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Introduction

The classical Morrey spaces were introduced by Morrey in 1938
for investigating the local behavior of solutions to second order ellip-
tic partial differential equations and calculus of variations ([42]). In
1961, John-Nirenberg [32] introduced BM O spaces for studying PDE;,
and Campanato [7] introduced the function spaces in 1963, which are
called Morrey-Campanato spaces. At this time, Stampacchia [50] and
Peetre [45] considered the Morrey-Campanato spaces. These spaces
were studied in close connection with the theory of partial differential
equations and harmonic analysis, and helped to obtain many inter-
esting results. On the other hand, Giga-Miyakawa [19] introduced a
Morrey type space with respect to a Radon measure for three dimen-
sional Navier-Stokes equations. Kato [33] and Kozono-Yamazaki [36]
also applied Morrey spaces to Navier-Stokes equations. Moreover,
we have another applications of Morrey spaces to Schrodinger equa-
tions, elliptic problems with discontinuous coefficients and potential

theory ([4], [5], [9], [12], [15], [39]).

From these facts, Morrey spaces are important function spaces. The

definition of Morrey spaces on R™ are as follows:

DEFINITION ([42]). Let pand A bein 1 < p < 00, 0 < A < 1.

Morrey spaces are the space of all measurable function f : R* — C
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such that

1
1 »
il = s (i [ 1) <.
qcrmQbal \ |Q Jo

Especially, Morrey spaces are LP spaces when A = 0, and LP'(R") =
L*>®(R™). Therefore, we can consider Morrey spaces from the point of
view of a generalization of LP spaces which are function spaces such

that pth powers are integrable.

The overall aim of this dissertation is to study some properties of
Morrey spaces and bounded linear operators on Morrey spaces. The

thesis consists of three chapters.

In Chapter 1 is divided into two parts.

Firstly, we review some results about Morrey-Campanato spaces
on the unit circle T. Although Morrey-Campanato spaces were in-
troduced by Morrey and Campanato, we define this space based on

Torchinsky [53] and Kufner [37] here.

DEFINITION. Let p and A bein 1 < p < 00, 0 < A < oo. Then,
Morrey-Campanato spaces are the space of all measurable function
f: T — C such that

1
1 P
llers = s (s [1600) = sibn) < o,
Ic 1> Jr

T=[—m,7)
I#¢:interval

where f; denotes the average of f over I, that is ﬁ [, Fy)dy.

If A = 0, Morrey-Campanato spaces and LP spaces are same spaces.
And, when A = 1, it is BMO spaces, 1 < A < 1+ p, it is Lipschitz

function and 0 < A < 1, it is Morrey spaces. Moreover, if A =1+ p, f
2



is absolutely continuous function. In the case A > 1+p, f is a constant
function ([53], [37]). These are all well-known results, but important
for properties of function spaces. Therefore, we mention these proofs

in this part.

Secondary, we give new results in Morrey spaces on the unit circle
T. As a preparation, we define bounded linear functionals in functional

analysis.

DEFINITION. Suppose that X is a norm space, and 7' : X — C.
Then, T is called a bounded linear functional if 7" satisfies following

conditions:

(1) For all o, B € C, and f,g € X, we have

T(af+ Bg) =alf+ pTy;
(2) For all f € X, there exists C' > 0 such that
T < Ol f]|x-
Next, we define dual and predual space of X.

DEFINITION.
(1) The dual space of X is defined by the space of all bounded
linear functionals on a norm space X. It is denoted by X*.

(2) The norm space Y is called predual of X if Y* equals X.

Let LP(T) be the closure of C(T) in LP*(T), where C(T) is the
set of all continuous functions on T. Firstly, we show a property of

Ly (T).



THEOREM ([31]). Let 1 < p < oo, and 0 < A < 1. Also let
¢ be an infinitely differentiable function such that supp ¢ C [—1,1],
£ [T d(x)dz =1 and ¢ > 0, and let ¢;(x) = jo(jz) (j = 1,2,--+).
Then, the following properties are equivalent:

(1) f € LEN(T)

(2) f € LPA(T) and |7y f = fllpn = 0 (y = 0),
where 7, f(x) = f(x —y)

(3) f € LPMT) and ||f — f * ¢5]lpa — 0 (j = 00)

(4) hm(S—)O SuP\I|§§,IC']I‘:interval ‘[% f[ |f(2§')|pdl' =0

Like Adams-Xiao [3], LP*(T) and L5 (T) are similar to BMO and
VMO ([11], [47]). Moreover, it is known that the dual of VMO is

Hardy space H!.

On the other hand, Zorko [55] gave the predual space Z4*(T) (1/p+
1/q = 1) of LP*(T) in 1986. Z%*(T) is defined by the set of all functions

f such that
1] zon
= inf{z leg| | f(z) = chak(x), cr € C, ag(x): (q,)\)-block}
k=1 k=1
< 00,

where a(z) is called (g, A)-block, if

(1) supp ap C I

(2) llaxll, < ks, where 1/p+ 1/g = 1,

for some interval .



Adams-Xiao [3] pointed out that LE*(T) is the predual of Zorko
space Z%*(T) in 2012. But, they did not give the reason why they
insisted that the proof is akin to that of BMO-H'-V MO in Stein [51].

We prove in the detail in this part.

THEOREM ([31]). Let 1 < p < 00, and 0 < A\ < 1. Then LE(T) is
the predual of Z9*(T), where 1/p+1/q = 1.

In Chapter 2, we study Fourier multipliers on T. Let M(X,Y") be
the set of all translation invariant bounded linear operators from X
to Y, where X and Y are translation invariant function spaces which
is contained in L*(T). We note M(X,Y) is a Banach space with the
norm of || - [|a(x,y). An element of M(X,Y") is called a Fourier mul-
tiplier (operator). In 1970, Figa-Talamanca and Gaudry [16] showed
M(LP, LP) # M(L9,L9) (1 < p < ¢ <2). In this chapter, we generalize

Figa-Talamanca and Gaudry’s result.

THEOREM ([30]). Let 1 < p,q < 0o and 0 < \,v < 1. Suppose

A v
5 #* 7 Then we have
M(LP, LPN) # M (L9, L").

THEOREM ([30]). Let0 < A\, v < 1. Also let p, q be positive numbers

with 14+ X <p < q and i +% < 1. Suppose % = g. Then we have
M(LP, LPY) # M (L%, L"),

Moreover, we show a relation between M (LP, LP*) and the measure

whose distribution function satisfies a Lipschitz condition (cf. [21]).
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DEFINITION. Let p be in M(T) and 0 < a < 1. We say that u €
Lipo(M(T)) for p € M(T) with p > 0 if for any interval I = [z, z + h],

p(l) < CHI* = Clh[*
for some constant C' > 0 independent of [.

THEOREM ([30]). Let f € L'(T) be a non-negative function. Then
we have that iy is in Lipo(M(T)) for some 0 < a < 1, if and only

if Ty € M(LP,LP?) for some 1 < p < oo and 0 < X\ < 1, where

Trg=fxg.

In Chapter 3, we deal with function spaces with weighted norm.
The theory of weights apply to boundary value problems for Laplace’s
equation on Lipschitz domains, extrapolation of operators, vector-valued
inequalities, and certain classes of nonlinear partial differential and in-

tegral equations.

Here, we research the fractional integral operators on weighted Mor-
rey spaces on R"™. First, we define the fractional integral operator and

weighted Morrey spaces on R”.

DEFINITION. Let 0 < o < n. Then, the fractional integral operator

I.f(x) ::/]R &dy.

n o — gyl

1, is defined by

DEFINITION. Let 1 < p < 00,0 < A < 1, and u, v are weight. Then,
weighted Morrey spaces LP*(u,v)(R™) are the space of all measurable

function f € L}, (u) such that

QCR",Q:ball

X .
fllzmrn = sup (W /Q If(y)|pU(y)dy> < oo.
6



At an early age, Hardy-Littlewood [23], [24] and Sobolev [49]

proved the boundedness of the fractional integral operators.

THEOREM ([23], [24], [49]). Let 0 < o <n, 1 <p < Z. Then,

the fractional integral operator I, is bounded from LP to L, where

After these results, Muckenhoupt and Wheeden [43] proved the
boundedness of the fractional integral operators on weighted L spaces

in 1974.

THEOREM ([43]). Let 0 < o <n, 1 < p < 2 and w is weight.

Then, w € A, 4 (R™) if and only if the fractional integral operator I,

o1

2, and a weight w

is bounded from LP(wP) to LT (w?), where qil = ]lo —

belongs to A, 4, (R™) if

1 1
1/ w1 . v
s (o [orow)” (g [ wan)” <.
QCR",Q:ball<|Q| Q |Q| Q

In 1975, Adams [2] showed the boundedness of the fractional inte-

gral operators on Morrey spaces.

