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Introduction

Let (X, z) be a germ of a normal complex surface singularity and f : X —
X a good resolution with exceptional divisor E. It is known that the topology of
the singularity is determined by the weighted dual graph I'g of E. A divisor on
X supported in E is called a cycle. The fundamental cycle Zg is by definition the
smallest one among the cycles F' > 0 such that —F' is nef, i.e., FE; <0 for every
irreducible component F; of E. The fundamental cycle is a topological invariant;
in fact, it is determined by I'g. Let m be the maximal ideal of the local ring
Ox .. For a non-zero function h € m, let (h)g denote the exceptional part of the
zero divisor div ¢(h). Then the smallest one among the cycles (h)g, h € m\ {z},
is called the maximal ideal cycle and denoted by Z,. This cycle is an analytic
invariant and cannot be determined by I'g in general. We have Zg < Z,, by the
definition of these cycles. Therefore it is a natural question to ask whether Zp =
Zw. This equality holds on the minimal resolution for rational singularities ([2]),
minimally elliptic singularities ([17]), weakly elliptic Gorenstein singularities with
rational homology sphere link ([22]), and for hypersurface {z" = f(z,y)} with
certain conditions ([5], [33]). However, in general, it is difficult to identify the
maximal ideal cycle (cf. [30], [23], [26]).
In this thesis, we consider a germ (X,0) C (C™, 0) of an isolated complete

intersection singularity of Brieskorn type defined by

X ={(%;) € C"gjna" + -+ qmryy =0, j=3,...,m},
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where a; > 2 are integers. Then (X, 0) is a normal surface singularity by Serre’s
criterion for normality. Neumann [24] proved that the universal abelian cover of a
weighted homogeneous normal surface singularity with rational homology sphere
link is a complete intersection surface singularity of this type. It is known that
the resolution graph of the minimal good resolution of a weighted homogeneous
surface singularity can be recovered from the Seifert invariants of the link. The
Seifert invariant of the link of (X, o0) is in fact obtained in [10, §7] ([27] for
hypersurface case); however the construction of the good resolution is needed for
the computation of the maximal ideal cycle.

In [13, §2], Konno and Nagashima constructed a good resolution of the
Brieskorn hypersurface singularity {z(® + z{* = 25?} with 2 < a9 < a3 < ag
using a covering method due to Tomaru ([34], [36]) and Fujiki ([7]). We employ
their method to construct a good resolution of (X, 0) and the aim is to identify the
maximal ideal cycle on the minimal good resolution of (X, 0). We give concrete
descriptions of the maximal ideal cycle and the fundamental cycle, a condition
for the coincidence of these cycles, and a condition for the singularity to be a
Kodaira singularity; every condition is expressed by the integers aq, ..., a,,. The
thesis is divided into two chapters.

In Chapter 1, we introduce some basic facts about singularities, blowing up,
the resolution of normal surface singularities, the fundamental cycle and the max-
imal ideal cycle. We also introduce the cyclic quotient singularities and their
fundamental facts. In the last section, we review the main results of Konno and
Nagashima, that is, the concrete descriptions of the fundamental cycle and the
maximal ideal cycle over Brieskorn hypersurface singularities.

In Chapter 2, we describe our main results due to [20]. In Section 2.1, we give
the construction of a partial resolution of (X, 0) with cyclic quotient singularities.
In Section 2.2, we compute the zero divisors of the pull-back of the coordinate

functions x4, ..., x,,. The main results are as follows:



Theorem (Theorem 2.9 in Section 2.2). Let

Sw  Guw

70 =\ Ey + i SN N Bue 1 <i<m).

w=1v=1 £{=1

Then )\éi) and the sequence {)‘S?V,g} are determined by the following:

AS?O{ = )‘(()i) = Cim;

. 1 ifw=i
w,Sw+1,& =
0 if wH#r,
Ag?ufl,g = )\g?ll,fcwﬂ/ - )\1(12231/+1,£‘

The cycle Z© is the smallest one among the cycles Z > 0 such that —Z is nef
and the coefficients of Eg in Z is ej,.

In Section 2.3, we give concrete description of the fundamental cycle, and
compute the fundamental genus and the canonical cycle.

Assume that a; < --- < a,,. Then we have the following main results.

Theorem (Theorem 2.13 in Section 2.3). Let

m S gw
Zp=00Eo+3 3 > OwneBune
w=1 v=1 £{=1

be the fundamental cycle. Then 6y and the sequence {0y,,¢} are determined by

the following:
911),0,{ = 00 = min(emm’ TREE am),
vau,g = lrew’l,,lé/ﬁw’,/—‘ (1 <r< Sw)-

Lemma (Lemma 2.15 in Section 2.3). Zp = Z™ if and only if epm <

al.-.am.

In Section 2.4, we identify the maximal ideal cycle and give a condition for
the coincidence of the fundamental cycle and the maximal ideal cycle.

We keep the assumption that a; < --- < a,,. The main result is as follows:
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Theorem (Theorem 2.18 in Section 2.4). We have Zm < ...< 7M. Hence
Zw = Z"™ . Furthermore, the mazimal ideal cycle coincides with the funda-

mental cycle on the minimal good resolution space and on X if and only if

Emm Sal"'am-

In Section 2.5, we give a condition for the singularity (X, o) to be a Kodaira

singularity following Konno and Nagashima. The main result is as follows:

Theorem (Theorem 2.25 in Section 2.5). (X, 0) is a Kodaira singularity if

and only if dyp_q1 < Gy,
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Chapter 1

Preliminaries

In this chapter, we mainly introduce some basic facts about singularities,
blowing up which is a useful tool for removing the singularities. We also introduce
the cyclic quotient singularities and their fundamental facts. At last, we review
the main results of Konno and Nagashima, i.e., the concrete descriptions of the
fundamental cycle and the maximal ideal cycle over the Brieskorn hypersurface
singularities (Vg .a;.a0,0) = ({23° + 21* = 252},0), where a;’s are integers and

2<ap <a; <as.

1.1. Singularities

By a complex variety we mean an irreducible reduced complex analytic space
defined over C. Let X = (X,0Ox) be a complex analytic space. Let x be a
point of X. We denote by dim, X the dimension of X at x, and denote by dimX
the global dimension of X. There exists the smallest positive integer e such
that a neighborhood U of z is biholomorphic to a closed complex subspace of a
domain in C¢. This integer is called the embedding dimension of X at x, and
denoted by embdim, X . It is clear that for any point z € X, there exists an open
neighborhood U such that embdim,X > embdim,Y for any y € U. Hence the
function defined by x — embdim, X is upper semi-continuous, i.e., for any n € Z

the set {x € X|embdim,X > n} is closed.
6



We take an open neighborhood U of z € X which is a closed complex subspace
of a domain D C C™ with coordinates 2y, ..., z,. Let fi,..., fr be functions on
D such that Ox, = Op./(fizs-- - fra), Where f;; denotes the germ of f; at
x € D. We denote by J.(fi,..., fr) the Jacobian matrix at z, i.e.,

Bt = (5E@)

Theorem 1.1. In the situation above, we have

rankJ,(f1,. .., fr) + embdim, X = m.

Proof. Let z = (z1,...,2,) € C™. We put
e = embdim, X and r = rankJ,(f1,..., fx).
By reordering suffices, we may assume that

Ofi
det (8zj (:B)> e # 0.

Set wy = fi,...,w, = fr,Wri1 = Zr31 — Tyils- -, Wy = Zm — Ty Lhen, by

the implicit function theorem, we may regard the functions wy, ..., w,, as the
coordinates at x € C™. Hence a neighborhood of x € X is a closed complex
subspace of an (m — r)-dimensional domain {w; = --- = w, = 0} € C™. This
means that e < m —r.

Next we show that e > m — r. Since Ox, is a quotient of Oce ,, there exist
the functions ¢y, ..., g. on a neighborhood of x € C™ which generate the maximal
ideal of Ox . Then the functions f1,..., fr, g1, ..., ge generate the maximal ideal
of O¢m ,, and thus rankJ,(f1,..., fk,91,-..,9.) = m. Hence we see that r >

m — e. O

Example 1.2. Let f; = x + 2, f, = z + y be functions on C3. Then the

Jacobian matrix at the origin o := (0,0, 0) is

[ F0) G) 0} (100
Jo(f17f2)— 9t 9f - )



and then rank.J,(f1, f2) = 2. We may regard the functions f; = z+y?, fo = z+v, 2
as the coordinates at o € C3. Clearly a neighborhood of 0 € X is a complex
line {fi = fo = 0}. This means that embdim,X = 1. Thus rankJ,(f1, f2) +
embdim, X =2+ 1= 3.

Corollary 1.3. Let m, be the maximal ideal of Ox . Then
embdim, X = dim¢ m, /m2.

Proof. In the situation above, it suffices to show that dimem,/m2 = m — r.
Let n, be the maximal ideal of Oc¢m , and § the ideal of Ocm , generated by
fizy -« fre- Then my/m2 = n,/(n2 +§). We define a map a : O¢m, — C™ by

_(9f of
= (5w jrw).
Then it is clear that dimc a(f) = r and that @ induces an isomorphism a :

n,/n?2 — C™. Since @' induces an isomorphism (f + n2)/n?2 — a(f), we obtain
that
dime m,/m? = dime n,/n? — dime (f + n2)/n2 = m — 7.

O

We denote by Q% the sheaf of differential 1-forms on X. For any point z € X,

Qﬁm is generated by df, f € Ox,, with the properties
(1) for f € C, df = 0;
(2) for f,g € Oxa, d(f +g) = df + dg and d(fg) = fdg + gdf .

Lemma 1.4. dim¢ QY ,/m,Q% , = dime m,/m2.
Proof. The homomorphism QY ,/m,Q% , — m,/m?, defined by
(df mod m,Qy,) — (f — f(z) mod m?)
is an isomorphism. [

Corollary 1.5. In the situation above, we have the following:
8



(1) dim, X < embdim,X;
(2) dim, X < dime QY ,/m. Q% ,;
(3) r <m —dim,X.

If the equality holds in one of the above, then it holds in the others.

Proof. By Matsumura [19, p. 104, 5.14], dimOx, < dim¢m,/m2. Since
dim, X = dim Ox_, (1) follows from Corollary 1.3. Now the rest of the assertion
follows from (1), Theorem 1.1, Corollary 1.3 and Lemma 1.4. O

Definition 1.6. Let X be a complex analytic space. A point x € X is called
a non-singular point if the equality dim, X = embdim, X holds. A point z € X is
called a singular point if which is not a non-singular point. We denote by Sing(X)
the set of singular points of X, and call it the singular locus of X. A complex
analytic space X is said to be non-singular if any point of X is a non-singular
point, and said to be singular if it is not non-singular. A complex analytic space
X is said to be normal, Gorenstein or Cohen-Macaulay if the local ring Ox , has

such a property for any x € X.

