

⌈
α0α1l2
α2

⌉
− 1

)
gcd(a0, a1) + 1

}
.

Theorem 1.63 ([13, Theorem 3.1]). We have Z(2) ≤ Z(1) ≤ Z(0). In partic-

ular, Z(2) is the maximal ideal cycle for resolution π.

Theorem 1.64 ([13, Theorem 3.2]). The maximal ideal cycle coincides with

the fundamental cycle for resolution π if and only if α2 ≥ l2.

Example 1.65 (α2 ≥ l2). If (a0, a1, a2) = (6, 20, 45), then l = 1, l0 = 5, l1 =

3, l2 = 2, α0 = 1, α1 = 2, α2 = 3, p0 = 0, p1 = 1, p2 = 2. By Theorem 1.57, we

obtain that d0 = 3 and g = 11. Hence the weighted dual graph of the maximal

ideal cycle Z(2) is as in Figure 1.6.
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Figure 1.6.

Note that we have α2 > l2, and by Theorem 1.59, Theorem 1.63 and Theo-

rem 1.57, we can compute that the fundamental cycle coincides with the maximal

ideal cycle. Furthermore, following Theorem 1.62, we have pf = 45.

Example 1.66 (α2 < l2). If (a0, a1, a2) = (15, 18, 20), then l = 1, l0 = 2, l1 =

5, l2 = 3, α0 = 1, α1 = 3, α2 = 2, p0 = 0, p1 = 2, p2 = 1. By Theorem 1.57, we

obtain that d0 = 5 and g = 11. Hence the weighted dual graph of the maximal

ideal cycle Z(2) is as in Figure 1.7.

Following Theorem 1.59, we obtain that the weighted dual graph of the fun-

damental cycle is as in Figure 1.8.
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From Figure 1.7 and Figure 1.8, we have that the maximal ideal cycle Z(2)

does not coincide with the fundamental cycle Z. Moreover, by Theorem 1.62, we

obtain that pf = 72.
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Chapter 2

The main results

In this chapter, we consider a germ (X, o) ⊂ (Cm, o) of a complete intersec-

tion singularity of Brieskorn type defined by

X = {(xi) ∈ Cm|qj1xa11 + · · ·+ qjmx
am
m = 0, j = 3, . . . ,m},

where ai ≥ 2 are integers. We assume that (X, o) is an isolated singularity. Then

(X, o) is a normal surface singularity by Serre’s criterion for normality. Neumann

[24] proved that the universal abelian cover of a weighted homogeneous normal

surface singularity with rational homology sphere link is a complete intersection

surface singularity of this type. The aim of this chapter is to identify the maximal

ideal cycle on the minimal good resolution of (X, o). We give concrete descriptions

of the maximal ideal cycle and the fundamental cycle, and a condition for the

coincidence of these cycles.

This chapter is organized as follows. In Section 2.1, we give the construction

of a partial resolution of (X, o) with cyclic quotient singularities. In Section

2.2, we compute the zero divisors of the pull-back of the coordinate functions

x1, x2, . . . , xm. In Section 2.3, we compute the fundamental cycle, the canonical

cycle and the fundamental genus. In Section 2.4, we identify the maximal ideal

cycle and give a condition for the coincidence of the fundamental cycle and the

maximal ideal cycle. In Section 2.5, we give a condition for (X, o) to be a Kodaira

singularity following Konno and Nagashima.
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2.1. The construction of a partial resolution with cyclic

quotient singularities

Definition 2.1. A Brieskorn polynomial is a polynomial of the form

c1x
a1
1 + · · ·+ cmx

am
m , ci ∈ C

where ai ≥ 2 are integers for i = 1, . . . ,m.

Let (X, o) ⊂ (Cm, o) be a germ of a complete intersection singularity of

Brieskorn type defined by

X = {(xi) ∈ Cm|qj1xa11 + · · ·+ qjmx
am
m = 0, j = 3, . . . ,m},

where ai ≥ 2 are integers. We assume that (X, o) is an isolated singularity; this

condition is equivalent to that every maximal minor of the matrix (qji) does not

vanish (see [10, §7]). Therefore, by row operations and a diagonal linear change

of coordinates, we may assume that

(qij) =


p3 q3 −1 0 · · · 0

p4 q4 0 −1 · · · 0
...

...
...

...
. . .

...

pm qm 0 0 · · · −1

 ,

where pi, qi ̸= 0 and piqj ̸= pjqi for i ̸= j.

Suppose that f : X̃ −→ X is the minimal good resolution and E the excep-

tional set. Assume that E is not a chain of rational curves. Then the dual graph

of E is star-shaped. Let E0 denote the central curve of E and f ′ : X̃ → X ′ the

morphism which contracts the divisor E −E0 ⊂ X̃. Then X ′ has cyclic quotient

singularities along the exceptional set E ′ := f ′(E0) and f
′ is the minimal resolu-

tion of those singularities. Thus we can read the weighted dual graph of E from

the information of E ′ ⊂ X ′ and those cyclic quotient singularities.

In [13, §2], Konno and Nagashima constructed a good resolution of the hy-

persurface singularity {xa11 + xa22 = xa33 } via cyclic covering as an application of
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Tomaru’s results [36] and [34]. We adopt their method to obtain a good resolu-

tion of (X, o) and the information of the divisors on it.

The singularity (X, o) can be obtained by a sequence of branched cyclic cov-

erings over C2 as follows. Let fj = pjx
a1
1 + qjx

a2
2 for j = 3, . . . ,m. Put X2 = C2

and Xk = {fk = xakk } ⊂ Xk−1 × C for k ≥ 3, where xk is the coordinate function

of the second component C. Then we have the sequence of coverings

X = Xm −→ Xm−1 −→ · · · −→ X2 = C2.

We shall construct the sequence of branched coverings

X̃m
πm−−−→ X̃m−1

πm−1−−−−→ · · · π3−−→ X̃2,

where X̃2 is a partial embedded resolution of the branch locus ofX3 −→ X2 = C2,

and for each k ≥ 3, X̃k is a partial resolution of the singularity of Xk with

irreducible exceptional set and cyclic quotient singularities. Then we obtain that

X ′ = X̃m.

For 2 ≤ k ≤ m and 1 ≤ i ≤ k, we define positive integers dik, nik and eik as

follows:

dik : = lcm(a1, . . . , âi, . . . , ak),

nik : =
ai

gcd(ai, dik)
,

eik : =
dik

gcd(ai, dik)
.

(The symbolˆin the definition of dik indicates an omitted term.) In addition, we

define integers µik by the following condition:

eikµik + 1 ≡ 0 (mod nik), 0 ≤ µik < nik.(2.1)

We also write

dk−1 := dkk, dm := lcm(a1, . . . , am),

nk := nkk, ek := ekk, µk := µkk.
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We can easily see that

dk = diknik = aieik,(2.2)

gcd(nik, njk) = 1 (1 ≤ i < j ≤ k ≤ m).(2.3)

Let fi = xi for i ∈ {1, 2}, and fi = pix
a1
1 + qix

a2
2 for i ∈ {3, . . . ,m}, where

pi, qi ̸= 0 and piqj ̸= pjqi for i ̸= j. For i ∈ {1, . . . ,m}, let Ci ⊂ C2 and

C ⊂ C2 be the plane curves defined by fi = 0 and
∏m

i=1 fi = 0, respectively.