THEOREM ([2]). Let0 <a<n, 0<A<1-%and 1 <p< @

Then, the fractional integral operator I, is bounded from LP* to L%,
1 a

1 —_— e ——.———,—_—
where e = p AN

In 1987, Chiarenza and Frasca [8] gave an alternative proof of this
result. Komori and Shirai [35] generalized the boundedness of the

fractional integral operators on weighted Morrey spaces in 2009.

THEOREM ([35]). Let 0 <a<n, 1<p<Z, 0< A< L and

w € Ay, (R"). Then, the fractional integral operator I, is bounded

A
from LPAwP, w®) to L5 (wh, wh), where o=

7

3e

1
p



In this chapter, we obtain the including results of Muckenhoupt-

Wheeden [43], Adams [2] and Komori-Shirai [35].

THEOREM ([29]). Let 0 < a < n, 1 < p < %, 0 <AL

qﬂl, and w € A, ., (R"). Then, the fractional integral operator I, is
1

bounded from LPA(wP,w®) to L® M w® w?), where o= % — % and

1_ o
q2 p  n(l-A\)"
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CHAPTER 1

Some properties of Morrey spaces on the unit

circle
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1. Preliminaries

1.1. LP spaces.

In this section, we recall the definition and basic properties of L

spaces.

DEFINITION 1.1. (1) Let C(T) denote

C(T) :={f | f(z) is a continuous function of period 2w on R},

where f is called a function of period 27 on R if f satisfies f(x) =

f(z+2m) (z €R).

(2) Let p and ¢ be 1 < p < oo, and f be a continuous function of

period 27 on R. Then, LP(T) are defined by

IT) = {f e = (5 [ |f(w)|”d:rf); < oo} (1<p<oo)

L=(T) :={f [ mf{M [ [f(z)] <M (a.e.)} <00} (p=o00).

LEMMA 1.2 (the Holder inequality). Let p and g be p > 1 and

% + é = 1. And suppose f € LP(T) and g € LY(T). Then,

1

[ s (3 [ |f<x>rpdx)’l’ (5 | o)’

11



REMARK 1.3. If 1 < ¢ < p < oo, then LP(T) & L9(T). In fact, by

the Holder inequality, we have

1 27
17l = 5= [ 1@ 1da

P—gq

1 27 o2 % 1 27 e >
< (o [ rtar)" (5 [Tt
1 27 q
< (5 [ ltpas)

= (/1%

RSB

if 1 < p < oco. Therefore, we get LP(T) C LY(T). Moreover, when we

define
flz) =27,
it is easy to show f € LY(T) and f ¢ LP(T). By 1 — ]% > 0, we have

2m
_ 1.
1AL = [ a3
0

1 _a
:1_g@ﬂ1p
p

< 00

and

21
_ 1,
A1, :/ v Py
0

' 21 dl’
= lim —
e—0 c x

= lim(log 2m — log )
e—0
= 00.

We obtain LP(T) & LY(T) (1< ¢ <p < 00).

12



1.2. BMO spaces.

DEFINITION 1.4. Suppose f € L'(T) and I is an interval. And
f1 denotes the average of f over I, that is, f; = ﬁ J ;- Then, sharp

maximal function M*f is defined by

zel

M?f(x) := sup |[|/|f — frldt.

Moreover, if we put

11l = [IMP fl] 2,

BMO spaces on T are defined by

BMO(T) := {f € L'(T) | ||f|]. < oo}

REMARK 1.5 ([53]). L>(T) & BMO(T). In fact,

1= siae< [1sae+ [ islar
< [ironae+ [ (5 [1ria) ar
= [1sde+ [ 1
=2 [1r0la

We obtain

7 10— e < 2 f 01 < 2

And if we take
f(t) =loglt| (t| <m),

we get f € BMO(T) and f ¢ L*>(T). In this check, put I = (a,b) C T,

and devided into three cases of 0 < a < b, —b<a <0 <band b < 0.

13



2. Morrey-Campanato spaces

2.1. Definition.

Morrey-Campanato spaces are generalization of LP spaces and BM O
spaces. The definition of this spaces is based on Torchinsky [53] and
Kufner [37].

DEFINITION 1.6 ([37], [53]). Let p, Abel<p<ooand 0 <\ <
0o. Then, Morrey-Campanato spaces £P* and this norm are defined

by

em) = {s e \ s - < cip wrem}
and

A eon = (1Sl + [flpars

where the letter C' stands for a constant independent of interval I and

[f]p. is defined by

o= o (i [1st0 )’

I#(:interval

REMARK 1.7. We have the following:
(1) LPA(T) & LX(T).

(2) LPANT) S LPr2M(T) (1<p <p< oo, A;f < %)

We research the behavior of A in this spaces. Throughout the rest

of this section, ¢ the conjugate exponent of p, that is % + % =1

14



2.2. In the case of \ = 0.

REMARK 1.8. When A = 0, we have £PO(T) = LP(T). In fact,
by Remark 1.7, we get £P°(T) C LP(T). On the other hand, suppose
f e LP(T). For all I £ T, we note

1< 1 J 1
< (i form)’ (i frow)
~(71/ |f(y>|”dy);

by the Hoélder inequality. Then, we have

(/ If(t)—ff\pdt> ([ \pdt) +(/f \ff\pdt>
() {1 frore)of
(57 [ o)« (fisera)

1
<2-@m)#|[flleecr)

hSA

— (2r)

<C

by the Minkowski inequality. Therefore, £P°(T) = LP(T).

2.3. In the case of \ = 1.

15



REMARK 1.9 ([53]). When A = 1, we have £LP!(T) = BMO(T). In

fact, for all I £ T, we have

J1s0) - tte < ([ 1500 - fz\pdx); (] 1%)3
— 111t (170 - lepd:c);

< [](C|1])»
= Cl1|
<C.

To prove the reverse inclusion relation, we use the following result:

LEMMA 1.10 (John-Nirenberg inequality). For all f € BMO(T)
and I & T, there exist Cy = C1(f, 1) and Cy = Co(f,I) > 0 such that

for allt >0,
{z € I:|f(z)— fil >t} < Cre T |1].

In this fact, suppose f € BMO(T), for all 0 < VC' < Cy, we have

Clf(z)—frl
/e e < c/ (o e I:1f(@) = fil - NI > )]t
I [0,00)

<C Cre™ 2! I|e“ at
[0,00)

= CCy|I| e~ (2= gy

[0,00)

We note

[e's) M
/ e (2=Odt = lim e (C2=Oh gy
0

M—oo 0

| 1

= i _ —(C2-0)
N o0 <02—C Cy—C°

o

T 0,-C

16



We get

1/ (@) =111
/ecfﬂ*h dr < ¢y |[‘
I Cy —
Now, if p € N, we obtain
C\f(l‘ f1|

cr » Hm
L@ ‘“dw</§3

Clf (@)~ f1]
1

because of

Therefore, [, |f(z) — fifPdz < C’|]] Moreover, if p & N, for N such

that
p> N if |I|f1’f — fr|Pdz > 1

p< Nt i [y 1f(@) = filrde < 1.

we have

(%/JU( — f1? d:v) < (W /If lepdx)llv o

Therefore, £P}(T) = BMO(T).

2.4. In the case of 1 < A <1+ p.

DEFINITION 1.11. For 0 < v < 1, we exist C' > 0 such that for all
r,yel
[f(x) = f(y)] < Clo —y[*.
Then, f is called Lipshitz function of order « in I, and denote by

f € Lip,(I) this. Moreover, Lip, norm of f denoted by

Ifllaw(n == sup M

zy€el xty |$ - y|a

17



THEOREM 1.12 ([53]). Suppose f € L*(I) and 0 < a < 1. Then

the following statements are equivalent:

y)| < Cile —y|* forall x,y €1,

o
(ii) |J|1+a/\f — filde < Cy forall J S 1,
) |
)

— 5l < Cs1J|* forallz € J and J S 1,

(iii

(iv <|J|1+ap/]f fJ|pdx>p < Cy forallJS T and 1 <

p < oo.

REMARK 1.13. In Theorem 1.12 of (iv), if we take I = T and

a= %, we have

for all J € T and 1 < p < co. Therefore, we have £P*(T) = Lipa_1 (T)

ifl<A<1l+p.
PROOF OF THEOREM 1.12. We show this eauivalence as follows:
(i) = (i) = (iv) = (i) = (i)

We show (ii) implies (i). Assume z < y, z,y € I, and J = [z, y]. Then,
we define A and B as

[f(x) = f@)l < 1f(@) = fsl +|fs = f)| = A+ B.
We only consider A. Let a sequence of subinterval {.Ji} of J such that

1
J=J, |Jn+1|=§|Jn| and z € J, for all n € N.

18



For k > 2, we take A; and A, for

A=|f(x) = fs5 + fr, — fnl

k—1
< |f($) - ka| +Z|fJn+1 _fJn‘ = Al +A2~
n=1

By the Lebesgue differentiation theorem, we get

] =0 ae zel.
Ukl|rn0|f(> I a.e. x €

As for A,, because of

1
Jtoir — i ’ f(x)dx — f1, dx
s = Il = |Gy ), S OB = D
= ‘J— (f(z) = f1,)dz
| n+1| Jn+1
1
< |f(z) — fr,|dz,
“]TL+1| Jn+1
we have
=1y
Ay < f(x) — fi,|dx
2 ; ’Jn+1| oin ‘ ( ) ’

d
> Z |J 1/, — fr.ldzx
< chgunya
n=1
k—1 1 «

n=1

< CyCol e,

Hence, if £ > 2, we obtain A < CCy|J|* = CChlx — y|* a.e. x € 1.
Therefore, |f(x) — f(y)| < CChlx —y|* a.e. z,y € I. d

19



2.5. In the case of 0 < X\ < 1.

DEFINITION 1.14 ([37], [53]). Let p, Abe 1 <p <ocand 0 < A <

1. Then, Morrey spaces LP* and this norm are defined by

LM@»:{feme\[uwmﬁ<OMAwzgm}

and

1
1 »
Ifllos = sup QT/U@WQ,
ICT=[-n,n) |[| 1

I#0(:interval
where C' stands for a constant independent of interval I.