A point x € X is a non-singular point if and only if Oy, is isomorphic to a
convergent power series ring. By definition, complex manifolds are non-singular
complex analytic spaces. Corollary 1.5 implies that a point x € X is a non-
singular point if and only if » = m — dim, X: this assertion is called the Jacobian

criterion of non-singularity.

Theorem 1.7. Let X be a complex variety. Then Sing(X) is a proper analytic
subset of X.

Proof. We follow the notation above. Set n = dimX. A point x € U C X is a
singular point if and only if rankJ,(fi,..., fx) < m —n. Hence Sing(U) is the
analytic subset of the domain D defined by the functions f,..., fi and the all

determinants of (m—n) x (m—n) sub-matrices of the Jacobian matrix (0f;/0z;).

9



If U is sufficiently small, then U is a finite branched analytic covering of a domain

in C". This shows that Sing(U) is a proper subset of U. OJ

Theorem 1.8. Let X be a complex variety.
(1) If X is normal, then dim Sing(X) < dimX — 2.
(2) If X is Cohen-Macaulay and dim Sing(X) < dimX —2, then X is normal.
(3) The following are equivalent:
(a) X is normal;

(b) for any open subset U C X, the restriction
I'U,Ox) — I'(U \ Sing(X), Ox)
18 bijective.
Proof. See Fischer [6, p. 119-120]. O

Definition 1.9. Let (X, z) be a germ of a complex variety X at x. We simply
call it a singularity. A singularity (X, z) is said to be isolated if there exists an
open neighborhood U of z such that Sing(U) = {z}. A singularity (X, z) is
said to be normal, complete intersection, Gorenstein or Cohen-Macaulay if the
local ring Ox, has such a property. A hypersurface singularity is a complete
intersection singularity with embdim, X = dimX + 1. Unless stated otherwise, X
denotes a Stein variety whenever we call (X, z) a singularity. We always assume

that Sing(X) = {z} if (X, z) is an isolated singularity.

Remark 1.10. By Theorem 1.8, any isolated Cohen-Macaulay singularity is

normal. For any singularity, we have the following implications:
hypersurface = complete intersection = Gorenstein = Cohen-Macaulay.

See Matsumura [19, p. 171].

Definition 1.11. Let X be a complex variety. The morphism ¢ : X, orn, —

X is said to be the normalization of X if

(1) Xyorm is normal;

10



(2) ¢ is finite and surjective;
(3) if N = {z € X|(X,z) is not normal}, then X, om \ ¢~ (V) is isomorphic
to X \ N.

Definition 1.12. Let f : Y — X be a morphism of complex varieties such
that
(1) f is proper and surjective;
(2) there exist proper analytic subsets A C X and B C Y such that the

restriction Y \ B — X \ A of f is an isomorphism.

Then we call f a modification. Suppose that A and B are the minimal subsets
with the property above, and that X and Y are normal. The subset of B, which
is the sum of all irreducible components B; with dimB; > dim f(B;) is called the
exceptional set of f. The divisor on Y, which is the sum of all prime divisors
supported in the exceptional set, is called the exceptional divisor of f. Let V be a
closed complex subvariety of X such that V' ¢ A. Then the closure of f~}(V'\ A)
is called the strict transform of V' by f, and denoted by f,'V. If D =Y a;D;

is a divisor on X with prime divisors D;, then we denote by f;'D the divisor

Z Cllf*_lDZ

Definition 1.13. Let M be a complex manifold and D a reduced divisor on
M. Then D is said to have only normal crossings if at each point of D, the
defining equation of D can be written as Hle zi, where {z1,...,2,} is a part
of suitable local coordinates. Moreover if each irreducible component of D is

non-singular, then D is said to have only simple normal crossings.

Definition 1.14. Let X be a complex variety. A modification f: M — X

is called a resolution of singularities of X if M is non-singular and the restriction
M\ f~*(Sing(X)) — X \ Sing(X)

is an isomorphism. We call M a resolution space. A resolution f : M — X

is called a good resolution if f~!(Sing(X)) is a subvariety of pure codimension

11



1 and has only simple normal crossings. If (X, x) is isolated, then we write the
resolution as f : (M, A) — (X, z), where A = f~!(Sing(X)): in this case we

may regard f: (M, A) — (X, x) as a morphism of germs.

Theorem 1.15 (Hironaka [9]). Any singularity admits a good resolution.

1.2. Blowing up

Definition 1.16. Let X be a complex analytic space and Z a sheaf of ideals
on X. Let f:Y — X be a morphism of complex analytic spaces. We de-
fine the inverse image ideal sheaf ZOy C Oy to be the image of the natural

homomorphism f*Z — Oy.

Definition 1.17. Let X be a complex variety, C' a closed subvariety and Z
its sheaf of ideals. Then there exists a unique proper morphism f : Y — X of

varieties which satisfies the following (see Fischer [6, 4.1]):

(1) the inverse image ideal sheaf ZOy is invertible;

(2) if g : Z — X is a morphism of complex analytic spaces such that ZOy
is invertible, then there exists a unique morphism h : Z — Y such that
g=r[foh

(3) the restriction Y\ f71(C) — X \ C of f is an isomorphism;

(4) if X is a manifold and C is a submanifold, then Y is also a manifold.

We call the morphism f the blowing up of X with center C', or the blowing up
of X with respect to the ideal sheaf Z. The morphism f is also called a blowing

down when X is viewed as constructed from Y.

A resolution of a singularity is obtained by a finite succession of blowing ups

with non-singular centers.

Example 1.18. We construct the blowing up of C" with center the origin.

Let z1,...,2, be the coordinates of C", and (Z; : --- : Z,) the homogeneous

12



coordinates of P"~!. Let M be a subvariety of C" x P*~! defined by the equations
ZiZj—ZjZiIO, i,jzl,...,n.

Then the blowing up f : M — C" is induced by the projection C* x P~ —
C":

M~ C" x P!

Let E = f~!(0). We put
Ui = {p e P"!|Zi(p) # 0}, M; = M N (C" x U;).
Then M; is isomorphic to the affine space C" and which has the coordinates
1) Ziy ..oy Zica]Zsy ziy Zig1)Ziy ey Zn) 2.

Let w; = Z;/Zy, i = 2,...,n. The restriction f; : M; — C" of f is given by
2 = 21,25 = ziwj;, § = 2,...,n, and £ N M is defined by the function z; in
M. This shows that F = {0} x P! = P""1. Let Y be a hypersurface in a
neighborhood of the origin defined by a holomorphic function g(z) = .., gi(2),
where each ¢;(z) = g;(z1,...,2,) denotes a homogeneous polynomial of degree i

and gi(z) # 0. Let

h(z1,w) = g(z1, z1wa, . .. ,zlwn)/zf.

Then the strict transform of Y is defined by h(z;,w) in M;. Since f*g(z) =
2Fh(z,w), we see that f*Y = kE + 1Y,

Example 1.19. Let X C C? be a hypersurface defined by g(z1, 22, 23) =
22 4 22 + 22 = 0. Then Sing(X) = {(0,0,0)}. Let f : X — X be the blowing
up of X at o := (0,0,0). Following the situation of Example 1.18, the strict

transform f, !X of X is defined by h(z1,w) := g(21, 21ws, 21w3) /2 = 1+ w3 + w3
13



in M, and f'X is non-singular. Thus the blowing up f : X — X is a good

resolution with exceptional set F = f~!(0) = P!

Let S be a non-singular surface, not necessarily compact. Let D = > a;D;
be a divisor on S, where D,’s are mutually distinct prime divisors. We put
Dieq = Zai 40 D;. The divisor D is said to be connected if the support of D is
connected, and said to be positive if D is effective and D # 0. If the support of
D is compact and each a; is an integer, then we call D a Z-cycle, or a cycle for
short.

Let D be a positive divisor on S and p € Supp(D). Let z,y be local coor-
dinates at p, and f = . fi(z,y) € Os, a function defining D near p, where
fi(z,y) is a homogeneous polynomial of degree i. Then we define the multiplicity
of D at p, denoted mult(D, p), to be the least integer m such that f,, # 0. If p is
not a point of Supp(D), then put mult(D,p) = 0. Note that p is a non-singular
point of D if and only if mult(D,p) = 1. If h : S — S is the blowing up of S
with center p and E the exceptional divisor of i, then h*D = h;'D+mult(D, p)E.

Theorem 1.20. Let D be a reduced divisor on S. Then there exists a finite

sequence of the blowing ups
Sp— S — - — 50 =S

such that each S; — S;_1 is the blowing up with center a point, and that the

support of the fiber of D on S,, has only simple normal crossings.

Proof. See Barth-Peters-Van de Ven [3, 11, 7]. O

Proposition 1.21. A curve singularity (C,p) C (S, p) with mult(C,p) = 2 is
isomorphic to the germ of {x" — y?> = 0} C C? at the origin for some r > 2: if

r = 2 the singular point is called a node; if r = 3 it is called a cusp.

Proof. See Barth-Peters-Van de Ven [3, 11, §]. O

14



Example 1.22. Let C' C S be a compact curve with a cusp p € C. Let
S1 — S be the blowing up with center p. Then the strict transform of C' on S;
is non-singular. However, we need three blowing ups so that the support of the
fiber of C' has only simple normal crossings. See Figure 1.1: C; denotes the strict
transform of C;_;. Note that the fiber of C' is the divisor C3 + 2E5 + 3F} + 6Gy

(see Example 1.18).

C = O() Eo 01 Fo E1 Cg Go

FI1GURE 1.1. Resolution of a cusp

Let D and E be reduced divisors on S having no common irreducible com-
ponent. Suppose that p € D N E, and that D, E are defined by f,g € Og,,
respectively. We define the intersection multiplicity (D, E), of D and E at p
by (D, E), = dim¢ Os,/(f,g9). If (D,E), = 1, then p is a node of D U E.
For example, let C' = {(21,22) € C?|2? — 28 = 0} € C? and D; = {(z1,22) €
C?|z; =0} Cc C* for i = 1,2. Then (C, D;), = dime Oc2 /(22 — 25,21) = 3 and
(C, Dy), = dimg Ocz,/ (27 — 23, 20) = 2.

Let C be a compact curve on S. Let o : C' — C be the normalization. For an
invertible sheaf £ on S, the intersection number £-C'is defined as dego* (LR O¢).
Let D = Z?:l m;C; be a cycle on S, where each C; is a compact curve. Then the
intersection number £- D is defined by £-D = >"""  m;L-C;. For any divisor E
on S the intersection number E - D is defined by E- D = Og(FE) - D. If D and
E are cycles on S, then we have the following (see Barth-Peters-Van de Ven [3,
11,10]):

(1) D-E=FE-D;
15



(2) if @« : Y — S is a proper morphism of non-singular surfaces, then
(a*D) - (a"E) = deg(a)D - E;
(3) if D and E are positive, and have no common component, then

D-E= ) (D,E),
peEDNE
For a divisor D and cycle E, we can naturally define the intersection number

D - E, and also obtain the properties (1) and (2) above. We denote by D? the

self-intersection number D - D.

Definition 1.23. A curve C on a surface S is called a (—n)-curve if C' = P!

and C? = —n.