Then C =
∑m

i=1Ci is a reduced divisor.

Lemma 2.2. Let ϕ : Y −→ C2 be the minimal embedded good resolution

of the curve singularity (C, o) with exceptional set F . Let C̄i ⊂ Y be the strict

transform of Ci. Then we have the following.

(1) F is a chain of rational curves with unique (−1)-curve. Let F0 ⊂ F

denote the (−1)-curve.

(2)
∪m
i=3 C̄i does not intersect any component of F − F0.

(3) C̄1 and C̄2 intersect distinct ends of F if F is not irreducible.

(4) For i ≥ 3, each C̄i has gcd(a1, a2) components.

(5) The multiplicity of the zero divisor divY (fi ◦ ϕ) along F0 is ei2 for i ∈

{1, 2}, and d2 for i ≥ 3.

(6) For i ∈ {1, 2}, the weighted dual graph of the minimal connected chain

of curves with ends F0 and C̄i is as follows:

(F0) −ci1HOINJMKL −cisiPWQVRUST (C̄i)· · ·

where ni2/µi2 = [[ci1, . . . , cisi ]].

Proof. From the above notation, we have

d2 = lcm(a1, a2),

n12 = e22 = a1/ gcd(a1, a2),

n22 = e12 = a2/ gcd(a1, a2).
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Let f ′
i = x̄ei2i for i ∈ {1, 2} and f ′

i = pix̄
d2
1 + qix̄

d2
2 for i ∈ {3, . . . ,m}. For

i ∈ {1, . . . ,m}, let C ′
i ⊂ C2

(x̄1,x̄2)
and C ′ ⊂ C2

(x̄1,x̄2)
be the plane curve defined

by f ′
i = 0 and

∏m
i=1 f

′
i = 0, respectively. Let Ψ : C2

(x̄1,x̄2)
−→ C2

(x1,x2)
be the

holomorphic map defined by x1 = x̄n22
1 , x2 = x̄n12

2 . Since d2 = a1a2/ gcd (a1, a2) =

a1n22 = a2n12, we have Ψ(C ′) = C. The map Ψ can be regarded as the quotient

map by the natural action to C2
(x̄1,x̄2)

of the group

G =

⟨ϵn22 0

0 1

 ,

1 0

0 ϵn12

⟩ ,
where ϵni2

is the primitive ni2-th root of unity exp(2π
√
−1/ni2) for i ∈ {1, 2}.

Let Φ′ : N̄ −→ C2
(x̄1,x̄2)

be the blowing up at the origin ō of C2
(x̄1,x̄2)

and

Ē := Φ′−1(ō) the exceptional set. Then N̄ is covered by two open sets U0 and

U1, each of which is isomorphic to C2. The action of G is lifted onto N̄ through

Φ′. From (2.1), we have

e12µ12 + 1 ≡ 0 (mod n12), 0 ≤ µ12 < n12,

e22µ22 + 1 ≡ 0 (mod n22), 0 ≤ µ22 < n22.

Then, from [34, Theorem 2.3], we can easily see that the quotient space N̄/G is

covered by two cyclic quotient singularity spaces U0/G and U1/G whose respective

types are Cn12,µ12 and Cn22,µ22 ; also the cyclic quotient singularity of type Cn12,µ12

(resp. Cn22,µ22) is located on ψ(Ē) ∩ ψ(Φ′−1
∗ C ′

1) (resp. ψ(Ē) ∩ ψ(Φ′−1
∗ C ′

2)) and

ψ(Ē) ≃ P1, where ψ : N̄ −→ N̄/G is the quotient map. Furthermore, for i ∈

{3, . . . ,m}, we have that ψ(Φ′−1
∗ C ′

i) does not intersect ψ(Φ
′−1
∗ C ′

1) and ψ(Φ
′−1
∗ C ′

2).

Let η : Y −→ N̄/G be the minimal resolution of those two cyclic quotient

singularities of type Cn12,µ12 and Cn22,µ22 , and Φ : N̄/G −→ C2
(x1,x2)

the natural

map to C2
(x1,x2)

. Then ϕ = Φ ◦ η : Y −→ C2
(x1,x2)

gives us the minimal embedded

good resolution of the curve singularity (C, o) with exceptional set F . Thus we
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have the following diagram:

N̄ C2
(x̄1,x̄2)

C2
(x1,x2)N̄/G

Y

Φ′
//

Ψ

��
ψ

��
Φ

//

η

OO

ϕ

::tttttttttttttt

We see that the strict transform of ψ(Ē) by η is necessarily the unique (−1)-curve.

Thus we have (1), (6) and (2). Following (6), we have (3).

For i ∈ {3, . . . ,m}, the strict transform Φ′−1
∗ C ′

i of C
′
i by Φ′ consists of disjoint

d2 branches, each of which intersects Ē transversely at a point. Then ψ(Φ′−1
∗ C ′

i)

consists of d2/(n22n12) = gcd(a1, a2) irreducible components, each of which inter-

sects ψ(Ē) transversely at a point, and then the strict transform C̄i of Ci intersect

F0 transversely at gcd(a1, a2) distinct points by ϕ for i ∈ {3, . . . ,m}. Hence (4)

holds.

The multiplicity of f ′
i◦Φ′ along Ē is ei2 for i ∈ {1, 2} and d2 for i ∈ {3, . . . ,m},

then the multiplicity of fi ◦ Φ along ψ(Ē) is also ei2 for i ∈ {1, 2} and d2 for

i ∈ {3, . . . ,m}, and then the multiplicity of fi ◦ ϕ along F0 is ei2 for i ∈ {1, 2}

and d2 for i ∈ {3, . . . ,m}. Thus we have (5). □

Example 2.3. Let f1 = x, f2 = y and f3 = x3 + y4. Then d2 = lcm(3, 4) =

12, n12 = e22 = 3/ gcd(3, 4) = 3, n22 = e12 = 4/ gcd(3, 4) = 4, µ12 = 2 and

µ22 = 1. For i ∈ {1, 2, 3}, let Ci ⊂ C2 and C ⊂ C2 be the plane curve defined by

fi = 0 and
∏3

i=1 fi = 0, respectively. Let ϕ : Y −→ C2 be the minimal embedded

good resolution of the curve singularity (C, o) with exceptional set F . Then the

weighted dual graph of the exceptional set F is a chain of rational curves with
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unique (−1)-curve F0 which is as follows:

F0 −1HOINJMKL
−4HOINJMKL

−2HOINJMKL −2HOINJMKL

OOOOOOOO

oooooooo

For i ∈ {1, 2, 3}, let C̄i ⊂ Y be the strict transform of Ci. Then the weighted

dual graph of the minimal connected chain of curves with ends F0 and C̄1 is as

follows:

F0 (C̄1)−1HOINJMKL −2HOINJMKL −2HOINJMKL
and the multiplicity of the zero divisor divY (x ◦ ϕ) along F0 is e12 = 4. The

weighted dual graph of the minimal connected chain of curves with ends F0 and

C̄2 is as follows:

F0 (C̄2)−1HOINJMKL −4HOINJMKL
and the multiplicity of the zero divisor divY (y ◦ϕ) along F0 is e22 = 3. The strict

transform C̄3 of C3 has gcd(3, 4) = 1 component which intersects F0 transversely

at a point and the weighted dual graph of ϕ∗C3 is as follows:

(C̄3)

F0

−1HOINJMKL
12

−4HOINJMKL
3

−2HOINJMKL
8

−2HOINJMKL
4

OOOOOOOO

oooooooo

Following the situation of Lemma 2.2, let η : Y −→ X̃2 be the morphism

which contracts the divisor F − F0 ⊂ Y . Let Di,2 = η∗(C̄i) and F2 = η∗(F0). By

Lemma 2.2, X̃2 has only two singular points of types Cn12,µ12 and Cn22,µ22 .