REMARK 1.15. When A = 0 and 1, LPY(T) = LP(T), L»}(T) =

L>(T), respectively. Therefore, we consider 0 < A < 1.

THEOREM 1.16 (cf. [37]). Letp, A bel <p < oo and 0 < A < 1.
Then, we have

LPA(T) = LP(T).
To prove this theorem, we give some lemmas.

LEMMA 1.17 (cf. [37]). Let p, X be 1 < p < o0 and 0 < A < 1.

Then, we have

JeLPNT) <= feIXT) and |||flllpn < oo,

1

1 v

‘= su — inf/ t —cpdt>} .
’HlepA ICT[PW,W){’I|/\ (cE(C I‘f( ) |

I#0:interval

where

LEMMA 1.18 (cf. [37]). Let 1 <p<oo, 0 <A< 1land0 < a<

B < m. Then, for all f € LPA(T), x € T, we exist C > 0 such that

AL AN T
|fr,ﬁ_fm,a| §C<5 l‘a ) [f]p,)m

20




where
1 Tt+a

:ﬁ .
LEMMA 1.19 (cf. [37]). Let 1 <p<oo, 0 <A< 1land0 <y <.

Then, for all f € LPA(T) and n € N, we exist C > 0 such that

n—1
1 m(1-X)

‘fm,ﬂ/ - fa:,Zln‘ < C[f]p,/\’}/% Z 2 @

m=0
LEMMA 1.20 (cf. [37]). Let p, A be 1 < p < o0 and 0 < A < 1.

Then, for all f € LPAT), we exist C > 0 such that
A1
|f1l < |fxl + Clflpal L7
PROOF OF THEOREM 1.16. Let f € LPA(T). Then, we have

Ao < 3ALAIZs + 1A

=37 || fI5, + C’IFSU{)WW ’[|A (igé/\f _C|Pdt>

I#0: mterval

< 3P fI1ze + 11A11700)

—y (B2 L [ rwpa i)

< 32| fI17pa

<C

by Lemma 1.17. Therefore, f € £LP*(T). On the other hand, suppose

f € LPMT). We have

vat— P [ 15— fr
1w = fipae =111 [ 150 = v

< I

21



and by Lemma 1.20, we obtain

/ it < C / felPdt 1 C / P IPae
I I I
< CUPUE + ClI |l

Then, we have

/]|f<t>!”dt <ot (/]|f(t) —flypdm/f\fl\pdt)

< PYIPfID A + CUPfIp A + CI| | f2IP)
< CUIPfIpr+ A
< CIP[fIpr + 1F1170)-

Hence,

1
i [ 0P < s+ 171 < Il
Therefore, LPA(T) = LPAMT) if 0 < A < 1. O

The following is a summary of the above:

(

LP(T) ifA=0

BMO(T) if A=1

1%

LPA(T)
Lipr=i(T) if 1< A<14p

LPAT) if 0 < A< 1.

\

REMARK 1.21. When A = 1+ p, f is absolutely continuous. And

in the case A > 1+ p, we get

[f(z+h) = f(2)|

S C|h|a—1
Id

if we take y —x = h. Then, f'(x) = 0if h — 0. Therefore, f is constant

function.

22



3. Main results

Let p be in 1 < p < oo, g the conjugate exponent of p, and 0 <
A < 1. Also let LP(T) be the usual LP-space on the unit circle T with
respect to the normalized Haar measure. The Morrey spaces LP(T)

are defined by

1 1/p
o = {r | Wstha = s (o5 [irvas) <o),
e I,

I#(:interval

and L2*(T) the closure of C(T) in LP*(T), where C(T) is the set of
all continuous functions on T. Then it is easy to see that LP*(T)
is a Banach space (cf. Kufner [37], Torchinsky [53, p.215]). Also
Z9MT) (1/p+ 1/q = 1) are defined by {f | ||f||zer < 00}, where

[ fllzar = iﬂf{z el | f(x) =D crar(z), ex € C, a(z) : (g, /\)—block},
k=1 k=1

where ay(z) is called (g, A)-block, if

(1) supp ar C [

@) llal, < . where 1/p+ 1/ = 1,
for some interval I. In particular, ax(z) is called (g, A)-atom, if ay sat-
isfies [} a(x)dz = 0, which is called cancellation property. Z¢*(T) is a
Banach space with the norm || - || z¢.». Zorko [55] introduced the space
Z9(T), and proved that Z%*(T) is the predual of LP*(T). Also she [55]
defined L (T), and remarked some properties. Adams-Xiao [3] pointed
out that LE(T) is the predual of Z%*(T), but they did not give
the reason why they insisted that the proof is akin to that of H!-
VMO in Stein [51] (cf. [63]). Like Adams-Xiao [3], we think that
LPA(T), Z9(T), L5 (T) are similar to BMO(T), H'(T), VMO(T), re-

spectively.
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In the rest of this chapter, we show some properties of Lg”\(T),
which is similar to that of VMO(T). Next we give a detailed proof
of the fact that LE(T) is the predual of Z%*(T), by the method of
Coifman-Weiss [10]. We expect that our proofs in the case of T may
be available to Euclidean case R™.

Our results are as follows:

THEOREM 1.22. Let 1 < p < o0, and 0 < X < 1. Also let
¢ be an infinitely differentiable function such that supp ¢ C [—1,1],
%ffﬂ d(x)dr =1 and ¢ > 0, and let ¢;(x) = jo(jz) (j = 1,2,---).
Then, the following properties are equivalent:

(1) f € LEN(T)

(2) f € LPN(T) and |7y f — fllpn = 0 (y = 0),
where 7, f(z) = f(z —y)

(3) f € LPA(T) and ||f — f * &;l[pa — 0 (j = o0)

(4) hm5—)0 Sup\[|§6,ICT:interval ‘[% f[ ‘f(l')‘pdl’ =0

THEOREM 1.23. Let 1 < p < 0o, and 0 < A < 1. Then LE™(T) is
the predual of Z%*(T), where 1/p+1/q = 1.

Throughout the rest of this chapter, the dual space of a Banach
space X is denoted by X*. For an interval I, |I| denotes the measure
of I with respect to the normalized Haar measure of T. Also the letter

C stands for a constant not necessarily the same at each occurrence.

A ~ B stands for C™'A < B < C'A for some C > 0.

4. Proofs of Main Theorems

4.1. Proof of Theorem 1.22.
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PROOF. According to Zorko [55], it is easy to prove that (1), (2)
and (3) are equivalent. Then, we omit their proofs. We show (4), when
we assume (1). By the definition, for f € LA(T) and for any 1 > 0
there exists g € C(T) such that ||f — g|[,» < 7. Then for an interval

I C T with |I| <6, we have

(i [rtaipas) "
< (7 [0 - atarpas W+(ﬁ [lstora) "
<nt (ﬁ / |g<x>|pdx) "

1-X
<n+ |17 |lglle

1-X
<n+d7 |lgllec),

and

1
lim  sup W/|f(x)|pda: < nP.
I

6—=0|1|<6 I'interval
So we obtain (4). Next we show (3), when we assume (4). For any

n > 0, there exists dg > 0 such that

1
s / @)z < 1P,

|11<0,I:interval

Then for |I]| < &y, we have

o [ireara < o [( [ - wrei)

IN
E‘
>
>~\
=
=
=
QU
S
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by the Hélder inequality. Hence, for an interval I C T with |I]| < do,

we have

(i [ 1500 7o, ac) v
< (i [Irora) W+(ﬁ [+ oyaras) "

1 1/p
< 2 sup —/ flx pda:)
(|I<60,I:interval |I|)\ I| ( )|

< 2.
On the other hand, for an interval I C T with |I| > dp, we have

1 2 1 v
W/jlf(x)—f*@(xﬂ”dw < 5—;{%/_ 1f(x) — f * ¢;(x)[Pda
2
= %Hf—f*%!!i-

After all, we obtain

1 P Py 2y % b IP
wp o [ 1f@) = e o@le < oy« FN - T ol

ICT:interval

Therefore, we have
lim [[f = f ¢jllpa = 0.
O

REMARK 1.24. Let f be in Z9*(T) such that f = > -, crax, where
S lek] < oo, ag:(g, A)-block. Then f = 3", cyax converges in L'(T)

by the definition of Z¢*(T) and Hélder’s inequality.