Theorem 1.24 (Castelnuovo). Let C' be a curve on a surface S. Then C' is
a (—1)-curve if and only if there exists a blowing down f : S — S’ such that f
induces an isomorphism S\ C = 8"\ f(C) and f(C) is a non-singular point of
S’

Theorem 1.25. Let f:S" — S be a modification of non-singular surfaces.
Suppose that there exists a finite set F' of points on S such that f induces an
isomorphism S"\ f~Y(F) — S\ F. Then f is a finite sequence of blowing ups

S'=S,—S 11— —5=S
such that each S; — S;_1 is the blowing up with center a point.

Proof. See Barth-Peters-Van de Ven [3, 11, 7]. O

Proposition 1.26. Let o : Y — S be the blowing up of S with center
p€ S and E = a '(p). Let D be a positive divisor on S, Dy = a;'D the strict
transform of D and n = mult(D, p). Then we have the following:

(1) («*D)-E =0;

(2> Dl'E:n;
16



(3) If C and D are positive cycles on S, then
Cl‘Dl :C’D—mn,
where C; = a;'C and m = mult(C, p).

Proof. Since a*Og(D) is trivial near E, we have (1). The assertion (2) follows
from 0 = (a*D) - E = (Dy + nkE) - E, since FE is a (—1)-curve. The formula
(a*C) - (a*D) = C - D implies (3). O

Definition 1.27. Let D = Y " | C; be a connected cycle on S, where C;
are mutually distinct curves. Then the matrix (C; - C;) is called the intersection

matrix of D.

Theorem 1.28 (Artin [2, Proposition 2]). Let D be as above.

(1) If the intersection matriz (C; - C;) is negative definite, then there exists
a positive cycle Z =Y ¢ m;C; such that Z - C; <0 fori=1,...,n.

(2) Conversely, if there exists a positive cycle Z = Y m;C; such that
Z-C; <0 fori=1,...,n, then (C; - C;) is negative semi-definite, and
if in addition Z* < 0, then (C; - C}) is negative definite.

Theorem 1.29 (Grauert [8, p. 367]). Let D be as above. If the intersection
matriz (C; - C;) is negative definite, then there uniquely exists a blowing down
f: 8 — X such that X is normal and f induces an isomorphism S\D = X \{x},
where {x} = f(D). In this situation, we say that f contracts D, and that D is

contractible to the singularity (X, x).

1.3. Resolution of normal surface singularities

Let (X,z) be a surface singularity and f : (X, F) — (X, z) a resolution.
Then any cycle on X is supported in E. Let E = Ui, E; be the decomposition

of E into irreducible components. We denote by K5 the canonical divisor on X.

Theorem 1.30 (Mumford [21]). The intersection matriz (E;- E;) is negative

definite.
17



Definition 1.31. A resolution f : (X,E) — (X, z) is called a minimal
resolution if for any resolution f’ : X’ —»s X there exists a unique morphism

g: X' —> X such that f'= fog.
By the definition, a minimal resolution is unique if it exists.

Theorem 1.32. Let f : X — X be any resolution. Then the minimal
resolution of the singularity (X, x) is obtained from X by successively contracting

all (—1)-curves.
Proof. See Laufer [15, Theorem 5.9]. O

Definition 1.33. A good resolution f : (X, F) — (X, ) is called a minimal
good resolution if for any good resolution f’ : X’ —s X there exists a unique

morphism ¢ : X’ —» X such that f' = fog.

Theorem 1.34. For any surface singularity, there exists a unique minimal

good resolution.
Proof. See Laufer [15, Theorem 5.12]. O

Remark 1.35. From the minimal resolution, we obtain the minimal good
resolution by a finite succession of blowing ups (cf. Theorem 1.20 and Theo-

rem 1.25).

Definition 1.36. Let D be a reduced cycle on a non-singular surface. Suppose
that D has only simple normal crossings. Then the weighted dual graph of D
is the graph such that each vertex represents an irreducible component E; of D
weighted by E? and g(FE;), while each edge connecting the vertices corresponding
to E; and Ej, i # j, corresponds to the point E; () E;. For example, if E? = —;

and g(E;) = g; > 0 (resp. g¢; = 0), we write the vertex corresponding to F; as

e @)

[gi]

follows:

18



A graph obtained by removing the weights from a weighted dual graph is simply
called a dual graph.

Let (X,z) be a surface singularity and f : (X, E) — (X, z) the minimal
good resolution. Then the weighted dual graph of (X, x) means the weighted dual
graph of E. It is clear that giving the weighted dual graph of (X, x) is equivalent
to giving the information on the genera of the E;’s and the intersection matrix

(E’l * E]).

Example 1.37. Let C' be a compact curve with a cusp on a non-singular
surface. Suppose that C? = —d < 0. Then C is contractible to a surface singu-
larity by Theorem 1.29. From Example 1.22 and Proposition 1.26, we see that

the weighted dual graph of the singularity is as follows:

l9]
where m = —d — 6 and g = p,(C) — 1.
Definition 1.38. Let D be a reduced connected cycle on X having only

simple normal crossings. Then D is called a tree of curves if the dual graph of D

is a tree, and called a chain of curves if the dual graph is a chain.

Definition 1.39. A string S in F is a chain of non-singular rational curves
Ey,...,Eysothat E; - E;;; = 1forv=1,...,k — 1, and these account for all

intersections in E among the E;’s, except that FE; intersects exactly one other

E1 E2 Ek

curve.
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Definition 1.40. Suppose that f : (X, E) — (X, ) is the minimal good
resolution. The weighted dual graph of (X, z) is called a star-shaped graph, if £
is not a chain of rational curves, and if £ = Ej +Zf:1 S;, where Ej is a curve and
S; are the maximal strings. Then Ej is called the central curve, and S; are called
branches. Let 5; = U§;1 E;; be the decomposition into irreducible components,
where Ey - By = Ej; - Eij41 = 1. Let g = g(Ep), b= —Ej and b;; = —Ef] Then

we obtain the weighted dual graph in Figure 1.2.

By, |
| /—branches

&

Eg;,

FIGURE 1.2. A star-shaped graph

For each branch S;, the positive integers e; and d; are defined by

d; 1
— = Hbib cee 7bin“ = by —

bo =~
a biri

where e; < d;, and e; and d; are relatively prime. We call the set

19:0,(d1,e1),...,(ds, e5)}

the data of the star-shaped graph.

Remark 1.41. Let D be a reduced connected cycle on a non-singular surface.
Suppose that the weighted dual graph of D is represented as in Figure 1.2. Then
the intersection matrix of D is negative definite if and only if b > S27_ (e;/d;)

(cf. Pinkham [28, p. 185])
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Definition 1.42. Divisors D and C on X are said to be f-numerically equiv-
alent, written D = C|, if (D — C) - E; = 0 for all E;. For a divisor D, —D is said

to be f-numerically effective, or f-nef for short, if D - E; < 0 for all E;.

Lemma 1.43. Let D be an f-nef cycle. Then D = 0, or D < 0 and
Supp(D) = E.

Proof. Suppose that D # 0 and write D in the form D = B—C, where B and C
are effective cycles without common components. Thus B-C' > 0. By assumption,
we have B2 — B-C = D - B > 0. Thus B? > 0. Since the intersection matrix
is negative definite, B = 0. If Supp(C) # E, then there exists a component FE;
such that C'- E; > 0 since E is connected. Hence Supp(D) = E. O

Definition 1.44. A positive cycle Z on X is called a fundamental cycle if

—Z is f-nef and for any positive cycle D with this property, Z < D.
Theorem 1.45. There exists a unique fundamental cycle Z.

Proof. By Theorem 1.28 there exists a positive cycle D such that —D is f-nef.
Let D ="  d;E; and C' =Y " | e;E; be cycles having such the property. Let
a; = min{d;,e;} and F = Y "  a;E;. It suffices to show that —F is f-nef. If

CL]' = dj, then

F-Ej=dE?+Y aFB B <d;E}+Y d;E-Ej=D-E; <0.
i#j i#j

Hence —F' is f-nef. ([l

Proposition 1.46. The fundamental cycle Z is computed via a computation

sequence for Z:

leEi --7Zj:ijl+Eij7---7Zt:thl—i_Eit:Zv

17"

where E;, is arbitrary and Z; 1 - E;, > 0 for 1 <j <t.
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Proof. Let Z' =} a;F; and Z = )" | a;F;. Suppose that Z' < Z and a; = a;.
Then by the argument in the proof above, we obtain that Z'- £, < Z - E; < 0.
This implies that Z; < Z for any Z; occurring in a computation sequence. Hence

any computation sequence reaches the fundamental cycle. 0

Example 1.47. Suppose that (X, z) is a surface singularity and f : (X, E) —
(X, z) aresolution of (X, x) such that the weighted dual graph of the exceptional

set F is as follows:

E,
E, By
E3

Let Zy = By, Zo = Zy + Ey, Zs = Zo+ Ey, 74— Zs+ Es, Zs = Za + Eo, Zs —
Zs + Eo, Z7 = Ze + Ey, Zg = Z7 + Ey, Zg = Zg+ Eo, Z1g = Zg + Ey, Z11 =
Zw+ E1, Zio = Z11 + Ey = Z. Then {Z;} is a computation sequence for the
fundamental cycle Z on X. In fact, Z1-E1 >0, Zy-FEy >0, Z3-E3 >0, Zy-Ey >
0, Zs - Ey >0, Zg-E1 >0, Z7-Ey >0, Zg-FEy >0, Zg-Ey >0, Z1g- E1 >
0, Z11-Ey>0and Z-Ey=0, Z-F, =0, Z-E;=0, Z-FE3=—-1<0. We
obtain that Z = 6Fy + 3E; + 2E5 + Es.

Proposition 1.48. Let g : X' — X be a modification, where X' is a non-

singular surface. Let Z and Z' be the fundamental cycles on X and X', respec-

tively. Then Z' = g*Z.

Proof. By Theorem 1.25, we may assume that g is the blowing up with center

p € E. Let E! = g_'E;, the strict transform of E;, and E' = g~ !(p). Then

—¢*'Z El=—¢*'Z-¢"E; = —-Z-E; > 0.
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Hence —g*Z is fogmnef and 7' < ¢*Z. Let Z' = > " a.E! + VE' and ¢*Z =

i=1 "1

>, a;El 4+ bE'. Suppose that a} < a; for some i. Then

n

9.Z' = aE; < zn: wkE; = Z.

i=1 =1

Thus there exists a component £; such that
0<g2'-Ei=g(92) gL =g(92) Ej

Let cE' = g*(9.2") — Z', ¢ € Z. Since (9*(9.2') — Z') - E} > 0, we have ¢ > 0.
But this implies that 0 = ¢*(¢.Z") - B/ = (Z' + cE’) - E' < 0. Hence we obtain
that a; = a; for all i. Since 0 > Z'-F' = (Z' — ¢g*Z) - E' = =V + b, we have
v =0b. O

Let (X, z) be a normal surface singularity and f : (X, E) — (X, z) a resolu-
tion with exceptional set E. For any non-zero function h € Ox ,, the zero divisor

of ho f is written as
diVj((h) = diV_;((h @) f) = (h)E + H

where (h)g is supported in £ and H does not contain any irreducible component

of F.