Let Φ : X̃2 −→ C2 be the natural projection and let fj,2 = fj ◦ Φ. Suppose

that X̃k and {fj,k} are obtained for 2 ≤ k < m. Then we define X̃k+1 to be the

normalization of a surface {fk+1,k = x
ak+1

k+1 } ⊂ X̃k × C, where we regard xk+1 as

the coordinate function of the second component C. Let πk+1 : X̃k+1 −→ X̃k be

41



the natural morphism and fj,k+1 = fj,k ◦ πk+1. Let Fk (resp. Dj,k) denote the

fiber of F2 (resp. Dj,2) on X̃k. We have the following commutative diagram:

(X̃m, Fm) (X̃3, F3) (X̃2, F2)

(Xm, o) (X3, o) (X2, o)(X, o) C2

· · ·

· · ·
�� �� ��

π3
//

//

πm
//

π4
//

// //

Theorem 2.4 (Tomaru [36, §3], cf. [13, Theorem 2.2]). Let (U, o) be the

cyclic quotient singularity of type Cn,µ, m the maximal ideal of OU,o, and h ∈ m.

Assume that the zero divisor of the pull-back of h on the minimal resolution of

(U, o) has the weighted dual graph as in Figure 2.1,

(H0)

ρ0

−c1HOINJMKL
ρ1

−csHOINJMKL
ρs

(Hs+1)

ρs+1

· · ·

Figure 2.1.

where n/µ = [[c1, . . . , cs]], H0 ∪ Hs+1 is the strict transform of {h = 0} with

irreducible components H0 and Hs+1, and the ρi’s denote multiplicities (if n = 1,

then (U, o) = (C2, o) and s = 0). Let a be a positive integer. We define integers

α and p as follows. Let

ā =
a

gcd(a, lcm(ρ0, ρs+1))
, n̄ =

n gcd(a, ρ0, ρ1, . . . , ρs+1)

gcd(a, ρ0, ρs+1)
,

and α = ān̄. Then p is defined by the following condition:

p ≡ a

gcd(a, ρs+1)
µβ +

ρs+1

gcd(a, ρs+1)
γ (mod α), 0 ≤ p < α,

where β and γ are integers determined by

a

gcd(a, ρ0)
β ≡ 1 (mod ρ0/ gcd(a, ρ0)), 0 ≤ β <

ρ0
gcd(a, ρ0)

,

ρ0
gcd(a, ρ0)

γ =
a

gcd(a, ρ0)
β − 1.

Then the normalization W of the a-fold covering of U defined by za = h has

exactly gcd(a, ρ0, . . . , ρs+1) connected components. Each component Wi of W has
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a cyclic quotient singularity of type Cα,p and the divisor of the function z on Wi

has the multiplicity
ρj

gcd(a,ρj)
along the fiber of Hj for j = 0, s+ 1.

Example 2.5 ([36, Example 3.5]). Let (U, o) be a cyclic quotient singularity

of type C30,7 and h an element of the maximal ideal m of the local ring OU,o, such

that the zero divisor of the pull-back of h on the minimal resolution of (U, o) has

the weighted dual graph as in Figure 2.2.

(H0)

30

−5HOINJMKL
9

−2HOINJMKL
15

−2HOINJMKL
21

−3HOINJMKL
27

(H5)

60

Figure 2.2.

Let W be the normalization of the 45-fold cyclic cover of U defined by z45 = h.

Since a = 45, ρ0 = 30, and ρ5 = 60, we have

gcd(a, ρ0, ρ5) = gcd(45, 30, 60) = 15,

gcd(a, ρ0, ρ1, ρ2, ρ3, ρ4, ρ5) = gcd(45, 30, 9, 15, 21, 27, 60) = 3,

n̄ =
30× 3

15
= 6, ā =

45

gcd(45, lcm(30, 60))
= 3, α = n̄ā = 18.

Then β = γ = 1 and p = 7. Hence W has exactly 3 connected components. Each

componentWi ofW has a cyclic quotient singularity of type C18,7, and the divisor

of the function z on Wi has the multiplicities 30
gcd(30,45)

= 2 and 60
gcd(45,60)

= 4 along

the fiber of H0 and H5, respectively.

Lemma 2.6. For 2 ≤ k ≤ m and j > k, we have the following.

(1) X̃k and Fk are non-singular outside Fk ∩
(∪

i≤kDi,k

)
.

(2) Each of the divisors Dj,k and Dk+1,k+1 has
∏k

i=2 gcd(ai, di−1) components.

(3) Every point x ∈ Fk ∩ Dk,k is of type Cnk,µk and the dual graph of the

minimal embedded good resolution of the germ of the curve singularity

(Fk ∪Dk,k, x) ⊂ (X̃k, x) is as follows:

(F̄k) −c1HOINJMKL −csHOINJMKL (D̄k,k)· · ·
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where F̄k and D̄k,k denote the strict transforms, and nk/µk = [[c1, . . . , cs]].

(4) divX̃k
(xk) = ekFk +Dk,k.

(5) divX̃k
(fj,k) = dkFk +Dj,k.

(6) Fk is irreducible.

Proof. In case k = 2, the assertion follows from Lemma 2.2. Assume that it holds

for some k ≥ 2. Let x be a point of Fk ∩ Dj,k and U ⊂ X̃k a sufficiently small

neighborhood of x. Then the point x ∈ X̃k is of type C1,0 and the multiplicity of

fk+1,k along Fk is dk by the assumption. We apply Theorem 2.4 to the germ (U, x)

and the covering x
ak+1

k+1 = fk+1,k; then α in the theorem is nk+1 = nk+1k+1. Let W

be the normalization of the covering. If j > k+1, putting (s, ρ0, ρs+1) = (0, dk, 0),

we obtain that W has exactly gcd(ak+1, dk) components, which are non-singular.

Thus (1) holds by induction. Suppose j = k + 1 and put ρ0 = dk and ρ1 = 1.

Then W is an irreducible surface with a cyclic quotient singularity of type Cnj ,µj ,

and divW (xj) = ejFj + Dj,j. These imply (2), (3) and (4). It also follows that

Fk is locally irreducible. Since X̃k is a partial resolution of a normal surface

singularity, the exceptional set Fk ⊂ X̃k is connected. Hence (6) holds. We have

ajdivW (xj) = divW (fj,j) = (πj|W )∗(dkFk +Dj,k).