4.2. Proof of Theorem 1.23.

For the proof, we give some lemmas.

LEMMA 1.25 ([55]). Let 1 < p < 00,0 < A <1 and q the conjugate

exponent of p. Then the dual space of Z9(T) is LP(T).
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LEMMA 1.26. Let 1 < p < oo and q be the conjugate exponent. Also
let 0 < X\ < 1. Then every f € Z¥(T) can be decomposed into a sum

of block and atoms:
f=cono+ Y cray,
k=1

where ¢, € C and |co| + > ey lek| < C||f]]zars ao is a (g, X)-block with
supp ag C T, aj.s are (g, A)-atoms such that supp a, C I satisfying

1
1] < 7

PROOF. Let T = [0,27), and f € Z9*(T). Then, f is decomposed
so that

f=

/
Ck bk,
0

k=
where ¢, € C, Y |c,| < 2|/fllzan, and {br}32, are (g, A)-blocks. Let

b(x) be by(x) for any k > 0, and A a set of functions defined by

1 1
A= {bk supp by C I, ||bi]]q < m—/\/p, and || > Z}
In the case of |I| < 1, we define b}, b}, I; by
b(x) — b(x — |1])
b%(I) - A1 )
27p
b(x) + b(x — |1])
b%(‘T) - A1 )
27p
L=TU(+ ).
Then, we have supp b; C I; (j = 1,2) and
1/q Ve
( ]bjl-(w)|qda:> = (2/\1)(35)]‘1(13:) 27 !
I I
1_2-1_ 4 1
BTIRE
1 1
=97 Mp i =1,2),

I~ [LPe (7
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which shows that b} is a (¢, A)-block (j = 1,2). We also have

2w
/ bi(z)dr =0,
0

bz) = blz = I]) | bz) +blz — |I])

A1 A1
2770 by(x) + 277 by(z) = 5 5

= b(x).

So, bf is a (g, A\)-atom. When we set o = 2% and ay(z) = bi(z), we
have by(z) = aaj(z) + ab}(z). Next, if we have |I;| < 1, there exists
a natural number ¢ > 3 such that 2% < |hL| < y%l So, we decompose

by(x) like b(z) and define a3, b3, I by

_ bh(a) — byfw — |1)

i) = BB I,
bi(z) + b (x — |1
bg(x) — 22 ) Lgl+l 1‘)7

P

L=0LU(L+|L|).

Then we have

b() = aad(x) + abi(),
br(z) = aap(x) + abl(x)
= aay(z) + o?aj(z) + b3 (),

and hence, we see that a},a} are (g, \)-atoms and b3 is a (g, A)-block.

In fact,

1/q
( |bg(x)|qu) < Q—A/pul|—/\/p _ ‘]2|—>\/p.
Iz

We repeat this process ¢ times until we have |I,| > %. After all, we get



where o = 2%, ai (7 =1,---,¢) : (g, \)-atoms with supp ai C I,

and bj : (g, \)-block with supp b, C I,. When we set £, = £, we have

Z o (x) + a'*by (x).

After we repeat this process for b, we obtain
Ly,
— Z Z c.alal (r) + Z bR b () + Z b ()
bZA (=1 bpgA breA
Noting 0 < a < 1, we have
S S lelot + Y il + X el < (12 vot )30
bpgA (=1 bp A brEA

Also when we define

4
D bga CRFb () + 37, 4 ()
P (Sppgnlhlats + Spenleh])

we have that ||ag||, < 1, supp ag C T = [0,27) and ag : (g, A)-block,

1 o q 1/q
— d
(2] 9

ap(z) =

since

Z cha kb () + Z i ()

bpgA bpEA
< 4Mp (Z |, |t + Z \c§€|) :
brgA breA

Moreover, we obtain

T) = 4””(2 |, o + Z |c§€\)a0 + Z cha ay(x

bk%A bkeA kaA =1
and
Ly
4VP(Z EARED ’C§J>+ > 2 l4l < 2(4w+ >||f||Z“'
b @A bEA bpgA =1

U
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LEMMA 1.27. Letn be any positive integer, B} = [Ltom, Lom) (j =
1,--+,3"), and B” = 3B}, where the center of B;T 1s the same as the
center of BY, and |BY| = 3|B7|. Also let B® = BY = [0,27), and
B® = BY = [0,2n). Then, f € Z%(T) has the representation

o) = () + 353 s
n=1 j=1
where ag : (g, A)-block, a} : (q, \)-atoms, supp ag C T, supp a} C B}-’,
and |dol + 225, A7 < Cl[f]|zax-

PROOF. By Lemma 1.26, f € Z%*(T) can be decomposed into a
sum of block and atoms:

= cobo + Z g,

k=1

where ¢ € C, |co]+ > r; lek] < C||fllzar, and by is a (g, A)-block with
supp by C T, and b;’s are (g, A)-atoms such that supp by C I satisfying
1| < 1. For I, with 55 < |I| < 3, there exists j € {1,2,3} such that
Iy " Bj # 0. For Bf we let A} be the index set k € N, determined by
those by with & < || < % and I;N B} # 0. Then, we see that I C B}
for k € A{ and

|32 e, = 32 bl il 32 b 1

keAl keAl

So, when we define

L 2keat Cebe

a; =
R ZkzeA} k]

and \} = Z |cx|32MP,

keA}

we have supp a1 C By, ||ail], < W, and ai satisfies the cancellation

property, that is, al is a (g, A\)-atom supported by B%, and

keAl
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Next for B} we let A} be the index set determined by by, in {b;} with
3 < |Ig| < 3 and I N B} # 0, excluding b, which we have already

chosen before. We construct (g, A)-atom aj in the same way as for Bj.
Similarly we construct (g, A\)-atom a3 for B3. We do this process for by,

with 45 < [Ii| < 35, and obtain the index set A?, (¢, A)-atoms a? with

32 Y
supp a3 C BJZ, and numbers \? (j = 1,---,3?), satisfying
)\?G? = Z Ckbk.
keA?
After that, we repeat this process. In the n-th step, for b, with 371% <
1] < 3= we obtain the index set A7, (¢, A)-atoms a? with supp af} C
Bj”, and numbers A} (j =1,---,3"), satisfying
)\?(]J;L = Z Ckbk.
keA?
By the construction of a] and A}, we have
o) = dofa) + 3 3"
n=1 j=1
where ag = by : (g, A\)-block, \g = ¢o, a? : (g, A)-atoms, supp ag C T,

J

supp aj C BJ’-L, and |A\o| + ij |)\;"b| < 2322 f] oo 0

LEMMA 1.28. Suppose ||fi||zen < 1,k =1,2,---. Then there exist

f € Z%NT) and a subsequence { fy,} such that

27 1 2w

) 1

f(@)o(z)de
for all v e C(T).

PROOF. By Lemma 1.27, we may assume that f, € Z9*(T) has the
representation

fr(x) = Mo(K)ao(k)(z) + Y > N (k)a

n=1 j=1
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where ag(k) : (g, \)-block, a}(k) : (g,\)-atoms, supp ag(k) C T,
supp aj (k) C B}“, and [Ao(k)[+>_;,, [AT (k)] < C. Also we may assume
that A\o(k), A} (k) >0, [|a}(k)|[; < |B§L|*)‘/p, and that there exist ),
A} such that limy e Ao(k) = Ao, limg 00 A} (k) = A} (j,n > 1), and
Aol + 32, A7 < C. Let LYBP) = (LP(B}))* be the dual space
of LP(B?) (LP-space on BJ") By a}(k) € LQ(B;Z) and the diago-
nal argument, there exists an increasing sequence of natural numbers,

ky <ky<---<ky<--- and ay € LI(BY), aj € Lq(B;‘) such that for

¢ € LP(T)

and

1 2

lim — /0 " o (ke) (2)6 () = —

5 | @@

that is, aff (k;) — af (£ — o00) in the weak*-topology ofU(Lq(Bg-l), LP(B;?))
(7,m > 1) and ag(ke) — ag (¢ = o) in the weak*-topology of
o(L4(B°), LP(BY)). Here, we define f by

=D Naj()

n=0 j=1

where a) = ag and A} = Xo. Then f is in Z%*(T) and a} are (g, \)-
atoms, since supp aj} C B”, laf|]q < \Bﬂ_’\/p, [Aol+>25, 1A} < C,and
an Y(z)dz = 0. Let v € C(T), and a%(ke) = ag(ke), A (ke) = No(k).