Definition 1.49 ([37]). Let m be the maximal ideal of the local ring Ox .
Then the smallest positive cycle among the cycles (h)g, h € m\ {z}, is called the

maximal ideal cycle.

Remark 1.50. The fundamental cycle Z is a topological invariant of the
resolution, in fact, it is determined by the weighted dual graph of exceptional
set E. The maximal ideal cycle Z,, is an analytic invariant of the resolution
and cannot be determined by the weighted dual graph of £ in general. We have
7 < Zu by the definitions of these cycles.
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1.4. Cyclic quotient singularities

In this section, we introduce the cyclic quotient singularities and their funda-

mental facts.

Definition 1.51. Let n and u be positive integers with 1 < n and ged(n, u) =
1. Let €, denote the primitive n-th root of unity exp(2mv/—1/n). Then the

singularity of the quotient

is called the cyclic quotient singularity of type C,, ..

A non-singular point is regarded as of type Ci. For integers ¢; > 2, i =

1,...,r, we put

Co —

Cr
Lemma 1.52. Ifn/u = |[c1,...,¢]], then the weighted dual graph of the min-

imal resolution of the cyclic quotient singularity of type C,, is as in Figure 1.5,

(Hz)ggﬁ} o 4@([{1)

El Er
FIGURE 1.3.

where all prime exceptional divisors E; are rational and H; denotes the strict
transform of the image of the coordinate axis {x; = 0} C C? by the quotient map,

and (H;) the vertex corresponding to H;.

Proof. See Brieskorn [4]. O
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It is known that the complex structure of quotient surface singularity is de-
termined by its resolution graph (cf. [4], [16]).

In the situation above, for any positive integer Ay, let

L(/\Q) = {)\0E0 + Z szz

i=1

my,...,m, € Z},
where Ey = Hs. Then we define a set D()g) as follows:

D(No) :={DeL(N)| DE; <0,i=1,...,r}.
We see that D(\g) is not empty and has the smallest element.

Lemma 1.53 ([18, Lemma 2.2]). Let D € D()\y). Assume that DE; =0 for
i <r and DE, > —1. Then D is the smallest element of D(\).

Proof. Suppose that Dy € D()\g) is the smallest element. Let A = D — D.
Then

(1.1) AE, = (D — Dy)E, > —1.
Assume A = Y""_, m;E; and my, # 0. Then
AE; = mj_y —cim; + My (Mp—1 = myyq = 0).

For 1 <i <r,since AE; = (D — Dy)E; = —DoE; > 0 and ¢; > 2,

Miy1 2 My — M1 > my + (m; —m;_1).
Therefore, m;; 1 > m; for k —1 <4 <r, and

ANE. =m,_ 1 —cm, <m,(1—¢) < —1.
It contradicts (1.1). O

For any = € R, we write [z] = min{t € Z | x < t}. Let ¢; := [[cs, ..., ¢ ]] for

1<i<r ,thenc =€ +1/e; for 1 <i<randec, =e,.
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Lemma 1.54 ([13, Lemma 1.1)). Take a positive integer Aoy and define the
sequence {\;}i_, by the recurrence formula N\; = [Ni_1/e;] for 1 < i <r. Then
the cycle Y ;o NE; is the smallest element of D(\o).

Corollary 1.55. Let Yy and Y, be the smallest element of D(X\o) and D(),),
respectively. Then Yy > Yy if and only if Ao > \q.

Proof. If Yy > Y{, it is clear that Ay > A{.
Conversely, assume that Ao > A;. Then A\ = [Ao/ei] > [No/ei] = AL

Suppose that A\, > )\;€ for some integer k with 1 < k < r. Then

Mer1 = [Ae/eria] > W/mﬂ = )‘;c+1'

By induction, we have \; > )\; for any ¢ with 1 <17 < r. Therefore, Yy > Yol. O

Lemma 1.56 ([13, Lemma 1.2]). Let the sequence {\;}i_, be as in Lemma 1.5/,
and for 1 < i < r, take relatively prime positive integers n; and u; satisfying
ni/p = €. Put \yq := A\ — Nq.

(1) If i1 = Aic; — Niyq holds for 1 <i <, then A\; = (uXo + Ari1) /1.

(2) If \o = 0 (mod n), then \; = pri_1/n; for 1 <i<r. If uhg+1=0
(mod n), then A\; = (uiXi—1 +1)/n; for 1 <i<r.

(3) If either \g =0 (mod n) or uro+1 =0 (mod n), then \i_1 = N\ic;— A1
holds for 1 < i < r. Furthermore, A\,11 = 0 when \g =0 (mod n), and
A1 =1 when pXg +1 =0 (mod n).

(4) If Ao = 0 (mod n), then A\, = Xo/n. If pro +1 = 0 (mod n), then
Ar = [Xo/n].

Proof. (1) Note that we have n; = n, p; = g and ¢, = n,, u, = 1. Suppose
Aict = N — Ay for 1 <o <r. Put npyy = 1, 0y = 0. For 1 < ¢ < r, since

ged(niy1, pliva) = 1 and

ni L engp — piga
T YT g T )
M it Nit1



we have p; = n;y1 and n; = ;N1 — fis1 = CNjr1 — Nijso. Thus,

(Ao + Arg1)/n = (pAo + Arcr — Ar1) /1
= (Hfl)\ﬂ + ()\7"—107”—1 - )\r—2)nr - Ar—l)/n
= (/jll)\() + )\r71<cr71nr - 1) - )\7"72”1")/”

= (1 Ao + AM1np—1 — Apsany) /1

= (11 Ao + Ainy — Aong)/n
- )\1.
(2) Suppose A\g =0 (mod n), then Ay = [Ao/e1] = [1Ao/n1] = p1ro/n1.
Assume that Ay = pgAx—1/ng for some integer k with 1 < k < r. Then
A1 = [An/err] = [frra Ar/nigr |
= [ pgy1fe A1/ (M) |
= [ 1 Me—1/10 |
Since ged(ng, pe) = 1, we have A\gp1 = prgi Ae—1/ Mk = M1 Ak / ke = 41N/ Mkt -

By induction, we have \; = pu;\;_1/n; for 1 <i <.

Next, we suppose that gAg+ 1 =0 (mod n). Then

A= [Ao/er] = [mdo/ma] = [(rdo + 1)/ma — 1/ni] = (X + 1)/na.

Assume that A\; = (u;Aj_1 + 1)/n; for some integer j with 1 < j < r. We have

Mj+1

,lj,j+1/\j+1 = )\J—i‘l

Cj+1
= njpa(c; — €)X +1
;
=njlc——]\+1
J ( J M]) J
ny
= NjGA; = Ny - — + 1
J
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_ \ nj  HiA 1
= Wj+16i A — Mg+1 - — -
Hj nj

+1
= nj+1cj)\j — ,uj)\j—l -1 + 1
=141 = Aj-1)

= Nj1Aj41-

By induction, we have \; = (u;\i—1 +1)/n; for 1 <i <r.
(3) Suppose that A\g = 0 (mod n), then we have \; = p;A;i_1/n; for 1 <i <r
from (2). Thus

Aici = Aig1 = Aici — Aifeivr = Nici — Ni(ci — ;) = Miei = (A1 /ei) e = Ai1.

Assume that pXg + 1 =0 (mod n), then \; = (u;A\j_1 +1)/n; for 1 <j <r
from (2). Thus

Ajcj = Njr1 = Aj¢ — (i + 1) /nj4

1
= Xjcj — Aj(ej —€5) — —
Mj+1
. ,LLj)\j—l +1 & _ 1
U Hj o Tl
1 1
- /\j—l + - — - )\j—l
Hj M+t

When Ay =0 (mod n), we have
Arp1 = MG — App = ,ur)\r—lcr/nr — A1 =AM = Am1 =0,
When pXAg+1=0 (mod n), we have
Aei1 = MG — N1 = (e + D)6/ — g =AM+ 1= A =1

(4) Let i’ be the positive integer determined by py =1 (mod n) with 1 <
¢ <mn. Then n/p = [[cry ..., c1]]. Thus, by (1), we have A\, = (' N + Xo) /.
When Ay =0 (mod n), we have A\, = 0 from (3), and then A, = A\g/n.

When phg +1 =0 (mod n), we have A, = (1’ + X\g)/n = [Ao/n] following
(3) and the definition of p'. O
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1.5. Results of Konno and Nagashima

In 2012, Konno and Nagashima consider the Brieskorn hypersurface sin-
gularities (Vip.a1.00,0) = ({20° + 21" = 25°},0), where a;’s are integers and
2 < ap < a; < ag, and give the concrete descriptions of the fundamental cycle
and the maximal ideal cycle over (Vj, 41.40,0). We consider the two-dimensional
Brieskorn complete intersection singularity which is a generalization of Brieskorn
hypersurface singularity. In order to compare with the results of Konno and Na-
gashima, we mainly review the main results of Konno and Nagashima in this
section.

Let f = al" + :L‘?j and let C' C C? be the plane curve defined by f = 0. We

define the positive integers d, n; and ny as follows:
d :=lem(a;, a;), ni = a;/ ged(a;, a;), ne = a;/ged(ai;, a;).
In addition, we define the non-negative integers ji1, uo by the following conditions:

nopy +1 =0 (mod ny), 0 < py <ny,

nipes +1=0 (mod ny), 0 < py < no.

Let ¢ : Y — C? be the minimal embedded good resolution of the curve
singularity (C,0) with exceptional set F' and C the strict transform of C. Using

a result in [34, Theorem 2.3|, Konno and Nagashima give the following results:

e [ is a chain of rational curves with unique (—1)-curve Fj.
e The multiplicity of the zero divisor divy (f o ¢) along Fj is d.

e The strict transform C of C has ged(a;, a;) irreducible components.

The weighted dual graph of the minimal embedded good resolution of C' is
given as in Figure 1.4.

In the Figure 1.4, F,,,,, is the exceptional curve arising from C, with

msHm
self-intersection number —cy, ,,,, where ny, /= [[Cm.1, - -+ Cmos,y )], a0d Py, 18
the multiplicity of the zero divisor divy (f o ¢) along F,,,,,, where m = 1,2 and

1 < vy < s (see [13, §2]).
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FIGURE 1.4.

For i € {0, 1,2}, we define the integers [, I;, «; as follows:

d(a; Z.
I = ng(a07a’17a2)7 li = w7 Q1= lcz I ({Z7j7 k} = {07 172}>
ilk

Furthermore, we define pg, p1, p2 be the integers determined by
picagl; +1=0 (mod o), 0<p; <« {i,7,k} ={0,1,2}.
When a,, > 1, we put o, /py = [[dwi,dw2s - - -, dwr,]]. For w e {0,1,2}, let

Cw,y = Hdw,uy dw,u+17 s 7d’w,7“w]]7

where 1 < v < r,.