By (2.2), we have π∗
k+1(dkFk) = dk+1Fk+1. This proves (5). □

For 1 ≤ i ≤ m, we define integers ĝ and ĝi as follows:

ĝ :=
a1 · · · am

lcm(a1, . . . , am)
,

ĝi :=
a1 · · · âi · · · am

lcm(a1, . . . , âi, . . . , am)
.

For m = 3, we have gcd(a2, d1) = gcd(a1, a2) = ĝ3 =
a1a2

lcm(a1, a2)
. If we

assume that
∏k−1

i=2 gcd(ai, di−1) = ĝk for some integer k with 3 ≤ k < m. Then

k∏
i=2

gcd(ai, di−1) = ĝk · gcd(ak, dk−1) =
a1 · · · ak

lcm(a1, . . . , ak)
= ĝk+1.
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Thus, by induction, we have
∏m−1

i=2 gcd(ai, di−1) = ĝm, and Lemma 2.6 immedi-

ately implies the following.

Lemma 2.7. Let X ′ = X̃m, E
′ = Fm, and Di = Di,m. Then we have the

following.

(1) Every Di is reduced and D :=
∪m
i=1Di is a disjoint union of irreducible

components.

(2) The set of the singular points of X ′ is a subset of E ′ ∩D.

(3) Dm has ĝm components.

(4) Suppose x ∈ E ′ ∩ Dm. Then x ∈ X ′ is a cyclic quotient singularity of

type Cnm,µm and the weighted dual graph of the minimal embedded good

resolution of the germ (E ′ ∪Dm, x) ⊂ (X ′, x) is as follows:

(Ē ′) −c1HOINJMKL −csHOINJMKL (D̄m)· · ·

where Ē ′ and D̄m denote the strict transforms, and nm/µm = [[c1, . . . , cs]].

(5) dimX′(xm) = emE
′ +Dm.

2.2. Zero divisors of the pull-back of the coordinate

functions

We use the same notation as in Section 2.1. Let f ′ : X̃ → X ′ be the minimal

resolution of X ′ = X̃m and E the fiber of E ′ = Fm. Let E0 ⊂ E denote the strict

transform of E ′ and f : X̃ −→ X be the composite of the resolution f ′ : X̃ −→ X ′

and the partial resolution X ′ = X̃m −→ Xm = X. Clearly f is a good resolution

of (X, o) with exceptional set E. We have the following diagram:

X̃ X̃m

Xm

= X ′

= X

⊃ E ′ = FmE0 ⊂ E ⊂
f ′

//

f
$$JJJJJJJJJJJJJJJ

��
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For any non-zero function h ∈ OX,o, we write

divX̃(h) := divX̃(h ◦ f) = (h)E +H,

where (h)E is supported in E and H does not contain any irreducible component

of E. Let

Z(i) = (xi)E, αi := nim, βi := µim.

Lemma 2.8 (Hurwitz formula). Let R and S be non-singular compact alge-

braic curves and φ : R −→ S be a surjective holomorphic map. Let P1, P2, . . . , Pl

be the ramification points with ramification indices e1, e2, . . . , el, respectively. Then

2g(R)− 2 = deg(φ)(2g(S)− 2) +
l∑

j=1

(ej − 1),

where g(R), g(S) are the genus of R,S, respectively.

Theorem 2.9. Let g and −c0 denote the genus and the self-intersection num-

ber of E0, respectively. Then the weighted dual graph of the exceptional set E is

as Figure 2.3, where the invariants are as follows:

2g − 2 = (m− 2)ĝ −
m∑
i=1

ĝi,

c0 =
m∑
w=1

ĝwβw
αw

+
a1 · · · am
d2m

,

βw/αw =


[[cw,1, . . . , cw,sw ]]

−1 if αw ≥ 2,

0 if αw = 1.

Furthermore,

Z(i) = λ
(i)
0 E0 +

m∑
w=1

sw∑
ν=1

ĝw∑
ξ=1

λ
(i)
w,ν,ξEw,ν,ξ (1 ≤ i ≤ m),
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E0 −c0PWQVRUST
[g]

−c1,1PWQVRUST
E1,1,1

−c1,2PWQVRUST
E1,2,1

−c1,s1X_ŶZ][\
E1,s1,1

−c1,1PWQVRUST
E1,1,ĝ1

−c1,2PWQVRUST
E1,2,ĝ1

−c1,s1X_ŶZ][\
E1,s1,ĝ1

−cm,1X_ŶZ][\
Em,1,1

−cm,2X_ŶZ][\
Em,2,1

−cm,smX_ŶZ][\
Em,sm,1

−cm,1X_ŶZ][\
Em,1,ĝm

−cm,2X_ŶZ][\
Em,2,ĝm

−cm,smX_ŶZ][\
Em,sm,ĝm

· · ·

· · ·

· · ·

· · ·

···

·
·
·

···

����������������������
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99
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99
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99

99

Cα1,β1

ĝ1

Cαm,βm

ĝm

Figure 2.3.

where λ
(i)
0 and the sequence {λ(i)w,ν,ξ} are determined by the following:

λ
(i)
w,0,ξ := λ

(i)
0 := eim,

λ
(i)
w,sw+1,ξ :=


1 if w = i

0 if w ̸= i,

λ
(i)
w,ν−1,ξ = λ

(i)
w,ν,ξcw,ν − λ

(i)
w,ν+1,ξ.

The cycle Z(i) is the smallest one among the cycles Z > 0 such that −Z is nef

and the coefficients of E0 in Z is eim.

Proof. From (1) and (2) of Lemma 2.7, we see that the claims (3)-(5) of Lemma 2.7

also hold for every i ∈ {1, . . . ,m} instead of m, by taking permutations of vari-

ables. These data immediately show the dual graph except for c0 and g. Since

divX′(xi) = eimE
′ +Di by Lemma 2.7 (5), λ

(i)
0 should be eim and the coefficient
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of the cycle Z(i) can be determined by the following:

0 = (Z(i) + D̄i)Ew,k,ξ = λ
(i)
w,k−1,ξ − λ

(i)
w,k,ξcw,k + λ

(i)
w,k+1,ξ.

The last assertion follows from Lemma 1.53.

Recall that F0 is the (−1)-curve on Y (see Lemma 2.2). Let p : E0 −→ F0
∼= P1

be the natural map and π := π3 ◦ · · · ◦ πm. From the proof of Lemma 2.6 and

Lemma 2.7 (3), we obtain the following.

• π∗F2 = (dm/d2)Fm, and thus deg p = d := d2a3 · · · am/dm.

• The ramification index of a point x ∈ E0 which corresponds to a point

of E ′ ∩Di is d gcd(a1, a2)/ĝi for i ≥ 3, and d/ĝi for i = 1, 2.

By Lemma 2.8,

2g − 2 = d(−2) +
m∑
i=3

ĝi

(
d gcd(a1, a2)

ĝi
− 1

)
+

2∑
i=1

ĝi

(
d

ĝi
− 1

)

= (m− 2)d gcd(a1, a2)−
m∑
i=1

ĝi

=
(m− 2)d2a3 · · · am
lcm(a1, . . . , am)

gcd(a1, a2)−
m∑
i=1

ĝi

= (m− 2)ĝ −
m∑
i=1

ĝi.