We define

i, = % fr,(z)v(x)de = Z Z N} (Kg) = / aj (ke)(z)v(z)dr,

n=0 j
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and

1 n
J=— o f( dx—ZZ)\] 27r/ aj(z)v(z)dz.

n=0 j

Also, for any integer N we define

= ZZA” (o) - / a2 (k) (2)o(x)d,

n=0 g
T = Z > N (k) 5= o / a} (ko) (z)v(z)dz,
n=N+1 7
N _
J _ZZ ]27T/ )
n=0 j

and

JNee = Z Z)‘J 27r/ ay (v)v(r)dz.

n=N+1 j

Moreover, when the center of B]" (j;m > 1) is denoted by 7, we have

=Y YNk / (k) (@) (0(x) — v(a))d,

n=N+1 j

since ajf(k) (j,n > 1) are (¢, \)-atoms. Here, we remark that v is

uniformly continuous on T. Hence, for any € > 0 there exists Ny such

that
> ~ 1)
[Too <e Y Y N(k)IB)| T < Ce.
n=No+1 j
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The same conclusion can be drawn for JYo>° since aj are (g, \)-atoms.

Also we have

ii(k” ke)o— / a; (ke) (x)v(x )dx—A;l% D%a?(x)v(x)dx)
< ii{A (ke) / — aj(z))v(z)dx

n=0 j=1

|

(af (ke)(x)
+IN (ko) — AY| 217T/o Wa?(I)U(I)dI

— 0,

as { — oo. Then, we obtain
Ty — J = (JN0 = JN0) 4 (000 — Jho),
|J]i\£o,oo i JNo,oo| < |J]i\£0,00| + |JNo,oo|

< 2CE.

Hence, we have limsup, . |Jy, — J| < 2C¢, and limy o Ji, = J.

Therefore, we get the result:

folepw(@de == [ f@(e)ds (v e C(T)).

L—o0 27T 0 0
LEMMA 1.29. Let f be in Z%*(T). Then we have

111700 ~ 11l

PROOF. Let A = ||f]|zer > 0. Then there exists g € LP*(T) such

that




By f € Z%*(T), we may assume that

f(x) =) eran(a),

where ay : (g, A)-block, supp ar, C By for some interval By, and
Y oreolerl < 2| f]zan. Also for any € > 0 let ¢.(z) = ﬁxla(x), where
I. = [—¢,¢] and x g denotes the characteristic function of £. When we
define g.(z) = g * ¢.(z) for g € LPA(T), it is easy to see g. € C(T)
and ||g:|[,» < 1lg]lpx. Now for any integer N > 1 and g € LP(T), we
define

and

Iy = Z ck%/o 7rak(:fv)(g(yc)—gE(ac))daz:.

k=N+1

Then, we have

1 2T 0 1 2T
o | f@le@ ~ g@hde = Y ey [ ae)ole) - g.(e)ds
T Jo — 2 Jo
= 1IN +1rY
By [|gellpx < [lgl[p,x, We obtain
1IN < > leul Hlaxllzerllg = gelloa
k=N-+1
< 2> al
k=N+1

Also for any 1 > 0, there exists Ny a positive integer such that

> ot |kl < 3. Hence, we have |T11Y] < 5 for all ¢ > 0. Moreover,
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we have

No
1) < lewl [lakllgllg — gell,
k=0

No

= lexl llarllgllg = g * ¢l
k=0

— 0,

as € — 0. Therefore, we get

lim sup|— / f(x)ge(z dx——/ f(x)g(x)dx| <n,
e—0
and
1 2w 2m

lim — =—

o S ()9e /
Hence, there exists g9 > 0 such that |5 f( )geo (z)dz| > 4. So we
obtain

sup
A
llgllp,x<1,9€LG

A
> —.
-3

3 | fagtais

Therefore, we have || f||z¢2 < 3||f]] ()~ Since the converse is trivial,

we get the desired result. O
Now we are ready to prove Theorem 1.23.

PROOF OF THEOREM 1.23. First we have Z¢(T) C (L2*(T))*
by Lemma 1.25. Since (Zq’)‘(’]F))* — LPMT) D LBNT), we see that
the annihilator of Z9*(T) is {0}, and hence Z%*(T) is weak*-dense
in (L2*(T))* (see Theorem 4.7 (b) in Rudin [46]). By the Banach-
Alaoglu theorem and the separability of Lg”\(T) we see that the unit
ball of (L2*(T))* is weak*-compact and metrizable (see Theorem 3.16

in Rudin [46]). Thus, if T is in (L§™(T))" with [|T[ parq. < 1,

)*
then there exists a sequence {fz} C Z%*(T) with ||fk||(Lg,>\(T))* <1

such that f, — T in the weak*-topology of (L2*(T))*. Here, we may
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assume || fx||zex(r) < 1 by Lemma 1.29. Hence, by Lemma 1.28, there
exist f € Z9(T) and a subsequence {f,} (k1 < ky < ---) such that

fi;]|zex < 1 and

2 1 2

lim o [ i @a@)de = o [ f)g(x)da

j—oo 21 Jq 2m Jo

for all g € C(T). Hence, we have

1 2T
To) =5 | @i
for all g € C(T). Therefore we get the desired result. O
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CHAPTER 2

Fourier multipliers from L”-spaces to Morrey

spaces on the unit circle
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1. Fourier multiplier and main results

Let 1 <p<ooand 0 <A< 1. Then LP(T) denotes the LP-spaces

on the unit circle T and LP*(T) denotes Morrey spaces defined by

1 dx v
LPNT) = { ‘ =  su (—/ p—) < oo}
( ) / ||f||p«\ IcT:[Em) m,\ | |f| o

I#dinterval
We note LPO(T) = LP(T), LP(T) = L>°(T) and LP*(T) is a Banach
space (cf. [37], [53, p.215]). We remark LPA(T) # LP(T) for 0 < X < 1
([55]).

For Banach spaces X and Y which are translation invariant function
spaces contained in L!(T), we denote by M(X,Y) the set of all opera-
tors which are translation invariant bounded linear operators from X
to Y. We note M(X,Y) is a Banach space with respect to the op-
erator norm || - [|a(x,y). An element of M(X,Y) is called a Fourier
multiplier (operator). When X = L?P and Y = L9, an element of
M(LP, L) N M(T) for 1 < p < g is called an LP-improving measure
([25] cf. [22], [26]), where M (T) is the set of all bounded regular Borel
measures on T. Let p be a non-negative measure on T. For 0 < a < 1,
we denote p € Lip,(M(T)), if there exists a positive constant C' such
that p(I) < C|I|* for any non-empty interval I C T. py is called
that the distribution function of py satisfies the Lipschitz condition, if
piy € Lipa(M(T)) for some 0 < o < 1, where pg(E) = [, f(z)% for
a measurable set £ on T and a nonnegative function f € L'(T). For

M(LP, L) and Lip,(M(T)), the following results are known.
THEOREM A. ([16] cf. [17], [38]) Let 1 < p < g < 2. Then we have

M(LP, LP) # M(L?, L9).

39



THEOREM B. ([21]) There exists f € L*(T) with f > 0 such that

Tf ¢ U M(Lpan)v Ky € ﬂ Lipa(M(T))'

1<p<g<oo 0<a<l

Then we study those results in Morrey spaces.

Our main results are as follows:

THEOREM 2.1. Let 1 < p,g < o0 and 0 < \,v < 1. Suppose % #+ %.

Then we have

M(LP, LPY) # M (LY, L").

THEOREM 2.2. Let 0 < A\,v < 1. Also let p,q be positive numbers

v

with 14+ X <p < q and ]l) —1—% < 1. Suppose % =7 Then we have
M(LP, LP) # M (L%, L"),

THEOREM 2.3. Let [ € LY(T) be a non-negative function. Then
we have that piy is in Lipo(M(T)) for some 0 < o < 1, if and only

if Ty € M(LP,LP?) for some 1 < p < oo and 0 < X\ < 1, where

Trg=fxg.

The chapter is organized as follows: In §2, we investigate the inclu-
sion relation between LP(T) and LPA(T). In §3, we prove Theorem 2.1
by the norm estimate of the Dirichlet kernel in M (LP, LP*). In §4, we
prove Theorem 2.2 by using the norm estimate of the Rudin-Shapiro
polynomials in M (LP, LP}). In §5, we prove Theorem 2.3. Throughout
this chapter, we denote by |E| the normalized Haar measure of £ C T.

The letter C' stands for a constant not necessarily the same at each

occurrence. A ~ B stands for C7'A < B < C A for some C > 0.
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2. LP(T) and LPA(T)

In this section, we will consider the inclusion relation between the

LP-spaces and Morrey spaces on T.

PROPOSITION 2.4. (cf. [28, Proposition 5.1], [48, Lemma 1.3]) Let

1<rp<ooand0< X\ <1. Then, we have the following:

(1) LPA(T) € L7(T) if 1 <7 < p < 003
(2) LPX(T) ¢ L'(T) and L'(T) ¢ LPN(T) if p <7 < 125
(3) L'(T) € LPX(T) if r > &5.