By [27], there exists a resolution 7 : (X, Ey) — (Vag.ay.ap,0) Where E; :=
77 1(0) is the exceptional set such that the weighted dual graph of E, is as in
Figure 1.5.

Theorem 1.57 ([13, Proposition 1.3, Theorem 2.1]). The genus g and the

self-intersection number —dy of Ey are given respectively as follows:

2
wlw 1
yrmhy 1)
(67 (6718518 %)

w=0

29 —2= l(lolllgl — l[) — ll — l2)7 do = (
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FIGURE 1.5.

Furthermore, let Z*) = (v;)p., k=0,1,2. Then

2 rw  lwl
Z® = ANVE + 33 N A Buse (0<k<2),
w=0 v=1 ¢=1

where )\(()k) and the sequence {Afjff,g} are determined by the following:

/\z(f,)o,g =\ = eyl ({i, 4, k) = {0,1,2}),

*) 1 ifw=k,
)\w,rw—l-l,f =
0 ifw#k,
k k k
Afu,zj—Lg = )\’EU,)ll7fdw7V - Afu,)m,g-
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Lemma 1.58 ([13, Lemma 3.8)). We have —(Z®)? = ljl[a;cjli/ay ], where
{i,j,k} ={0,1,2}.

Theorem 1.59 ([13, Theorem 1.4]). Let

2 rw  lwl

7 = 90E0 + Z Z Z ew,u,éEw,u,f

w=0 v=1 £=1
be the fundamental cycle for resolution w. Then 0y and the sequence {0y, ¢} are

defined by the following:
apaiay if ap <y,
011,70’5 = 90 =

apgoly if ag > 1y,

Qw,u,f - (Qw,y—l,f/ew,V17 1 S v S Tw-

Proposition 1.60 ([13, Proposition 1.6]). The self-intersection number of

the fundamental cycle is given by

72 lagorap if ay <y,

Lllaganly/as] if ag > ls.
Lemma 1.61 ([13, Theorem 3.2]). We have Z = Z® if and only if ag > Is.
The arithmetic genus of the fundamental cycle Z, namely,
1—x(2)=(1)2)Z(K3x +Z)+ 1

is called the fundamental genus of (Vg a;.4,,0). This invariant is independent of

the resolution and denoted by py.

Theorem 1.62 ([13, Theorem 1.7]). The fundamental genus ps of (Vag.ay.a0:0), 2 <
ag < ay < ag 18 giwen as follows.

(i) If g < lo, then

1
pr= §l {lem(ao, ar, az) — araslo — awanly — apanly — aparas + 11 + 1.
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(ii) If ag > 1o, then

Py = % {(ao (e - 1) — (2 [%ﬂ _ 1) sed(ag, ar) + 1} |

0]
Theorem 1.63 ([13, Theorem 3.1]). We have 2 < 71 < ZO) " In partic-

ular, Z®) is the maximal ideal cycle for resolution .

Theorem 1.64 ([13, Theorem 3.2]). The mazimal ideal cycle coincides with

the fundamental cycle for resolution m if and only if ay > 5.

Example 1.65 (ay > ly). If (ag, a1, a2) = (6,20,45), then I =1, [y =5, [; =
3, lb=2,a00=1, ay =2, as =3, po =0, pp =1, po = 2. By Theorem 1.57, we
obtain that dy = 3 and g = 11. Hence the weighted dual graph of the maximal
ideal cycle Z® is as in Figure 1.6.

2
S
2

FIGURE 1.6.

Note that we have ay > I3, and by Theorem 1.59, Theorem 1.63 and Theo-
rem 1.57, we can compute that the fundamental cycle coincides with the maximal

ideal cycle. Furthermore, following Theorem 1.62, we have p; = 45.

Example 1.66 (as < ly). If (ag, a1, a2) = (15,18,20), thenl =1, Iy = 2, [} =
5 lhb=3, a0=1, a1 =3, ap =2, po =0, p1 =2, po = 1. By Theorem 1.57, we
obtain that dy = 5 and g = 11. Hence the weighted dual graph of the maximal
ideal cycle Z®? is as in Figure 1.7.

Following Theorem 1.59, we obtain that the weighted dual graph of the fun-

damental cycle is as in Figure 1.8.
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FIGURE 1.7.

FIGURE 1.8.

From Figure 1.7 and Figure 1.8, we have that the maximal ideal cycle Z®)
does not coincide with the fundamental cycle Z. Moreover, by Theorem 1.62, we

obtain that p; = 72.
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Chapter 2

The main results

In this chapter, we consider a germ (X, 0) C (C™,0) of a complete intersec-

tion singularity of Brieskorn type defined by
X = {(xz) € (jm|qjlx{ib1 +-+ Qjmx?nm =0, ] = 37 .. - 7m}7

where a; > 2 are integers. We assume that (X, 0) is an isolated singularity. Then
(X, 0) is a normal surface singularity by Serre’s criterion for normality. Neumann
[24] proved that the universal abelian cover of a weighted homogeneous normal
surface singularity with rational homology sphere link is a complete intersection
surface singularity of this type. The aim of this chapter is to identify the maximal
ideal cycle on the minimal good resolution of (X, 0). We give concrete descriptions
of the maximal ideal cycle and the fundamental cycle, and a condition for the
coincidence of these cycles.

This chapter is organized as follows. In Section 2.1, we give the construction
of a partial resolution of (X,0) with cyclic quotient singularities. In Section
2.2, we compute the zero divisors of the pull-back of the coordinate functions
X1,Ta,...,T,. In Section 2.3, we compute the fundamental cycle, the canonical
cycle and the fundamental genus. In Section 2.4, we identify the maximal ideal
cycle and give a condition for the coincidence of the fundamental cycle and the
maximal ideal cycle. In Section 2.5, we give a condition for (X, 0) to be a Kodaira

singularity following Konno and Nagashima.
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2.1. The construction of a partial resolution with cyclic

quotient singularities
Definition 2.1. A Brieskorn polynomial is a polynomial of the form
ari*+ -+ eparrm, ¢ eC
where a; > 2 are integers for i = 1,...,m.

Let (X,0) C (C™ 0) be a germ of a complete intersection singularity of

Brieskorn type defined by
X = {(zz) € Cm|lefE(f1 +-+ Qjmx;ilm =0, j = 37 S 7m}a

where a; > 2 are integers. We assume that (X, 0) is an isolated singularity; this
condition is equivalent to that every maximal minor of the matrix (g;;) does not
vanish (see [10, §7]). Therefore, by row operations and a diagonal linear change

of coordinates, we may assume that

p3 qg¢ —1 0 --- 0

pa q@ 0 -1 --- 0
@)={. . . |

Pm ¢m O O oo —1

where p;, ¢; # 0 and piq; # pjq; for i # j.

Suppose that f : X —» X is the minimal good resolution and E the excep-
tional set. Assume that E is not a chain of rational curves. Then the dual graph
of E is star-shaped. Let E, denote the central curve of E and f’': X — X’ the
morphism which contracts the divisor E — Ey C X. Then X’ has cyclic quotient
singularities along the exceptional set E' := f'(Ey) and f’ is the minimal resolu-
tion of those singularities. Thus we can read the weighted dual graph of F from
the information of £/ C X’ and those cyclic quotient singularities.

In [13, §2], Konno and Nagashima constructed a good resolution of the hy-

persurface singularity {x]* + z5? = x5*} via cyclic covering as an application of
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Tomaru’s results [36] and [34]. We adopt their method to obtain a good resolu-
tion of (X, 0) and the information of the divisors on it.

The singularity (X, 0) can be obtained by a sequence of branched cyclic cov-
erings over C? as follows. Let f; = p;ja + ¢ja5? for j = 3,...,m. Put Xy = C?
and X, = {fy = 2}*} C Xy—1 x C for k > 3, where z;, is the coordinate function

of the second component C. Then we have the sequence of coverings
X=X, — X, 11— — X,=C%
We shall construct the sequence of branched coverings

> rr > Tm—1 3
X — X1 mT L. > Xo,

where X, is a partial embedded resolution of the branch locus of X3 — X5 = C2,
and for each k > 3, X, is a partial resolution of the singularity of X, with
irreducible exceptional set and cyclic quotient singularities. Then we obtain that
X' =X

For 2 <k <m and 1 <1 < k, we define positive integers d;;, n; and e;, as

follows:

di, - =lem(aq, ..., G5, ..., a),
PR— az
Mk = = ged(ag, dig)’
di;
Cik -

- gcd(ai, dzk) ’
(The symbol “in the definition of d;; indicates an omitted term.) In addition, we

define integers p;; by the following condition:
(2.1) eictbic + 1 =0 (mod ny), 0 < i < ngg.
We also write

dp—1 = dig, dp = lem(aq, ... any),

N ‘= Ngk, €k ‘= €kk, Kk ‘= HUkk-
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We can easily see that

(2.2) dy, = digni, = a;eqp,

(2.3) ged(na,njp) =1 (1<i<j<k<m).

Let f; = x; for i € {1,2}, and f; = pjal* + q;x5? for i € {3,...,m}, where
pinqi # 0 and pig; # pjq for i # j. For i € {1,...,m}, let C; C C* and
C C C? be the plane curves defined by f; = 0 and [[}", fi = 0, respectively.
Then C' = 3", C; is a reduced divisor.

Lemma 2.2. Let ¢ : Y — C? be the minimal embedded good resolution
of the curve singularity (C,0) with exceptional set F. Let C; C'Y be the strict

transform of C;. Then we have the following.
(1) F is a chain of rational curves with unique (—1)-curve. Let Fy C F
denote the (—1)-curve.
(2) U, C; does not intersect any component of F — Fy.
(3) Cy and Cy intersect distinct ends of F if I is not irreducible.
(4) Fori >3, each C; has ged(ay, az) components.
(5) The multiplicity of the zero divisor divy (f; o ¢) along Fy is e; for i €
{1,2}, and dy for i > 3.
(6) For i € {1,2}, the weighted dual graph of the minimal connected chain

of curves with ends Iy and C; is as follows:
() X @)
where N/ iz = [[Ci1, - - -, Cis,]]-
Proof. From the above notation, we have
dy = lem(aq, as),

Nig = €22 = a1/ng(CL1, Gz)a

Ngg = €12 = a2/gcd(a1, az)-
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Let f/ = %2 for i € {1,2} and f/ = pa® + 7% for i € {3,...,m}. For
i€ {l,....,m}, let C! C (C2 and C' C C2 ) be the plane curve defined

1’1 1’2 ml ;X2
by f/ = 0 and [, f/ = 0, respectively. Let ¥ : Cle ) CQI1 4y D€ the
holomorphic map defined by 1 = 272, x5 = 5. Since dy = ajas/ ged (aq, as) =
ajnge = asniz, we have W(C’) = C. The map ¥ can be regarded as the quotient

map by the natural action to (C2 of the group

1'1 x2

G:< €nyy 0 1 0 >
0 1 0 €ny,

where €,,, is the primitive n,-th root of unity exp(27wv/—1/n;2) for i € {1,2}.