By Lemma 1.56 (1), we obtain (even in the case sw = 0) that

λ
(m)
w,1,ξ = (βwem + λ

(m)
w,sw+1,ξ)/αw.

Since the intersection number of E0 and divX̃(xm) is zero,

c0em = c0λ
(m)
0 =

m∑
w=1

ĝwλ
(m)
w,1,ξ

=
m−1∑
w=1

ĝwβwem
αw

+
ĝm(βmem + 1)

αm
.

Hence

c0 =
m∑
w=1

ĝwβw
αw

+
ĝm

αmem
.

Since ĝm/αmem = ĝmamdm−1/d
2
m = a1 · · · am/d2m, we obtain the assertion. □
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Example 2.10. Let a1 = · · · = am−3 = 2, am−2 = 3, am−1 = 4, am = 5,

m ≥ 4. Then

d1m = · · · = dm−3,m = 60, dm−2,m = 20, dm−1,m = 30, dmm = 12, dm = 60;

e1m = · · · = em−3,m = 30, em−2,m = 20, em−1,m = 15, emm = 12;

n1m = · · · = nm−3,m = 1, nm−2,m = 3, nm−1,m = 2, nmm = 5;

µ1m = · · · = µm−3,m = 0, µm−2,m = 1, µm−1,m = 1, µmm = 2;

ĝ1 = · · · = ĝm−3 = 2m−4, ĝm−2 = 2m−3, ĝm−1 = 2m−4, ĝm = 2m−3, ĝ = 2m−3.

By Theorem 2.9, we have c0 = 2m−3 and g = (m−6)·2m−5+1. Then the weighted

dual graph of E is as Figure 2.4. Furthermore, by Theorem 2.9, the zero divisors

−c0HOINJMKL

−3HOINJMKL

−3HOINJMKL
Em−2,1,ĝm−2

−2HOINJMKL

−2HOINJMKL
Em−1,1,ĝm−1

−3HOINJMKL
Em,1,1

−2HOINJMKL
Em,2,1

−3HOINJMKL
Em,1,ĝm

−2HOINJMKL
Em,2,ĝm

Em−2,1,1

Em−1,1,1

·
·
·

·
·
·

·
·
·

[g]

E0

OOOOOOOO

44
44

44
44

44
44

44
44


















oooooooo

OOOOOOOO

oooooooo

2m−3

2m−4

2m−3

Figure 2.4.

of the pull-back of the coordinate functions x1, . . . , xm are as follows:

Z(1) = · · · = Z(m−3)

= 30E0 + 10 ·
ĝm−2∑
ξ=1

Em−2,1,ξ + 15 ·
ĝm−1∑
ξ=1

Em−1,1,ξ +

ĝm∑
ξ=1

(12Em,1,ξ + 6Em,2,ξ);

49



Z(m−2) = 20E0 + 7 ·
ĝm−2∑
ξ=1

Em−2,1,ξ + 10 ·
ĝm−1∑
ξ=1

Em−1,1,ξ +

ĝm∑
ξ=1

(8Em,1,ξ + 4Em,2,ξ);

Z(m−1) = 15E0 + 5 ·
ĝm−2∑
ξ=1

Em−2,1,ξ + 8 ·
ĝm−1∑
ξ=1

Em−1,1,ξ +

ĝm∑
ξ=1

(6Em,1,ξ + 3Em,2,ξ);

Z(m) = 12E0 + 4 ·
ĝm−2∑
ξ=1

Em−2,1,ξ + 6 ·
ĝm−1∑
ξ=1

Em−1,1,ξ +

ĝm∑
ξ=1

(5Em,1,ξ + 3Em,2,ξ).

Note that we have Z(m) < Z(m−1) < Z(m−2) < Z(m−3) = · · · = Z(1), and by

computation, we have

− (Z(1))2 = · · · = −(Z(m−3))2 = 15 · 2m−3,

− (Z(m−2))2 = 7 · 2m−3,

− (Z(m−1))2 = 4 · 2m−3,

− (Z(m))2 = 3 · 2m−3.

Lemma 2.11. For 1 ≤ w ≤ m, −(Z(w))2 = ĝw⌈ewm/αw⌉.

Proof. Let Ei,0,ξ = E0. From Theorem 2.9,

−Z(w)Ei,ν,ξ =


1 if sw > 0 and (i, ν) = (w, sw),

ĝw if sw = 0 and ν = 0,

0 otherwise.

Since λ
(w)
w,sw,ξ

= ⌈ewm/αw⌉ by Lemma 1.56 (4), we have

−Z(w)Z(w) = ĝw⌈ewm/αw⌉.

□
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In the situation of Example 2.10, by Lemma 2.11, we also have

− (Z(1))2 = · · · = −(Z(m−3))2 = ĝw⌈ewm/αw⌉ = 15 · 2m−3, w ∈ {1, · · · ,m− 3},

− (Z(m−2))2 = ĝm−2⌈em−2,m/αm−2⌉ = 7 · 2m−3,

− (Z(m−1))2 = ĝm−1⌈em−1,m/αm−1⌉ = 4 · 2m−3,

− (Z(m))2 = ĝm⌈emm/αm⌉ = 3 · 2m−3.

Lemma 2.12. [13, Lemma 4.3]. The resolution f : X̃ −→ X is not the

minimal good resolution, i.e., E0 is a (−1)-curve and intersects at most two

curves, if and only if m = 3 and (a1, a2, a3) = (2, 2, 2l + 1) for an integer l > 0.

Proof. If f is not the minimal good resolution, X is a cyclic quotient singular-

ity. It is well-known that a Gorenstein quotient surface singularity is a rational

double point, hence a hypersurface. Thus the assertion follows from the result of

hypersurface singularities [13, Lemma 4.3]. □

2.3. The fundamental cycle and the canonical cycle

Let ZE denote the fundamental cycle on E, i.e., the smallest anti-nef cycle

supported on E. Since (X, o) is a Gorenstein singularity, there exists a cycle ZK

such that −ZK is a canonical divisor of X̃. We call ZK the canonical cycle on X̃.

Let α =
∏m

w=1 αw.

Assume that a1 ≤ · · · ≤ am. It follows from (2.2) that e1m ≥ · · · ≥ emm = em.

Theorem 2.13. Let ϵw,ν = [[cw,ν , . . . , cw,sw ]] if sw > 0 (i.e., αw > 1), and let

ZE = θ0E0 +
m∑
w=1

sw∑
ν=1

ĝw∑
ξ=1

θw,ν,ξEw,ν,ξ.

Then θ0 and the sequence {θw,ν,ξ} are determined by the following:

θw,0,ξ := θ0 := min(em, α),

θw,ν,ξ = ⌈θw,ν−1,ξ/ϵw,ν⌉ (1 ≤ ν ≤ sw).
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Proof. We follow the proof of [13, Theorem 1.4]. By Lemma 1.54, we only need

to identify θ0. Let uw (1 ≤ w ≤ m) be the integers determined by

βwθ0 + uw ≡ 0 (mod αw), 0 ≤ uw < αw.