PROOF. (1) Since LPA(T) C LP(T) (see [55, p.587]), we get the
desired result.
(2) By the assumption on 7, we can choose 0 < A\g < A as r = ﬁ,
and p > 0 such that % < p <t Set f(x) = xou(x)z " € L'(T).
Then we have f ¢ LP*(T). Let I = (a,b) for 0 < a < b < 1. By the

mean value theorem, we have

1 dx b dx
- p7 _ A —pp
i / P = (b—a) / e

= Clb—a)"Ma+00b—a))P

> C(b—a) P

b

for some 0 < 6 < 1. So, putting a = 3, we have

for all 0 < b < 1. Since pu > 1;7’\, we have f & LP*(T). Therefore, we

get f € L"(T) and f ¢ LP(T).
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Next we show LPA(T) ¢ L"(T) for all \y < A < 1. Suppose
LPA(T) C L"(T). By the closed graph theorem, there exists a con-

stant C such that

11l < Clifllpa

for all f € LP*(T). Now let 6 be in 0 < § < 5, and N € N. Also we

denote I(k,0) = {z € (0,1)] —g<$<—+§} fork=1,--- N —

%
1, I(N,§) = {z € (0,1)]1 — £ <z < 1}, and E = U}_,I(k,0). Then
we choose a natural number N such that 6N ~ §'~*. Hence, we have
|E| ~ 6N ~ §'=*. When we define g5 = 5~+xp. For any non-empty
interval I C T, we have

i [ Lo 5E < 1125 B

Here, we investigate the left-hand sides of the inequality for k = Card{¢|I(¢,0)N
(ENT)# ¢} > 4. Since 5% < |[I| < Eland (k—2)6 < |[ENI| < kS,

we have

1|26

GRS < IR (2N < CoroA

and

m)\ /|95|p_ < g

Next we estimate ﬁ i 1gs/PE for k = Card{¢|I(¢,0)N(ENI) # ¢} <

3. Since |[ENI| < Cmin{36,|I|}, we have

1 dx . _Ne_P — .y
i [ Lo 5E < Comin{(17457E, 112815y

Hence, we have ﬁ [ lgslPde < C5t=>=+ by using the case |I| < § or

|| > 6. Thus, we obtain ||gs||,, < 5™ for sufficiently small § > 0.
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By the assumption LPA(T) C L"(T), we have

Ag—A
po.

_2A
077 ~ |lgsllr < Cllgsllpa < CO

This contradicts §- 7~ < C with % -2 = %()\ —1) < 0 for
0 < X\ < 1. Hence we have LP*(T) ¢ L"(T).

(3) By the Holder inequality, we have ||f||,» < C||f||, for all f €
L"(T), and thus L™(T) € LP(T). Suppose ro = t£5. When we define
f(z) = X(o,l)(x)x_%, it is easy to show f ¢ L™(T) and f € LP*(T)

similar to (1). Thus, we have L"(T) C L**(T) for r > £5. O

COROLLARY 2.5. Let Dy be the Dirichlet kernel Dy (z) = Z]kV:_N ethe

of degree N. Then, we have

=

A
1 Dn|lps ~ N* 5
forany 1 <p<ooand <\ < 1.

PROOF. Since we have L"(T) C LP(T) for r = £ by Propo-
sition 2.4 (3), there exists a constant C' > 0 such that |[Dy|[,\ <

C||Dnl||,. By Edwards [14, Exercise 7.5, we have

e

L _ et
IDxlpx < Cl|Dy||y ~ N7 = N»

For the interval Iy = | |, we have

T T
2N+17 2N+1

dx SN N + 1 xz pd.ﬁE
|IN|_/\/ |DN|P_ > |]N|—A/ (%) Ny Np-l—)\—l’
Iy 0

2m 5 2T
and ||Dyl[px > CN P Therefore, we get the desired result. d
REMARK 2.6. Similarly, for the Poisson kernel P, (z) = % (0 <

r < 1), we have
Al
1Pllpr ~ (L =7)1)» "7
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3. M(L?,LP*) and M(L7, L") (X # %)

In this section, we consider between M (LP, LP*) and M (L%, L4").

First we obtain the following:

LEMMA 2.7. Let 0 < A < 1 and 1 < p,q < co. Suppose ¢ > p(1—N).
We define the operator T € M (LP, L9) such that Tf = Dy * f. Then,
we have

1_1-a
DN |lar(er,pary = Tl arpe,pany ~ N#~ 70

In particular, || Dy || e, peny ~ N¥.

PROOF. Since we have L"(T) C L*(T) for r = % and L'(T) C
LP(T) by the assumption, we obtain ||T'||ys(ze rary < ||T||a(Le,Lry- By

the norm estimate of Dy in M (LP, L") (cf. [14]), we get

1_1
||T||M(Lp7L'r) S GNP .

1—X

1_1-2
Conversely, we have ||T'||y(e pary > CN?~ @ by [[Dnllgx < T\ aree,am| [ Dnllp
and Corollary 2.5. Hence, we obtain

1_1-X

||DN||M(LP,L¢M) = ||T||M(LP,L47*) ~Nv o,
and we get the desired result. U
Now we can prove Theorem 2.1.

PrROOF OF THEOREM 2.1. Let 0 < \,;v <1, 1 < p,q < o0, and
% # ¢. By Lemma 2.7, we have |[Dy||r(zo,1o2) ~ N¥. Thus, we obtain

M(LP, LP*) £ M(L2, L9). O

COROLLARY 2.8. Let 0 < \,v < 1 and 1 < p,q < oo. Suppose
% > g. Then there exists f € L*(T) such that Ty € M(L%, L%") and
Ty & M(L?, LP), where Tyg = [ +g.
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PROOF. Let a be a positive number with % <a< %. Also we define
k, = 2", Then, we have k, + 2" < k,y1 — 2" (n > 1). When we
define

F) = 3 g Do (),

n=1

we show that T} satisfies the desired conditions. When we choose r

such that % < g with % + % =1, we have

||f||7’ < CZ%HDTL zk‘nm

|-

< 022"(_‘”%) < 00,
and f € L"(T) C LY(T). Also we obtain Ty € M (L4, L%"), since

1f* gllgw < cy anHDzn )e 5 gllg.
<2

< Cllgllq

by Lemma 2.7 and a > £. Similarly, since Ty (Dan (x)e’**) = 279 Don ()™,
we have Ty ¢ M(LP, LP*). Thus, we get the desired result. d

REMARK 2.9. We have M (LP, LP*) = M (L?, Lh") (1 < p < 00, 0 <
A < 1), where L2A(T) is the closure of C(T) in LP*(T).

REMARK 2.10. We remark M (L', LP*) = LPA(T) (1 <p < 00, 0 <
A < 1). In fact, let fo be in LPA(T), and g in L'(T). Then we have
1o * dlloa < [lfollpallglls by the Holder inequality, and LvA(T)
M (L', LP*). Conversely, let T be in M (L', LP*), and Ky(z) = Ej.v:fN(l—
%)eijw the Fejér kernel of degree N. Then we obtain TKy € LPA(T)
and [|[TKn||px < ||T||prezr ey (N > 1). Hence, there exists {T'Ky, };,

a subsequence of {T'Ky}y, such that T Ky, converges in the weak™*-

topology of LPA(T) for some f € LP*(T). By the Banach-Alaoglu
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theorem, since we have the predual of LP*(T) ([55]), we have

1 s

2 ),

Tg(x)h(z)dx = % /j f*g(x)h(x)dx

for all h € C(T) and any trigonometric polynomial g. Therefore, we

obtain Tg = f* g (g € L(T)). Then we get M (L', LP*) = LP(T).

PROPOSITION 2.11. Let 0 < \,v < 1 and 1 < p,q < co. Suppose

_ p2
2<p<qorqg<p<2. FOT’)\—%V, we have

M(L, L%y C M(LP, LP?).

PROOF. Since L% (T) C L(T), we have M (L9, L) C M(L?, L?).
First let 2 < p < ¢, and T' € M(L4, L?"). Since T is bounded from
LY(T) to L%"(T) and from L*(T) to L*(T), we obtain that 7" is bounded
from LP(T) to LP"(T) by the Peetre interpolation theorem [45, The-
orem 4.1], where p and k are defined by }D = g + % and 2 = gu +

p=2

1-80. Then an arithmetic shows rk = E=v. Since % # £, we have

M(LP, L) £ M(L4, L97). O

4. M(LP,LP*) and M(L?, L*) (3 = %)

In this section, we consider the inclusion relation between M (LP, LP*)
and M (L9, L®") for % =2 and 0 <Av <1, 1<p<qg<oo For

this, we recall the Rudin-Shapiro polynomials (cf. [34], [53]).

DEFINITION 2.12. Let m be a non-negative integer. We define

trigonometric polynomials P,,(x), Q. (z) such that

(1) Po(z) = Qol(x) = 1;
(2) Pog1(z) = (@) 42" Qm(2), Qmr(x) = Po(2) =€ Qi (2).
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We prepare the following lemmas which will be used in the proof

of Theorem 2.2.