Let & : N — (sz _ be the blowing up at the origin 6 of C? and

(Z1,%2)
E = ®7'(5) the exceptlonal set. Then N is covered by two open sets U, and
U,, each of which is isomorphic to C2. The action of G is lifted onto N through

®’. From (2.1), we have

epptiz + 1 =0 (mod ny2), 0 < g < ngo,

€922 + 1=0 (I'IlOd TLQQ), 0< Lo < Ngg.

Then, from [34, Theorem 2.3], we can easily see that the quotient space N/G is
covered by two cyclic quotient singularity spaces Uy /G and U, /G whose respective

types are Cy,,, ,,, and C, also the cyclic quotient singularity of type C,

n22, /»1'227
(resp. Chpy ) 18 located on 1 (E) N (P CY) (resp. ¢(E) N(P','Cy)) and
Y(E) ~ P! where ¢ : N — N/G is the quotient map. Furthermore, for i €

{3,...,m}, we have that ¢ (®', "C?) does not intersect )(®', " C") and (', ' C}).

12,M412

Let n : Y — N/G be the minimal resolution of those two cyclic quotient
and C and ® : N/G — C{, ) the natural

singularities of type C, a2, (192
map to C{, .- Then ¢ = ®on:V — C}

12,H412

(x1,22) 81VES US the mmlmal embedded

good resolution of the curve singularity (C,0) with exceptional set F'. Thus we
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have the following diagram:

_ ol

N (71,72)
P l v
_ o 9
N/G C(m,wz)
n

]
Y

We see that the strict transform of ¢ ( E) by 7 is necessarily the unique (—1)-curve.
Thus we have (1), (6) and (2). Following (6), we have (3).

Fori € {3,...,m}, the strict transform &' C? of C! by & consists of disjoint
dy branches, each of which intersects E transversely at a point. Then (&', C")
consists of dy/(nagnis) = ged(aq, ag) irreducible components, each of which inter-
sects 1(E) transversely at a point, and then the strict transform C; of C; intersect
Fy transversely at ged(aq, az) distinet points by ¢ for ¢ € {3,...,m}. Hence (4)
holds.

The multiplicity of f{o®’ along E is s for i € {1,2} and dy fori € {3,...,m},
then the multiplicity of f; o ® along (FE) is also em for i € {1,2} and d, for
i € {3,...,m}, and then the multiplicity of f; o ¢ along Fy is e; for i € {1,2}
and dy for i € {3,...,m}. Thus we have (5). O

Example 2.3. Let fi =z, f» = y and f3 = 23 + y*. Then dy = lem(3,4) =
12, nis = eg = 3/ged(3,4) = 3, nog = €19 = 4/ged(3,4) = 4, p2 = 2 and
poe = 1. For i € {1,2,3}, let C; C C? and C' C C? be the plane curve defined by
fi=0and Hle fi = 0, respectively. Let ¢ : Y — C? be the minimal embedded
good resolution of the curve singularity (C,o0) with exceptional set F'. Then the

weighted dual graph of the exceptional set F' is a chain of rational curves with
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unique (—1)-curve Fy which is as follows:

For i € {1,2,3}, let C; C Y be the strict transform of C;. Then the weighted

A ()

dual graph of the minimal connected chain of curves with ends F and Cy is as

follows:

2 @ (o) (o) o
: @
and the multiplicity of the zero divisor divy(z o ¢) along Fj is e;o = 4. The

weighted dual graph of the minimal connected chain of curves with ends Fy and

Fo (-1 ——(-4)— (&)

and the multiplicity of the zero divisor divy (y o ¢) along Fj is ess = 3. The strict

C, is as follows:

transform C3 of C3 has ged(3,4) = 1 component which intersects Fy transversely

at a point and the weighted dual graph of ¢*C} is as follows:

8 4
n ()
€ —(-1
RS

Following the situation of Lemma 2.2, let n : ¥ — X, be the morphism

which contracts the divisor F' — Fy C Y. Let D; o = n.(C;) and Fy = n,.(Fp). By
and C,

n22,M122 "

Lemma 2.2, X, has only two singular points of types Cp,, s

Let ® : X, — C2 be the natural projection and let fi2 = fj o ®. Suppose
that X, and {f;x} are obtained for 2 < k < m. Then we define Xpi1 to be the
normalization of a surface {fri1x = xZ’fll} C Xi x C, where we regard zxy1 as

the coordinate function of the second component C. Let 7,1 : X kel — X, be
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the natural morphism and f;x11 = fjx 0 mps1. Let Fy (resp. Dj;j) denote the
fiber of F, (resp. Dj3) on Xi. We have the following commutative diagram:

~ Tm Y4 e

(vaFm) (XS,F:%) - (X%FZ)

l l l

(X,0) =— (X, 0) (X3,0) (Xg,0) == (2

Theorem 2.4 (Tomaru [36, §3|, cf. [13, Theorem 2.2]). Let (U,0) be the
cyclic quotient singularity of type C,, ,, m the mazximal ideal of Oy,, and h € m.
Assume that the zero divisor of the pull-back of h on the minimal resolution of

(U,0) has the weighted dual graph as in Figure 2.1,

£o P1 Ps Ps+1

(Ho)g@ SR 4@7(Hs+1)

FIGURE 2.1.

where n/p = [lc1,...,¢l], HoU Hgyy is the strict transform of {h = 0} with
irreducible components Hy and Hyyq, and the p;’s denote multiplicities (if n = 1,
then (U,0) = (C%0) and s = 0). Let a be a positive integer. We define integers
a and p as follows. Let

— a - nng((I?pOaph'"ups-i-l)
a = , =
ng(CL, lcm(p07 ps+1)) ng(CL, Po, ps+1)

and o = an. Then p is defined by the following condition:

p= s )7 (mod o), 0<p<aq,

a
e
ged(a, psi1) ged(a, psi
where B and v are integers determined by

a Po
—— =1 (mod cd(a, , 008 < ——,
ecd(a, po)ﬁ ( po/ ged(a, po)) B ged(a, o)

Po y= a
ng(CL, 100) ng(CL, 100)

Then the normalization W of the a-fold covering of U defined by z* = h has

exactly ged(a, po, - - ., pss1) connected components. Each component W; of W has
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a cyclic quotient singularity of type Co,, and the divisor of the function z on W;

has the multiplicity ) along the fiber of H; for j =0,s+ 1.

Example 2.5 ([36, Example 3.5]). Let (U, 0) be a cyclic quotient singularity
of type Cso7 and h an element of the maximal ideal m of the local ring Oy, such
that the zero divisor of the pull-back of h on the minimal resolution of (U, 0) has

the weighted dual graph as in Figure 2.2.

30 15 21 27 60

9
0 — DB

FIGURE 2.2.

Let W be the normalization of the 45-fold cyclic cover of U defined by 2% = h.

Since a = 45, py = 30, and ps = 60, we have
ged(a, po, ps) = ged(45,30,60) = 15,

ged(a, po, p1, P2, P3, P4, ps) = ged (45, 30,9, 15,21, 27,60) = 3,

4
WX3 5 az > — 3, a=qa=18.

15 ged(45,1em (30, 60))

n =

Then f =~ =1and p= 7. Hence W has exactly 3 connected components. Each
component W; of W has a cyclic quotient singularity of type Cig 7, and the divisor
of the function z on W; has the multiplicities m =2 and m = 4 along

the fiber of Hy and Hs, respectively.
Lemma 2.6. For2 <k <m and j > k, we have the following.
(1) X, and Fy, are non-singular outside Fj, N (Uzgk le)
(2) Each of the divisors D, and Dyy1 j+1 has Hf:z ged(ag, d;—1) components.
(3) Every point x € Fy, N Dy, is of type Cy, . and the dual graph of the

minimal embedded good resolution of the germ of the curve singularity

(Fp U Dy, ) C (Xy, ) is as follows:

(Fk)g@ SR @7([7%)
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where Fy, and Dy, denote the strict transforms, and ny,/jy, = [[c1, .. ., ¢s]].
(4) divg, () = exFy, + Dy
(5) divg, (fix) = diFk + Dy
(6) Fj is irreducible.

Proof. In case k = 2, the assertion follows from Lemma 2.2. Assume that it holds
for some k£ > 2. Let « be a point of Fj, N D, and U C Xk a sufficiently small
neighborhood of . Then the point = € X}, is of type C1,0 and the multiplicity of
fr+1k along Fy is dj by the assumption. We apply Theorem 2.4 to the germ (U, z)
and the covering xZ’fll = fr+1k; then o in the theorem is ny11 = ngr1p+1. Let W
be the normalization of the covering. If j > k+1, putting (s, po, ps+1) = (0, dx, 0),
we obtain that W has exactly ged(ayy1,dg) components, which are non-singular.
Thus (1) holds by induction. Suppose j = k + 1 and put py = dj and p; = 1.
Then W is an irreducible surface with a cyclic quotient singularity of type Cy,; .,
and diviy (z;) = €;Fj + D;;. These imply (2), (3) and (4). It also follows that
Fy is locally irreducible. Since X, is a partial resolution of a normal surface

singularity, the exceptional set F}, C X}, is connected. Hence (6) holds. We have
ajdiv (z;) = divw (f;;) = (m5lw)* (dr Fr + Djp)-
By (2.2), we have 7}, (diFy) = dj41F11. This proves (5). O

For 1 <i < m, we define integers g and g; as follows:

. ap -

. lem(ay, ..., a,)

a/l...a/i-..am

G; == - )
"o dlem(ag, ..., 4y, Q)

For m = 3, we have ged(ag,di) = ged(ay,a) = g3 = _ M2 e
lem(ag, az)

assume that Hf:_zl ged(ag, di—1) = gx for some integer k with 3 < k < m. Then

k
[ ecd(ai dicy) = gi - ged(ar, disr) =

1=2

al--.ak

lem(ay, ..., ay) = Ikt
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Thus, by induction, we have Hzgl ged(a;, di—1) = Gm, and Lemma 2.6 immedi-

ately implies the following.

Lemma 2.7. Let X' = X,,, E' = F,,, and D; = D; . Then we have the

following.

(1) Every D; is reduced and D = J:*, D; is a disjoint union of irreducible
components.

(2) The set of the singular points of X' is a subset of E' N D.

(3) D, has g, components.

(4) Suppose v € E' N D,,. Then z € X' is a cyclic quotient singularity of

type Cp, and the weighted dual graph of the minimal embedded good

mHm

resolution of the germ (E'U D,,,x) C (X', ) is as follows:

(B) —Ceay— -+ —(a)— (D)

where E' and D,, denote the strict transforms, and n, /jm = [[c1, . . ., ¢J]].

(5) dimx/ (zm) = enE" + Dpy,.