Then

θw,1,ξ = ⌈θ0βw/αw⌉ =
θ0βw + uw

αw
.

Note that βw = sw = 0 if αw = 1. The condition ZEE0 ≤ 0 is equivalent to that

θ0c0 ≥
m∑
w=1

ĝw(θ0βw + uw)

αw
.

Using Theorem 2.9, this inequality is equivalent to the following:

θ0a1 · · · am
d2m

≥
m∑
w=1

ĝwuw
αw

.

By (2.2), we have
ĝwd

2
m

αwa1 · · · am
=
dm
aw

= ewm.

Thus the inequality is equivalent to the following:

θ0 ≥
m∑
w=1

uwewm.

Let Λ be the set of positive integers λ satisfying the following condition: there

exist integers 0 ≤ vw < αw for 1 ≤ w ≤ m such that

(2.4) λ ≥
m∑
w=1

vwewm, βwλ+ vw ≡ 0 (mod αw).

By the definition of the fundamental cycle, θ0 = minΛ. Let

Λ0 = {λ ∈ Λ | (2.4) with v1 = · · · = vm = 0} and

Λi = {λ ∈ Λ | (2.4) with vi = 1, vj = 0, j ̸= i}.

We see that gcd(αw, βw) = gcd(αw, αw′) = 1 and minΛi = eim for 1 ≤ i ≤ m by

the definition of these integers and (2.3). Thus we have

minΛ0 = α and min(Λ \ Λ0) = minΛm = em.

Therefore, we obtain that minΛ = min(em, α). □
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Example 2.14. Let a1 = a2 = 2, a3 = · · · = am−1 = 3, am = 4, m ≥ 4.

Then

d1m = d2m = 12, d3m = · · · = dm−1,m = 12, dmm = 6, dm = 12;

e1m = e2m = 6, e3m = · · · = em−1,m = 4, emm = 3;

α1m = · · · = αm−1,m = 1, αmm = 2;

µ1m = · · · = µm−1,m = 0, µmm = 1;

ĝ1 = ĝ2 = 2 · 3m−4, ĝ3 = · · · = ĝm−1 = 4 · 3m−5, ĝm = 2 · 3m−4, ĝ = 4 · 3m−4.

By Theorem 2.9, we have c0 = 4 · 3m−5 and g = (4m − 15) · 3m−5 + 1. Then

the weighted dual graph of E is as in Figure 2.5. Furthermore, by Theorem 2.9,

−c0HOINJMKL
[g]

−2HOINJMKL

−2HOINJMKL
Em,1,ĝm

Em,1,1

E0

��������

??
??

??
??

2 · 3m−4

Figure 2.5.

the zero divisors of the pull-back of the coordinate functions x1, . . . , xm are as

follows:

Z(1) = Z(2) = 6E0 + 3 ·
ĝm∑
ξ=1

Em,1,ξ,

Z(3) = · · · = Z(m−1) = 4E0 + 2 ·
ĝm∑
ξ=1

Em,1,ξ,

Z(m) = 3E0 + 2 ·
ĝm∑
ξ=1

Em,1,ξ.
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By Theorem 2.13, we obtain that θ0 = min(em, α) = 2 and the fundamental cycle

ZE on E is as follows:

ZE = 2E0 +

ĝm∑
ξ=1

Em,1,ξ.

Note that α = 2 and α < emm = 3, and ZE < Z(m).

In the situation of Example 2.10, we have a1 = · · · = am−3 ≤ am−2 ≤ am−1 ≤

am, emm = em = 12, α = 30 and θ0 = min(em, α) = 12. Then, by Theorem 2.13,

the fundamental cycle ZE on E is as follows:

ZE = 12E0 + 4 ·
ĝm−2∑
ξ=1

Em−2,1,ξ + 6 ·
ĝm−1∑
ξ=1

Em−1,1,ξ +

ĝm∑
ξ=1

(5Em,1,ξ + 3Em,2,ξ).

Note that we have α > em and ZE = Z(m).

Lemma 2.15. ZE = Z(m) if and only if em ≤ α.

Proof. It follows from Theorem 2.9, Theorem 2.13 and Lemma 1.56 (3). □

Theorem 2.16. Let Z0 be the cycle which is obtained as ZE with the condition

that θ0 = α in Theorem 2.13. Then

ZK = E +
(m− 2)dm

α
Z0 −

m∑
w=1

Z(w).

Proof. Let N0 = {w ∈ {1, . . . ,m} | αw = 1} and N1 = {1, . . . ,m} \ N0. Note

that for w ∈ N0, βw = 0 and Z(w)E0 = −ĝw (cf. the proof of Lemma 2.11).

Let B be any irreducible component of E − E0. By the adjunction formula and
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Theorem 2.9,

(−ZK + E)E0 = 2g − 2 +
∑
w∈N1

ĝw

= 2g − 2 +
m∑
w=1

ĝw +
∑
w∈N0

Z(w)E0

= (m− 2)ĝ +
∑
w∈N0

Z(w)E0,

(−ZK + E)B = −2 + (E −B)B

=


−1 if B = Ew,sw,ξ for some w and ξ,

0 otherwise.

It follows from Lemma 1.56 (3) and (1) that Z0(E−E0) = 0 and θw,1,ξ = αβw/αw.

By Theorem 2.9,

−Z0E0 = c0α−
m∑
w=1

ĝwαβw
αw

= α

(
c0 −

m∑
w=1

ĝwβw
αw

)

=
αa1 · · · am

d2m
=
αĝ

dm
.

We see that for w ∈ N0,

1

Z0E0

Z0 =
1

Z(w)E0

Z(w),(2.5)

since they are numerically equivalent. Form the data of the intersection numbers

of −ZK + E and (2.5), we obtain that

−ZK + E =
(−ZK + E)E0

Z0E0

Z0 +
∑
w∈N1

Z(w)

=
(m− 2)ĝ

Z0E0

Z0 +
∑
w∈N0

Z(w) +
∑
w∈N1

Z(w)

= −(m− 2)dm
α

Z0 +
m∑
w=1

Z(w).

Thus the formula follows. □
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In the situation of Example 2.10, we have

Z0 = 30E0 + 10 ·
ĝm−2∑
ξ=1

Em−2,1,ξ + 15 ·
ĝm−1∑
ξ=1

Em−1,1,ξ +

ĝm∑
ξ=1

(12Em,1,ξ + 6Em,2,ξ)

and

ZK = E + (30m− 77)E0 + (10m− 26) ·
ĝm−2∑
ξ=1

Em−2,1,ξ + (15m− 39) ·
ĝm−1∑
ξ=1

Em−1,1,ξ

+

ĝm∑
ξ=1

((12m− 31)Em,1,ξ + (6m− 16)Em,2,ξ).

In the situation of Example 2.14, we have Z0 = 2E0 +
∑ĝm

ξ=1Em,1,ξ and

ZK = E + (8m− 27)E0 + (4m− 14) ·
ĝm∑
ξ=1

Em,1,ξ.