LEMMA 2.13. (cf. [34], [53]) The Rudin-Shapiro polynomials Py,, Qn,

have the following properties:

(1) Pu(z) =S 0g" exe™, Qm(x) = Yo g mee™™® for some e, mi €
{-1,1}

(2) |Pu(z)] < C(2™)2 (x € T);

B3) 1Tl lnt(zo.pey ~ (2273 (1 < ¢ < 00), where Ty f = Py * f.

By Lemma 2.13 and the Peetre interpolation theorem [45], we ob-

tain the following:

LEMMA 2.14. Let 0 < A < 1, and p > 1+ X. Then we have the

estimates:

'U\y

| Tonllarze.ory > C(27) 7"
where T f = Py, * f.

2
2

PRrROOF. Step 1. We show ||T},||p(r2,220) ~ (2™)2. Let P be a

trigonometric polynomial such that P(xz) = Y7__ axe™® for any pos-
itive integer n. Since P, * P(z) = Zi%@m*l’”) erare*® . we have

|P,, * P(x)]* < C2™||P||3 by the Schwarz inequality. Then for any

interval I with |I| < 27, we have

1

|I|A/‘P *P|2— < C2™||P||3
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by the Parseval inequality. When |I| > 27 we obtain

1 dx 1 4 dx
— [P, x PP < — P, * P|>*—
T [V PP < g [ e PP

1 2m—1
2
< W Z ||
k=0
< C2™||P|)3

by the Parseval inequality. Hence, we get || T, P|lan < C(2™)2|| P2,

and || T | ar(z2,220) < C(2™)2. On the other hand, since

Hpm * Pm”2,/\ S ||TmHM(L2,L2’>‘)HPmH2

< ClTnllaz,r2)(27)?

and || Py x P, ||2,0 ~ (2m)272 by Lemma 2.13, we obtain Tl [ nr(p2,020) ~
A
(27)2.
Step 2. When p > 2 and 0 < A < 1, we have

ALl 1
||Tm||M(LP,Lp,A) ~ (2m)5+§ i

In fact, letr>2and0<9,/{<1suchthat%:Q+1_9 and 2 = Zx.

2 r

3
N

1
T

By Lemma 2.13, we have ||Tp,||azr,ry ~ (2m)z=r. Applying Step 1

and the Peetre interpolation theorem, we have
m\ 2 romy (2 -1)(1-6)
Tl ar(ze,ony < C(27) 2 (27) 277 :
ence, we obtain || T, || v e 1oy < »+275 . Converse y, we ge
H btain |1 arize rory < C(2™) 2275, C l t

1

A1l 1 m
HTmHM(LP,LpA) > C(2m)1’+p/ 2~y (2 )

3 >

+33
by Corollary 2.5 and Lemma 2.13. Therefore we have ||T5,||nr(ze,1or) ~
(2m)+377.
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Step 3. We show ||T5,||ar(ze,rrry) < C’(2m)%+%7% for 1+ A <p<2.

First, we choose 1 <r < pand 0 < 6,k < 1 such that Il; = g—i- 1%9 and
% = gm. Then, we can show that

||Tm||M(LP,LP’*) < C||Tm||?\/[(L2,L2J)||Tm||]1\/;(6Lr,Lr)

B>

1_1
+E—§

< C@2m)

by applying the Peetre interpolation theorem. On the other hand,

B =

my 3+ S
by ([T (Pr)llpa ~ (27) 777" we have || Tl |ar(e,reny = C(27)7 7277,

similarly in Step 2. After all, we get the desired result. U

ProoOF OoF THEOREM 2.2. By the assumption, we have ¢ > 2, and
1 Ton [ t(po.powy ~ (27)a 274 for m. Tfwe have M(LP, LP) = M (L9, L),
we obtain the contradiction to p < g for p > 2. For 1 + A < p < 2, we
have M (LP, LP*) # M (L9, L%") by the estimate in Lemma 2.14. Then

we get the desired result. O

COROLLARY 2.15. Let 0 < A v < LL1+A<p<gq, and L +1 <1

Suppose % = Y. Then there exists T € M(LP,LP*) such that T ¢
ML, L"),

PROOF. Let 2 < p < ¢q. Then there exists a in %+%—% <a< %—i—

%—%. Also we define k,, = 2"+, Then, we have k, +2""! <k, —2""2
We define
Sy(@) = 3" L b (@)t
— 2am m

for any N € N. Then, {Sy}x is a cauchy sequence in M (LP, LP*) by
the choice of ¢ and Lemma 2.14, and there exists S € M (LP, LP*) such
that |[Sy — S||am(ze, ey — 0 as N — oo. Also let g be a function

such that g(r) = P, (x)e?**. We consider {Sy * g} nsm. Then we can
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prove S & M(L4, L?") by the way similar to Corollary 2.8 in view of
the choice of a. In case of p < 2 < ¢, we omit the details, since the

proof is similar to it of the case 2 < p < q. U

5. M(LP,LP*) and the Lipschitz conditions

DEFINITION 2.16. Let g be in M(T) and 0 < a < 1. We say
that u € Lipo(M(T)) for p € M(T) with p > 0 if for any interval
I =[x,z +hl,

u(l) < C|I1* = Clh"

for some constant C' > 0 independent of I. For f € L'(T) with f > 0,

we denote pf(E) = 5= [, f(z)dz for any measurable set £ C T.
It is easy to prove the following:

PROPOSITION 2.17. Let f be in L'(T) with f > 0. Then we have
that py is in Lipo(M(T)) if and only if f € L¥*(T).

By applying Proposition 2.17, we can show the following:

PROPOSITION 2.18. Suppose f € L*(T) and f > 0. Then we have

the following:

(1) If s € Lipo(M(T)) for all 0 < o < 1, then Ty € M(LP, LP*)
forall 1 < p < .
(2) If Ty € M(LP,LP*) for some 1 < p < oo and 0 < X < 1, then

piy € Lipx(M(T)).

PRrROOF. (1) Since puy € Lip,(M(T)) for all 0 < a < 1, we get

f € LY*(T) by Proposition 2.17. Let I C T be a nonempty interval.
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For g € LP(T), we have

|1\a/‘ /fx_
< 7 [ (5 [ latwpisia- >|dy)(2;/:|f<x—y>|dy)5§—i

< [If17allgll7

Pdx

2T

by the Holder inequality. Hence, we obtain ||f * ¢|l,0 < ||f|l1.all9llp
and Ty € M(LP, LP*).

(2) Let f be in LY(T) with f > 0, and Ty € M(LP, LP*). Now, let I5 =
[—6,0] (0 <0 < 1) and g = xy,. It is sufficient to show uf(1,) < C|1, |p

for sufficiently small > 0. First we remark

f*g(x =—/ (z —y)f(y)dy = ps(Is + ),

and Ig CIls+x forx € ]g. Hence, we obtain

1 1 dx
pdT Ts)P—=
|I|>‘ L;‘f g’ ’]|>‘/'uf( %) o’
2
and
) < (5™ [ 1 el es
2 20 T Is 2w
< |[f =gllpa
< 1T g o sl
< ClI.
Therefore, we get pur(1 %) <C|I s ]%, and the desired result. O

As a corollary of Proposition 2.18, we have Theorem 2.3.
Moreover, by Theorem B and Proposition 2.18, we conclude that
M(L", L") are different from M(LP, L%) (1 < p < q < o). Precisely,

we obtain the following corollary:
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COROLLARY 2.19. Let 1 <p<g<oo, 1 <r<oo,and0 <\ < 1.

Then we have

M(LP,L%) # M(L", L™).
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CHAPTER 3

The fractional integral operators on weighted

Morrey spaces
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1. A preliminary

Throughout this chapter, we will use the following notation: For
E C R", we denote the Lebesgue measure of E by |E|. We call a
nonnegative locally integrable function w on R™ a weight function and
define w(E) = [, w(x)dz. For a ball @, 2Q denotes the ball with the
same center as () whose radius is twice as large. For 1 < p < oo,
p’ is defined by the conjugate index which satisfies 1% + 1% = 1. Also,

the letter C' stands for a constant not necessarily the same at each

occurrence.

First, we introduce some definitions.

DEFINITION 3.1. Let 0 < a < n. Then, the fractional integral

operator [, is defined by

I,.f(x) ::/]R Ady.

oo —ylre

DEFINITION 3.2. Let 1 <p < o0, 0 < XA < 1, and u, v are weight.

Then, weighted Morrey space LP*(u,v)(R") is defined by
D, ) = { £ € L)

1 ) 7
Il = s (-or /Q ) <o}

When u = v = 1 in Definition 3.2, then it is classical Morrey space,

that is,

PA(R™) — - \ = L p ’
LR {f-||f||m Qcﬁﬂgzbau(m /Q ) dy) <oo}.
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DEFINITION 3.3. Let 1 < p,q < co. We say that a weight w belongs

to A, ,(R") if

1 i /1 , ;
— wrdy) (= [ w () .
QCRR bal <|Q| /Qw ) y) <|Q| /Qw W) y> =

DEFINITION 3.4. (1) We say that a weight w satisfies the doubling

=

condition if there exists K7 > 0 such that

w(2Q) < Kyw(Q)

for all balls Q.