2.2. Zero divisors of the pull-back of the coordinate

functions

We use the same notation as in Section 2.1. Let f': X — X’ be the minimal
resolution of X' = Xm and E the fiber of B’ = F,,,. Let Ey C E denote the strict
transform of E' and f : X —» X be the composite of the resolution f’: X — X'
and the partial resolution X’ = X,, — X,, = X. Clearly f is a good resolution
of (X, 0) with exceptional set E. We have the following diagram:

- !
E()CECX

Xm :X/D E/:Fm
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For any non-zero function h € Ox ,, we write
divg(h) :=divg(ho f) = (h)g + H,

where (h)g is supported in £ and H does not contain any irreducible component

of E. Let

Z(Z) = (‘T’L)Ea Q1= M, /BZ = Him-

Lemma 2.8 (Hurwitz formula). Let R and S be non-singular compact alge-
braic curves and ¢ : R — S be a surjective holomorphic map. Let Py, P, ... P,

be the ramification points with ramification indices e1, es, . . ., e, respectively. Then

l
29(R) — 2 = deg()(29(5) —2) + ) (e; — 1),

=1

where g(R), g(S) are the genus of R, S, respectively.

Theorem 2.9. Let g and —cy denote the genus and the self-intersection num-
ber of Ey, respectively. Then the weighted dual graph of the exceptional set E is

as Figure 2.3, where the invariants are as follows:

29-2=(m—2)§—Y
i=1
= gwﬁw ayp -y
Co = Z o + 2 )
w=1 w m

[ewts -y Cus, )] if aw >2,

/Bw/aw:
0 if o =1

Furthermore,

m S

20 =\ E + 3 5 S A By (1< i< m)

w=1 v=1 ¢{=1
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FIGURE 2.3.

where /\(()i) and the sequence {/\1(2146} are determined by the following:

2D )\(()i) = Cim,

w,0,& *
. 1 if w=i
w,Sw~+1,€ =
0 iof wH#i,
() _ @) (%)
)\wﬂ/—l,f - )\w,l/,gcwa - /\w,V+1,E'

The cycle ZD is the smallest one among the cycles Z > 0 such that —Z is nef

and the coefficients of Ey in Z 18 e;p,.

Proof. From (1) and (2) of Lemma 2.7, we see that the claims (3)-(5) of Lemma 2.7

also hold for every i € {1,...,m} instead of m, by taking permutations of vari-

ables. These data immediately show the dual graph except for ¢y and g. Since

divx/(x;) = ey’ + D; by Lemma 2.7 (5), )\E)i) should be e;,, and the coefficient
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of the cycle Z® can be determined by the following:

0= (29 4+ D) Eype = N 1o = A, e + A9,

w

The last assertion follows from Lemma 1.53.

Recall that Fy is the (—1)-curve on Y (see Lemma 2.2). Let p : Fy — Fy & P!
be the natural map and 7 := w3 0---om,. From the proof of Lemma 2.6 and
Lemma 2.7 (3), we obtain the following.

o T Fy = (dn/ds)F,,, and thus deg p = d := daag - - - ap /dpy,.
e The ramification index of a point x € Ey which corresponds to a point
of ' N D; is dged(ay,az)/g; for i > 3, and d/g; for i = 1, 2.
By Lemma 2.8,

-2y g (B )5 (4 )

i=3 9i

= (m — 2)dged(ay, az) — Zf]z‘
i=1

m

™ ged(ar, az) = Y i

i=1

_ (m—2)dyaz---a
~lem(ay, ..., am)

m

=(m-2§-Y g

i=1

By Lemma 1.56 (1), we obtain (even in the case s, = 0) that

>‘1(le),g = (Bwem + Afﬂn;)wﬂé)/aw.

Since the intersection number of Ey and div ¢(z,,) is zero,

Colm = C(J)\E)m) = Z gwAf:?l),f
w=1

m—1 . ~
_ Z gw@wem + gm(ﬁmem + 1)
o Qpn, ‘
w=1
Hence
S GuwBe | Gm
o= + .
’ ; Qw  Uem
Since G /mem = Gm@mdm—1/d>, = ay - - - a,,/d?,, we obtain the assertion. O
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Example 2.10. Let a; = -+ = a3 = 2, Ao = 3, a1 = 4, a,, = 5,

m > 4. Then
iy =+ = dp—3m = 60, dp_2m =20, dp_1,m =30, dpm =12, d,, = 60;
€im = = €m-3m = 30, €m_om = 20, €p_1m =15, € = 12;
Nim = " = Np—3.m = 1, Mm—2m = 3, Nm—1,m = 2, Nnm = 9;
Him == fm=-3m =0, tm—2m =1, fm—1m =1, tmm = 2;
= =Ggm3=2""" G2 =277, G =277, G =270, g =270

By Theorem 2.9, we have ¢y = 2™ 73 and g = (m—6)-2""°+1. Then the weighted

dual graph of FE is as Figure 2.4. Furthermore, by Theorem 2.9, the zero divisors

Emflzlngm—l

FIGURE 2.4.
of the pull-back of the coordinate functions x1,...,z,, are as follows:
71 — ... = gz(m=3)
§m72 gmfl §m
=30Eg+10- > Enoie+15- Y En_i1e+ Y (12En1¢ + 6Enze);
=1 &=1 =1
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gm2 gml

é=1 =1 51
gm2 gm 1

Zm Y =15Ey+5- Y Epoge+8 Y B 115+Z 6Em,1¢ + 3Ema2);
£=1 £=1 =1
gm2 gml

ZM =12E;+4- ) Eps1e+6- ZEm 11£+Z 5Fmic+ 3Emac).

=1 = £=1

Note that we have Z(™ < zm=1) < zm=2) o zm=3) — ... — 7 and by

computation, we have

_(Z(l))Qz...:_(Z(m 3) =15.27m73,
o (Z(m_2))2 =7. 2'rn—37
. (Z(m—l))Q — 4. 2771—37

—(Z2m)2 =3.9m=3,
Lemma 2.11. For 1 <w <m, —(Z")? = gy, [ewm/w ]

Proof. Let F;o¢ = Ey. From Theorem 2.9,

;

1 if sp>0and (i,v) = (w, Sy),
—Z(w)Ei,u,f =Y0w tf Sw=0andv =0,

0  otherwise.
\

Since A"

w,sw,§

[€wm/w] by Lemma 1.56 (4), we have

_gw) z(w) _ G (Gwm/aw]

50



In the situation of Example 2.10, by Lemma 2.11, we also have

—(ZW) = = ~(Z27) = gulewn /o] = 15277 w € {1, ;m — 3},
- (Z(m_2)>2 - gm—Q [em—Q,m/am—Q—l - 7 : 2m—3’
- (Z(m_l))Q - gm—l [6m—1,m/am—1—| - 4 . 2m—3’

- (Z(m))2 = Gm|€mm/am]| =3 - 273,

Lemma 2.12. [13, Lemma 4.3]. The resolution f : X — X is not the
minimal good resolution, i.e., Fy is a (—1)-curve and intersects at most two

curves, if and only if m = 3 and (a1, as,a3) = (2,2,21 4+ 1) for an integer 1 > 0.

Proof. If f is not the minimal good resolution, X is a cyclic quotient singular-
ity. It is well-known that a Gorenstein quotient surface singularity is a rational
double point, hence a hypersurface. Thus the assertion follows from the result of

hypersurface singularities [13, Lemma 4.3]. O

2.3. The fundamental cycle and the canonical cycle

Let Zp denote the fundamental cycle on FE, i.e., the smallest anti-nef cycle
supported on E. Since (X, 0) is a Gorenstein singularity, there exists a cycle Zx
such that —Z is a canonical divisor of X. We call Z the canonical cycle on X.
Let a =", cvp.

Assume that a; < .-+ < a,,. It follows from (2.2) that ey, > -+ > €m = €m.

Theorem 2.13. Let €4 = [[Cwvs - - Cwsul] of Sw >0 (ie., ay > 1), and let
m  Sw  Juw
Zo=0Eo+) > D Ouwebuvs

w=1 v=1 £=1

Then 6y and the sequence {0y} are determined by the following:

.06 == b := min(ey,, a),

Owpe = [Owp—16/€wr] (1 SV < sy).
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Proof. We follow the proof of [13, Theorem 1.4]. By Lemma 1.54, we only need

to identify y. Let u,, (1 < w < m) be the integers determined by
Buwbo + uy =0 (mod ay,), 0 < uy < .

Then
90 Bw + Uqy
o

ew,l,f = ’VHOBw/Oéw—‘ =

Note that 3, = s, = 0 if o, = 1. The condition ZgFE, < 0 is equivalent to that

Boco

- gw(eﬁﬁw + Uw)
> - .
w=1

Using Theorem 2.9, this inequality is equivalent to the following:

000'1 c Qi - gwuw
d2 = Z ..
m w=1 w
By (2.2), we have
Judy,  dnm

— = — = €ym-
Q@1 Ay Oy

Thus the inequality is equivalent to the following:

m
90 Z E Uy Crwm -
w=1

Let A be the set of positive integers A satisfying the following condition: there

exist integers 0 < v, < a, for 1 < w < m such that

(2.4) A > vaewm, Bud + v, =0 (mod ).

w=1

By the definition of the fundamental cycle, fy = min A. Let
Ao={ e A|(24) withv; =--- =0, =0} and

We see that ged(au,, Biw) = ged(au, auy) = 1 and min A; = e, for 1 <i < m by
the definition of these integers and (2.3). Thus we have

minAg =« and min(A\ Ag) = minA,, = ep.

Therefore, we obtain that min A = min(e,,, a). O
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Example 2.14. Let a; = a; = 2, a3 = -+ = a1 = 3, @, = 4, m > 4.

Then
iy, = dom, =12, d3y, = -+ = dpp1,m = 12, dppy = 6, dpy, = 12;
€im = €2m =6, €3, =+ =€m_1m =4, €mm = 3;
Qi = = Qp—1m = 1, Qupm = 2;
Pam = = Pm—1m = 0, flpm = 1
N=0=2-3"" gs==Gm1=4-3"" gn=2-3""" §g=4.3"""1

By Theorem 2.9, we have ¢y = 4-3™5 and g = (4m — 15) - 3™ + 1. Then

the weighted dual graph of F is as in Figure 2.5. Furthermore, by Theorem 2.9,

FIGURE 2.5.

the zero divisors of the pull-back of the coordinate functions z1,...,x,, are as

follows:

gm
70 =73 =6E, + 3 - Z Epie

=1
gm
Z(3) — . = Z(mil) = 4E0 +2- ZEm,1,£7
=1

gm
Z'™ =3Ey+2-> Eng.
=1
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By Theorem 2.13, we obtain that 6, = min(e,,, @) = 2 and the fundamental cycle
Zg on F is as follows:
gm

Zp=2Ey+ Y Emyc
e=1

Note that @ = 2 and a < ey, = 3, and Zx < ZM).