The arithmetic genus of the fundamental cycle, namely,

1− χ(ZE) = (1/2)ZE(KX̃ + ZE) + 1,

is called the fundamental genus. This invariant is independent of the resolution

and denoted by pf (X, o). A formula of pf for weighted homogeneous surface

singularities was established by Tomari (cf. [31, Theorem 3.1]). Applying the

formula, Tomaru [32] obtained the following result in hypersurface case (cf. [13,

Theorem 1.7]).

Theorem 2.17. If em ≥ α, then −Z2
E = α2ĝ/dm and

pf (X, o) =
1

2
α

{
(m− 2)ĝ − (α− 1)ĝ

dm
−

m∑
w=1

ĝw
αw

}
+ 1.

If em ≤ α, then −Z2
E = ĝm⌈em/αm⌉ and

pf (X, o) =
1

2
em

{
(m− 2)ĝ − (2⌈em/αm⌉ − 1)ĝm

em
−

m−1∑
w=1

ĝw
αw

}
+ 1.

Proof. Assume that em ≥ α, then ZE = Z0 and θ0 = α. By the proof of

Theorem 2.16, we have −Z0E0 = αĝ/dm. Therefore

−Z2
E = Z0(αE0) = α2ĝ/dm.
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We see that ĝewm = dmĝw/αw. Thus

2pf (X, o)− 2 = (ZK − Z0)(−Z0)

=

(
E +

(m− 2)dm − α

α
Z0 −

m∑
w=1

Z(w)

)
(−Z0)

=

(
1 +

(m− 2)dm − α

α
· α−

m∑
w=1

ewm

)
αĝ/dm

=

(
(m− 2)ĝ + (1− α)

ĝ

dm
−

m∑
w=1

ĝw
αw

)
α.

Next, assume that em ≤ α. Then ZE = Z(m) by Lemma 2.20. It follows from

Lemma 1.56 (4) that λ
(w)
m,sm,ξ

= em/αw for w ̸= m. By Lemma 2.11 and its proof,

we have −Z2
E = −(Z(m))2 = ĝm⌈em/αm⌉ and

2pf (X, o)− 2 = (ZK − Z(m))(−Z(m))

=

(
E +

(m− 2)dm
α

Z0 −
m−1∑
w=1

Z(w) − 2Z(m)

)
(−Z(m))

= ĝm +
(m− 2)dm

α
· αĝ
dm

· em −
m−1∑
w=1

ĝwem
αw

− 2ĝm⌈em/αm⌉

=

(
(m− 2)ĝ +

ĝm
em

(1− 2⌈em/αm⌉)−
m−1∑
w=1

ĝw
αw

)
em.

□

In the situation of Example 2.10, we have

α = 30 > emm = 12, −Z2
E = 3·2m−3 = ĝm⌈emm/αm⌉ and pf (X, o) = (3m−9)·2m−3+1.

In the situation of Example 2.14, we have

α = 2 < emm = 3, −Z2
E = 4 ·3m−5 = α2ĝ/dm and pf (X, o) = (8m−28) ·3m−5+1.

2.4. The maximal ideal cycle

In this section, we identify the maximal ideal cycle. We keep the assumption

that a1 ≤ · · · ≤ am. Let m denote the maximal ideal of the local ring OX,o and
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Zm the maximal ideal cycle on X̃. By the definition, we have

Zm = min{(L)E|L = c1x1 + · · ·+ cmxm ∈ m, ci ∈ C, L ̸= 0}.

Theorem 2.18. We have Z(m) ≤ · · · ≤ Z(1). Hence Zm = Z(m). Fur-

thermore, the maximal ideal cycle coincides with the fundamental cycle on the

minimal good resolution space and on X̃ if and only if em ≤ α.

Proof. Since e1m ≥ · · · ≥ emm = em, the first assertion follows from Theorem 2.9

and Corollary 1.55. The last assertion follows from Lemma 2.20 and Lemma 2.12,

and the fact that these two cycles coincide on any resolution of every rational

surface singularity ([2]). □

Example 2.19 (α < em). Let a1 = a2 = 2, a3 = · · · = am = 3, m ≥ 3. Then

e1m = e2m = 3, e3m = · · · = emm = 2,

α1 = · · · = αm = 1.

Also, we have β1 = · · · = βm = 0. Therefore E is irreducible, ZE = E, and

Zm = 2E. We also have g = (2m− 7) · 3m−4 + 1, c0 = 3m−4 by Theorem 2.9.

Example 2.20 (α ≥ em). Let a1 = · · · = am−2 = 2, am−1 = 3, am = 7, m ≥

4. Then

e1m = · · · = em−2,m = 21, em−1,m = 14, em = 6,

α1 = · · · = αm−2 = 1, αm−1 = 3, αm = 7.

Also, we have

β1 = · · · = βm−2 = 0, βm−1 = βm = 1,

ĝm−1 = ĝm = 2m−3.

Then the weighted dual graph of E is as in Figure 2.6.
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Figure 2.6.

The components Em,sm,ξ correspond to the vertices with weight −7. By Theo-

rem 2.9, we have c0 = 2m−4 and g = (m− 6) · 2m−5 + 1. Since α = 21 > 6 = em,

we have Zm = ZE by Theorem 2.18.

2.5. Kodaira singularities

After Kulikov’s results ([14]) for Arnold’s classification ([1]) of unimodal and

bimodal singularities, U. Karras ([11]) introduced the notation of Kodaira singu-

larities for normal surface singularities in terms of pencils of curves. He proved

several fundamental properties for them and applied his results to deformation

theory of surface singularities. In this section, we give a condition for (X, o) to

be a Kodaira singularity following Konno and Nagashima.

Let S be a non-singular complex surface and ∆ ⊂ C a small open disc around

the origin. A surjective holomorphic map Φ : S −→ ∆ is said to be a pencil of

curves of genus g, if it is proper and connected, and fibers St := Φ−1(t) (t ̸= 0)

are smooth curves of genus g. In this situation, we call So := Φ−1(o) the singular

fiber.

Definition 2.21 (Karras [11]). A normal surface singularity (W, p) is called

a Kodaira singularity if there exists a pencil of curves Φ : S → ∆ such that, after

a finite number of blowing ups at finitely many non-singular points P1, . . . , Pr

in non-multiple components of the singular fiber So, Ψ : S
′ → S, there is a

holomorphic map ϕ : M → W from an open neighborhood M of the strict
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transform F of Supp(S0) in S
′
which is a resolution of (W, p) with exceptional

divisor F .

Example 2.22 ([35, Example 2.4]). There exists a pencil of curves Φ : S −→

∆ of genus g = 1, , such that the singular fiber So = Φ−1(o) is as follows:

−1HOINJMKL
3

−3HOINJMKL
1

−3HOINJMKL

−4HOINJMKL
1

−1HOINJMKL
1

F2

F3F1

1

Let Ψ : S ′ −→ S be blowing ups at non-singular points P1 ∈ F1, P2 ∈ F2, P3 ∈ F3.