(2) We say that a weight w satisfies the reverse doubling condition if

there exists Ky > 1 such that

w(2Q) > Kyw(Q)

for all balls Q.

REMARK 3.5. If w € A, ,(R") for 1 < p,q < oo, then w? and w
satisfy both the doubling condition and the reverse doubling condition,

respectively.
Komori and Shirai [35] proved a weighted estimate (cf. [8]).

THEOREM C ([35, Theorem 3.6]). Let 0 < a < n, 1 <p < 2

o’

0< A< q%’ and w € A, (R™). Then, the fractional integral operator

. Ady
I, is bounded from LPA(wP,w®) to L™ » (w®,w?), where L =

1 _1_«
q1 p n’

REMARK 3.6 ([43]). When A = 0 in Theorem C, then it is the

Muchenhoupt-Wheeden inequality:
HIafHqu(wa) < CHfHLp(wp).

We improve Theorem C in the next section.
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2. Main result

Our result is as follows:

«

THEOREM 3.7. Let0 < a<n, 1 <p< "(1”), 0< A< ;41, andw €

A, (R™). Then, the fractional integral operator I, is bounded from

a 1 1 a
=, and o = p i

LPA(wP,wh) to LeA(w?, wh), where qil = ]%

From this theorem, we can see the following:

REMARK 3.8. (1) Since L& (w®, w™)(R") € L™ 5" (w, wi )(R™),

Theorem 3.7 improves Theorem C. In fact, since 1;—2’\ = qil — %, we have
1
— o [ @l @
wn(@Q)F Jo
1 @ i
< —— </ |f($)|q2w‘“(w)dw) W (Q)'
wn (@) 3 \Ja

S Hf’ qu<12,>\(wq17wQ1)

by the Holder inequality. When w = 1, we note L2*(R") & Lo (R™).
It is easy to check this fact by the method of [28, Proposition 5.1]
(cf. [44]).

(2) ([2], [43]) When A = 0 in Theorem 3.7, then it is the Muckenhoupt-
Wheeden inequality. When w = 1, then we have the Adams inequality:

Mo fllpar < ClI Lo

For the proof of Theorem 3.7, we need measures on R".

DEFINITION 3.9. Let p be a positive measure on R". We say that

i is a doubling measure if there exists C' > 0 such that

p(2Q) < Cu(Q)
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for all balls @, where u(Q) = fQ dj.

Throughout the rest of this section, we assume that p is a doubling

measure.

DEFINITION 3.10. Let 1 < p < oo and 0 < A < 1. Then,

LPA ) (R™) is defined by

L () (R") = {f € LL (R :

1 %
o = s (s [ 1FPant))” < .

DEFINITION 3.11. The Hardy-Littlewood maximal operator M, is

defined by

1

Mif@)= s o /Q ()l duty).

Next, we give some lemmas. It is easy to see Lemma 3.12.

LEMMA 3.12 (cf. [6], [8]). Let 1 < p < 0o and 0 < X\ < 1. Then,

the Hardy-Littlewood maximal operator M, is bounded on LP(u).

LEmMA 3.13. If w € A, (R™), then there exists py such that 1 <

po < p and

1 1
1 a1 1 p h
sup (— / w%y)dy) 1 (— / wPo(y)dy) b < .
Qcrn,@ball \ Q] Jg Ql Jo

PROOF. Since w € A, 4, (R") if and only if w™" € A, » (R") ([35,
a1
Remark 2.11]), this lemma is proved by the reverse Holder inequality.

g

By Lemma 3.13, we get the following:
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LEMMA 3.14. If w € A, (R™), then there exists r such that 1 <

r<pand
1_«a 1
1 r n 1 . T’(l_ﬂ) r/
sup [ w™(y)dy o [ Wt (y)dy | < oo,
Ocrn,Oball \ | @ Q Q| Q
where + =1 — &,
@ p n

PROOF. As for py in Lemma 3.13, we define r as 7“’(% — g1 = pp.

Then, we obtain the desired result by applying Lemma 3.13. U

Now, we define mqg f = @H Jo f(y)dy. Then, we estimate |Q|»mol f]

in two different ways. First, we have the following:

LeMMA 3.15. Ifw € A, ,, (R"), then we have

CHfHLP’A(wP,wa)
wr (@)

and d = =2,
q2

Q= mqlf| <

where L =

1 1
@ p

al _1_ _a
n’q p n(l—X)’

PrOOF. By w € A, ,, (R") and the Hélder inequality, we have

@l malf| < 101+ ( /Q |f<x>\pwp<y>dy)’l’ (o /Q w )y )

1

A_ 1
< CHfHLPv/\(wP,wa)wa(Q)p a,

1
Y

and get the desired inequality by the choice of d. U
Next we estimate |Q|=mg|f| in terms of M,,.

LEMMA 3.16. Ifw € A, (R") and du(y) = w? (y)dy, then we have

1
T

Q" mqlf] < Cw™(Q)» M,(|fw*|")(x)

for all x € Q, where a = % — 1, and r is a number chosen in

Lemma 3.14.



PROOF. Let ¢ = ¢4 (— — —) + 1. Then, by the Holder inequality

and Lemma 3.14, we obtain

Q[ mqlf]

<l (m/‘f rac )i(i
=l |@|/ ™ w)duly )i<|c2\ _Cﬂ(y)dyy

(
<\@,) Y M,(| fw ") (2)F Q)+ (ﬁ/@w‘”’(wdy):’

< Cw™(Q) 7 My (| fw™|")(x)7

By using these lemmas, we prove Theorem 3.7.

PrROOF OF THEOREM 3.7. Let r be a number chosen in Lemma 3.14,
and d, a be in Lemma 3.15 and Lemma 3.16, respectively. First, we

obtain

e [ ML,

1< | —y| <29 |z —y|"e

j=—00
<y =l O
c'Y 20 o [ 1wy
j=—00

<C Z 1Q;1"ma,| fI,

j=—o00
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where Q; = Q;(z) = {y : |# —y| < 2/}. By Lemma 3.15 and

Lemma 3.16, we have

J

|Iaf(37)| S C ( Z wa(Qj)%M“(|fw_a r 1 +Z ||f||Lp)\ WP wil) >

ﬁ

wlh
j=—00

for all J € Z. Since w? satisfies both the doubling condition and the

reverse doubling condition, there exist constants /K, and K5 such that

1< K < wlzlng(gj)l) < Ky < oo for all j € Z. Therefore, we get

(Lo f ()] SC{wq1(QJ) (1 fw ) () + %%}

for all J € Z. Now, we take J such that

w Q) < “fHLP’A(wp’wa)l
M, (| fw=e]")(z)>

< Ky ram(Q)th

for all x € @), and we have
—a|r ——nd
[Laf(z)] < CIIfIIZZTwp wiy My (| fw™]") () rarer.
By the choice of ¢ and d, we have

(soiom ;[ s >dx)12

_a 1 —a é
< CIAIES ) (wa(Q / My (| fur]) (@) w2 )dm)

1 i
= OISy (7 / Myllfum (el Fun ()i ) .



Since p > r, we can use Lemma 3.12. By the choice of a, we have

/M (1fw]) (o) F ™ (z)da

wa

1

~(om / My(lfu )@ ) )

P
<M

3R

P
<C —al|r||r
<Ol 1wy,
_CHfHLp/\(wpwq1

Therefore, we obtain

1
q2
C [ @i 1) < U o 11 s

= CHfHLPVA(wP,wa)'

3. A remark

We show a multilinear version of Theorem 3.7.

DEFINITION 3.17. Let 0 < a < m, 6; # 0 (1 <i < m), and 6; are
all distinct. Then, the multilinear fractional integral operator 1, is

defined by

Rn ly|n—e

]Z,Le(fla cee ,fm)(x) =

where 0 = (6,...,0,,).
We give a remark as a corollary of Theorem 3.7.

PROPOSITION 3.18. Let 0 < o < n, 1 <p < 222 0 <\ < 2,

and w € A, 4 (R"). Then, the multilinear fractional integral operator
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17y is bounded from [T, LPMwP, w™) to L= (w®, w?), where 117 =

m 1 1 _1_ « 1 _1 el
Zi:lpi’m_p n,and q2 p  n(l-N)"

PRrOOF. First, we remark

L20(Frs o Fon <0H( (151%) @)

by the Holder inequality (cf. [27]). From this fact and Theorem 3.7,

we have

(m /Q |]2:Le(f1, . ’fm)<x>|(hwa(x)dx> =
(st 1009y ) )
. </Q ! |f’| p) (z)®w® (fﬁ)wa(Q)_»ﬁi d:t:) )

=1

IN

m 1P

Cg (W/Q & <|f1|%> (x)quql($)dx>‘Dm
I, (wp)
< CHH\mp

= CH HfiHLPi’)\(wp’wm) .
=1

IN

La2:A (w91 ,wat)

LP:A (wP awl)

Therefore, we obtain the desired result. Il
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