In the situation of Example 2.10, we have a1 = -+ = a3 < Qo < Ay <
Uy Emm = €m = 12, a = 30 and 0y = min(e,,, «) = 12. Then, by Theorem 2.13,

the fundamental cycle Zg on E is as follows:

gm—Q .@m—l gm
Zp=12Ey+4-Y Eno1c+6- > Em11c+ Y (5Em1e+3Ems¢).
§=1 =1 =1

Note that we have a > e,, and Zg = Z(™),
Lemma 2.15. Zg = Z™) if and only if e,, < o.
Proof. It follows from Theorem 2.9, Theorem 2.13 and Lemma 1.56 (3). O

Theorem 2.16. Let Zy be the cycle which is obtained as Zg with the condition
that 0y = « in Theorem 2.13. Then

ZK:E+TZO—X:IZ :
Proof. Let Ny = {we {l,...,m}| o, =1} and N; = {1,...,m} \ Nyg. Note
that for w € Ny, B = 0 and ZWEy; = —§, (cf. the proof of Lemma 2.11).

Let B be any irreducible component of £ — Fy. By the adjunction formula and
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Theorem 2.9,

(—Zk + E)Ey =29 —2+ Zﬁw

weE N
=202+ gut+ > Z"E
w=1 w€E Ny

=(m-2)§+ »_ Z"WE,

w€E Ng
(-Zxk +E)B=-2+(E—-B)B
-1 if B=FE,,,¢ for some w and &,
0 otherwise.

It follows from Lemma 1.56 (3) and (1) that Zy(E—Ey) = 0 and 8,16 = a B/ .
By Theorem 2.9,

—Z()EO = Co&x — Z gwocj—ﬁw

w=1
mo oA
Guwlw
= x| C—
[0
w=1 w

aay Gy Qg

)

dz, dp,
We see that for w € Ny,
1 1
2.5 Zy = AR
(2:5) ZoE, 0T Zw g,

since they are numerically equivalent. Form the data of the intersection numbers

of —Zx + E and (2.5), we obtain that

(—Zk + E)Ey

—Zg+E = Zo+ AL
(m —2)g
="+ » 2+ )z
ZOEO we Ny weN1
(m —2)d, S (w)
=7+ ; AL
Thus the formula follows. O
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In the situation of Example 2.10, we have

gm72 gmfl gm
Zy=30Eg+10- > Enore+15- > Eurie+ Y (12,16 +6En2)
£=1 £=1 £=1
and
g’rnf? g'mfl
Zy = E+ (30m — T7)Eg + (10m —26) - Y Epoge+ (15m —39)- Y En_11e
&=1 =1
gm
+) ((12m = 31) By + (6m — 16)Ep o).
=1

In the situation of Example 2.14, we have Z, = 2FE, + Zgzl FEpie and

gm
Zi =E+(8m—20)Ey+ (4m —14) - > Epye.
£=1

The arithmetic genus of the fundamental cycle, namely,

is called the fundamental genus. This invariant is independent of the resolution
and denoted by ps(X,0). A formula of p; for weighted homogeneous surface
singularities was established by Tomari (cf. [31, Theorem 3.1]). Applying the
formula, Tomaru [32] obtained the following result in hypersurface case (cf. [13,

Theorem 1.7]).

Theorem 2.17. Ife,, > «, then —Z% = a*g/d,, and

1 . (a=1D§ &G
pf<X,o>=5a{<m—2>g—( — —Za—}ﬂ-
m w1 Fw
If e, < v, then —Z% = G| em/am] and

pf(X,O):%em{(m_2>g_(Q{Bm/amw_l)gm_ — g_w}H_

Em Oy
1

Proof. Assume that e, > «, then Zp = Z; and 6, = «. By the proof of

Theorem 2.16, we have —ZyFy = ag/d,,. Therefore

—Z% = Z()(CVE()) = OéQQ/dm.
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We see that geym = dpmguw /. Thus

21(X,0) = 2 = (Zi — Zo)(~Z)
= E—i-( _2()){ ZO—ZZ“”) -

= 1+(m )m a'a_zewm>ag/dm

«

= (m _2>g+(1—adi Zg—>

Next, assume that e, < a. Then Zz = Z™ by Lemma 2.20. It follows from

Lemma 1.56 (4) that )\m om& = €m/ vy for w # m. By Lemma 2.11 and its proof,
we have —Z2% = —(Z™)? = g,.[em/c, ] and

207(X,0) =2 = (Zx — Z"™)(=2™)

:<E+< ZO—ZZ —27m )( Zm)

m—1 .
(m — 2)dm ag GJuwm
L L T
m w=1

= 2gm[em/am]

Q w

= ((m—?)g—f——(l—Q [em/m]) Zg—>

In the situation of Example 2.10, we have
a =30 > emm = 12, _Z% =3.2m7° = Gm (emm/am—l andpf<X> 0) = (3m_9>2m73+1
In the situation of Example 2.14, we have

0 =2 < e =3, —Z} =437 = 02 /dy, and py(X, 0) = (8m—28)-3" "+ 1.

2.4. The maximal ideal cycle

In this section, we identify the maximal ideal cycle. We keep the assumption

that a; < --- < a,,. Let m denote the maximal ideal of the local ring Ox, and
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Zw the maximal ideal cycle on X. By the definition, we have
Zw =min{(L)g|L =121+ -+ + ¢z €m, ¢; € C, L # 0}.

Theorem 2.18. We have Z™ < ... < ZW . Hence Zn = Z™. Fur-
thermore, the maximal ideal cycle coincides with the fundamental cycle on the

minimal good resolution space and on X if and only if e, < a.

Proof. Since ey, > - -+ > €,m = €m, the first assertion follows from Theorem 2.9
and Corollary 1.55. The last assertion follows from Lemma 2.20 and Lemma 2.12,

and the fact that these two cycles coincide on any resolution of every rational

surface singularity ([2]). O
Example 2.19 (o <e,,). Let a; = a3 =2, a3 =---=a,, =3, m > 3. Then
€lm = €2m = 3,€3m = " = Emm = 2,
ap = =0, = 1.
Also, we have 1 = --- = f,, = 0. Therefore F is irreducible, Zp = FE, and

Zm =2E. We also have g = (2m — 7) - 3™ * 4+ 1, ¢ = 3™ * by Theorem 2.9.

Example 2.20 (o« > e,,). Let ay = - = a2 =2, ap_1 =3, @, =7, m >
4. Then
elm — i .. = em_27m —_= 21’ em—l,m — 147 em = 6,
051 — .. :am72 = 1705m71 — 3’Oém = 7

Also, we have

51:"':5m72:07ﬁmflzﬁm:17

gmfl = gm = 2m73‘

Then the weighted dual graph of F is as in Figure 2.6.
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FIGURE 2.6.

The components E,, ;. ¢ correspond to the vertices with weight —7. By Theo-
rem 2.9, we have ¢cg = 2™ * and g = (m — 6) - 275 + 1. Since a =21 > 6 = ¢,

we have Z, = Zg by Theorem 2.18.

2.5. Kodaira singularities

After Kulikov’s results ([14]) for Arnold’s classification ([1]) of unimodal and
bimodal singularities, U. Karras ([11]) introduced the notation of Kodaira singu-
larities for normal surface singularities in terms of pencils of curves. He proved
several fundamental properties for them and applied his results to deformation
theory of surface singularities. In this section, we give a condition for (X, 0) to
be a Kodaira singularity following Konno and Nagashima.

Let S be a non-singular complex surface and A C C a small open disc around
the origin. A surjective holomorphic map ® : S — A is said to be a pencil of
curves of genus g, if it is proper and connected, and fibers S; := ®~1(t) (¢t # 0)

are smooth curves of genus g. In this situation, we call S, := ®~1(0) the singular

fiber.

Definition 2.21 (Karras [11]). A normal surface singularity (W, p) is called
a Kodaira singularity if there exists a pencil of curves ® : S — A such that, after
a finite number of blowing ups at finitely many non-singular points P, ..., P,
in non-multiple components of the singular fiber S,, ¥ : S° — S, there is a

holomorphic map ¢ : M — W from an open neighborhood M of the strict
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transform F of Supp(Sy) in S* which is a resolution of (W, p) with exceptional

divisor F'.

Example 2.22 ([35, Example 2.4]). There exists a pencil of curves ¢ : S —

A of genus g = 1, , such that the singular fiber S, = ®7!(0) is as follows:

1 Fy

£ -
1 3 1 1

Let ¥ : " — S be blowing ups at non-singular points P, € Fy, P, € Fy, P3 € F3.

Then we have the following figure
1

S G S S S )
11 3 1 1 1

1

Let M be an open neighborhood of the strict transform F' of Supp(S,), where F’

(~9)1
O-0-0-Q
1 3

1 1

is as follows:

Contracting F' in M, we obtain a Kodaira surface singularity (W, o).

Karras ([12]) proved a fine criteria for normal surface singularities to be a
Kodaira singularities in terms of the maximal ideal cycle on the minimal good

resolution.
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Proposition 2.23 ([11, §2], [12]). Let ¢ : (M, F) — (W,p) be the minimal
good resolution of a normal surface singularity and Zp the fundamental cycle on
F. Then (W.p) is a Kodaira singularity if and only if the coefficient of F; in
Zp s 1 for every component F; satisfying ZpF; < 0 and there exists an element
h € Ow,, such that the divisor divy(h o ¢) is normal crossing with exceptional

part (h)p = Zp.

Example 2.24. Let W = {2 + 4> + 28 = 0} and ¢ : (M, F) — (W, 0) be
the minimal good resolution of (W, 0) with exceptional set F'. From Theorem 2.9,

the weighted dual graph of F' is as follows:

Ok
R B

Following Theorem 2.13, the fundamental cycle Zp = 3Fy + Fy + F5 + F3. By
computation, we have Zply = 0, ZpF, =0, ZpFy, = 0 and ZpF; = —1 < 0.
The coefficient of F3 in Zp is 1. Also, there exists an element z € Oy, such that
the divisor divys(z o ¢) is normal crossing with exceptional part (2)r = 3Fy +
Fy + F, + F; following Theorem 2.9. Note that (z)r = Zr. By Proposition 2.23,

we have that (W, 0) is a Kodaira singularity.
Theorem 2.25. (X, 0) is a Kodaira singularity if and only if dpy—1 < ap,.

Proof. By Lemma 2.12, if the resolution f : X —» X is not the minimal good
resolution, then the condition d,,_1 < a,, is satisfied. On the other hand, a
rational singularity with reduced fundamental cycle is a Kodaira singularity ([11,
Theorem 2.9]).

We assume that f : X —» X is the minimal good resolution. We have seen
that divg(z,,) is normal crossing (cf. Lemma 2.7). Therefore, it follows from

Proposition 2.23, Theorem 2.18 and the proof of Lemma 2.11 that (X,0) is a
61



Kodaira singularity if and only if e,, < « and [e,,/a,,| = 1; this condition is
equivalent to that d,,_1 < a,,. O
In the situation of Example 2.19, we have d,,_; = 6 > a,, = 3. Hence (X, 0)
is not a Kodaira singularity by Theorem 2.25.
In the situation of Example 2.20, we have d,,_; = 6 < a,, = 7, and then

(X, 0) is a Kodaira singularity by Theorem 2.25.
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