Then we have the following figure

−1HOINJMKL
3

−4HOINJMKL
1

−4HOINJMKL 1

−4HOINJMKL
1

−2HOINJMKL
1

−1HOINJMKL
1

−1HOINJMKL
1

−1HOINJMKL 1

Let M be an open neighborhood of the strict transform F of Supp(So), where F

is as follows:

−1HOINJMKL
3

−4HOINJMKL
1

−4HOINJMKL 1

−4HOINJMKL
1

−2HOINJMKL
1

Contracting F in M , we obtain a Kodaira surface singularity (W, o).

Karras ([12]) proved a fine criteria for normal surface singularities to be a

Kodaira singularities in terms of the maximal ideal cycle on the minimal good

resolution.
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Proposition 2.23 ([11, §2], [12]). Let ϕ : (M,F ) → (W, p) be the minimal

good resolution of a normal surface singularity and ZF the fundamental cycle on

F . Then (W, p) is a Kodaira singularity if and only if the coefficient of Fj in

ZF is 1 for every component Fj satisfying ZFFj < 0 and there exists an element

h ∈ OW,p such that the divisor divM(h ◦ ϕ) is normal crossing with exceptional

part (h)F = ZF .

Example 2.24. Let W = {x2 + y3 + z8 = 0} and ϕ : (M,F ) −→ (W, o) be

the minimal good resolution of (W, o) with exceptional set F . From Theorem 2.9,

the weighted dual graph of F is as follows:

−1HOINJMKL
F0

−3HOINJMKL
F1

−4HOINJMKL

−3HOINJMKL
F2

F3

Following Theorem 2.13, the fundamental cycle ZF = 3F0 + F1 + F2 + F3. By

computation, we have ZFF0 = 0, ZFF1 = 0, ZFF2 = 0 and ZFF3 = −1 < 0.

The coefficient of F3 in ZF is 1. Also, there exists an element z ∈ OW,o such that

the divisor divM(z ◦ ϕ) is normal crossing with exceptional part (z)F = 3F0 +

F1 + F2 + F3 following Theorem 2.9. Note that (z)F = ZF . By Proposition 2.23,

we have that (W, o) is a Kodaira singularity.

Theorem 2.25. (X, o) is a Kodaira singularity if and only if dm−1 ≤ am.

Proof. By Lemma 2.12, if the resolution f : X̃ −→ X is not the minimal good

resolution, then the condition dm−1 ≤ am is satisfied. On the other hand, a

rational singularity with reduced fundamental cycle is a Kodaira singularity ([11,

Theorem 2.9]).

We assume that f : X̃ −→ X is the minimal good resolution. We have seen

that divX̃(xm) is normal crossing (cf. Lemma 2.7). Therefore, it follows from

Proposition 2.23, Theorem 2.18 and the proof of Lemma 2.11 that (X, o) is a
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Kodaira singularity if and only if em ≤ α and ⌈em/αm⌉ = 1; this condition is

equivalent to that dm−1 ≤ am. □

In the situation of Example 2.19, we have dm−1 = 6 > am = 3. Hence (X, o)

is not a Kodaira singularity by Theorem 2.25.

In the situation of Example 2.20, we have dm−1 = 6 < am = 7, and then

(X, o) is a Kodaira singularity by Theorem 2.25.
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358.

[5] D. J. Dixon, The fundamental divisor of normal double points of surfaces, Pacific J. Math.

80 (1979), no. 1, 105–115.

[6] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math., vol. 538, Springer-

Verlag, Berlin, Heidelberg, New York, 1976.

[7] Akira Fujiki, On resolutions of cyclic quotient singularities, Publ. Res. Inst. Math. Sci.

10 (1974/75), no. 1, 293–328.
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1981.

63



[13] K. Konno and D. Nagashima, Maximal ideal cycles over normal surface singularities of

Brieskorn type, Osaka J. Math. 49 (2012), no. 1, 225–245.

[14] V. S. Kulikov., Degenerate elliptic curves and resolution of uni-and bimodal singularities,

Funct. Anal. Appl. 9 (1975), 69–70.

[15] H. Laufer, Normal two-dimensional singularities, Ann. of Math. Studies no. 71, Princeton

University Press 1971.

[16] H. Laufer, Taut two-dimensional singularities, Math. Ann. 205 (1973), 131–164.

[17] H. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257–1295.

[18] H. Laufer, Tangent cones for deformations of two-dimensional quasi-homogeneous singu-

larities, Singularities (Iowa City, IA, 1986), Contemp. Math., vol. 90, Amer. Math. Soc.,

Providence, RI, 1989, pp. 183–197.

[19] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Math., vol. 8,

Cambridge University Press, 1986.

[20] F. N. Meng and T. Okuma, The maximal ideal cycles over complete intersection surface

singularities of Brieskorn type, to appear in Kyushu J. Math.

[21] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion

for simplicity, Inst. Hautes Études Sci. Publ. Math. 9(1961), 5–22.

[22] A. Némethi, “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math. 137

(1999), no. 1, 145–167.

[23] A. Némethi, Invariants of normal surface singularities, Real and complex singularities,

Contemp. Math., vol. 354, Amer. Math. Soc., Providence, RI, 2004, pp. 161–208.

[24] W. D. Neumann, Abelian covers of quasihomogeneous surface singularities, Singularities,

Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc.,

Providence, RI, 1983, pp. 233–243.

[25] T. Okuma, Plurigenera of surface singularities, Nova Science Publishers, New York, 2000.

[26] T. Okuma, Numerical Gorenstein elliptic singularities, Math. Z. 249 (2005), 31–62.

[27] P. Orlik and P. Wagreich, Isolated singularities of algebraic surface with C∗ action, Ann.

of Math. 93 (1971), 205–228.

[28] H. Pinkham, Normal surface singularities with C∗-action, Math. Ann. 227 (1977), 183–

193.

[29] J. Stevens, Elliptic surface singularities and smoothings of curves, Math. Ann. 267 (1984),

no. 2, 239–249.

[30] M. Tomari, A pg-formula and elliptic singularities, Publ. Res. Inst. Math. Sci. 21 (1985),

no. 2, 297-354.

64



[31] T. Tomaru, On Gorenstein surface singularities with fundamental genus pf ≥ 2 which

satisfy some minimally conditions, Pacific J. Math. 170 (1995), no. 1, 271–295.

[32] T. Tomaru, A formula of the fundamental genus for hypersurface singularities of

Brieskorn type, Ann. Rep. Coll. Med. Care Technol. Gunma Univ. 17 (1996), 145–150.

[33] T. Tomaru, On Kodaira singularities defined by zn = f(x, y), Math. Z. 236 (2001), no. 1,

133–149.

[34] T. Tomaru, Pinkham-Demazure construction for two dimensional cyclic quotient singu-

larities, Tsukuba J. Math. 25 (2001), no. 1, 75–83.

[35] T. Tomaru, Complex surface singularities and degenerations of compact complex curves,

Demonstratio Math., XLIII (2010), no. 2, 339–359.

[36] T. Tomaru, C∗-equivariant degenerations of curves and normal surface singularities with

C∗-action, J. Math. Soc. Japan, 65 (2013), no. 3, 829–885.

[37] S. S.-T. Yau, On maximal elliptic singularities, Trans. Amer. Math. Soc., 257 (1980),

269–329.

65


