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Abstract

The Standard Model (SM) of particle physics is the best theory to describe elementary

particles and fundamental interactions among them (strong, weak, and electromagnetic

interactions), and agrees with a number of experimental results in a high accuracy. Despite

of its success, there are some observational problems that the SM cannot account for.

There are two missing pieces in the SM. One is the neutrino masses and neutrino flavor

mixings, which are observed through the neutrino oscillation phenomena. The other is a

dark matter candidate. Current cosmological observations have established the existence

of dark matter in the universe. However no suitable dark matter candidate is not included

in the SM particle content. We need to extend the SM to supplement these missing pieces

into the SM.

In this thesis, we first consider a dark matter scenario in the minimal gauged B − L

extension of the SM, where the global B − L (baryon number minus lepton number)

symmetry in the SM is gauged, and three generations of right-handed neutrinos and a

B−L Higgs field are introduced. Associated with the B−L gauge symmetry breaking by

a vacuum expectation value of the B−L Higgs field, the seesaw mechanism for generating

the neutrino mass is automatically implemented after the electroweak symmetry breaking

in the SM. In this model context, we introduce a Z2 symmetry and assign an odd parity

for one right-handed neutrino while even parities for the other fields. The dark matter

candidate is identified as the right-handed Majorana neutrino with Z2-odd. The so-

called minimal seesaw is implemented in this model with only two Z2-even right-handed

neutrinos. When the dark matter particle communicates with the SM particles mainly

through the B − L gauge boson (Z ′
B−L boson), its relic density is determined by only

three free parameters, the B−L gauge coupling (αB−L), the Z
′
B−L boson mass (mZ′) and

the dark matter mass (mDM). With the cosmological upper bound on the dark matter

relic density, we find a lower bound on αB−L as a function of mZ′ . On the other hand,
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we interpret the recent LHC Run-2 results on search for Z ′ boson resonance to an upper

bound on αB−L as a function of mZ′ . Combining the two results we identify an allowed

parameter region for this“ Z ′
B−L portal”dark matter scenario, which turns out to be a

narrow window with the lower mass bound of mZ′ ≥ 3.6 TeV.

Next, we generalize the minimal B − L model to the minimal U(1)X model. Intro-

ducing the Z2 symmetry, the Z2-odd right-handed neutrino serves as a dark matter in

the universe. The“ Z ′ portal”right-handed dark matter scenario is controlled by only

four free parameters: the U(1)X gauge coupling (αX), the Z
′ boson mass (mZ′), the dark

matter mass (mDM), and the U(1)X charge of the SM Higgs doublet (xH). We consider

various phenomenological constraints to identify a phenomenologically viable parameter

space. The most important constraints are the observed dark matter relic density and

the LHC Run-2 results on the search for a narrow resonance with the dilepton final state.

We find that these are complementary with each other and narrow the allowed parameter

region, leading to the lower mass bound of mZ′ ≥ 2.7 TeV. Future LHC experiments will

fully cover the current allowed region, and the Z ′ boson of the minimal U(1)X extended

SM might be discovered in the near future.
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Notation

• Natural units:

ℏ = c = kB = 1,

where c is the speed of light, ℏ = h/(2π) (h is the Planck constant) is the reduced

Planck constant, and kB is the Boltzmann constant.

• Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

• γ matrices (chiral representation):

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
,

where 0 is the 2× 2 zero matrix, 1 is the 2× 2 unit matrix, and i = 1, 2, 3.

• Chirality:

ψL = PLψ =
1− γ5

2
ψ,

ψR = PRψ =
1 + γ5

2
ψ,

where

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
.

• Dirac adjoint:

ψ = ψ†γ0.
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• Charge conjugation:

ψC = Cψ∗,

where

C = iγ2γ0 =

(
iσ2 0
0 −iσ2

)
.
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Chapter 1

Introduction

In 2012, the Higgs boson, which is the last piece of the Standard Model (SM), was

discovered by the A Toroidal LHC ApparatuS (ATLAS) and Compact Muon Solenoid

(CMS) experiments at the Large Hadron Collider (LHC) [1, 2]. The SM is the best theory

to describe elementary particles and fundamental interactions among them (strong, weak,

and electromagnetic interactions), and agrees with a number of experimental results in a

high accuracy. For example,W and Z gauge bosons in the SM had been discovered by the

Underground Area 1 (UA1) and the UA2 experiments at the Super Proton Synchrotron

Proton-Antiproton Collider in 1983 [3, 4], whose properties such as masses and couplings

with quarks and leptons were measured at the Large electron-positron collider (LEP)

with a very high degree of precision [5, 6]. Properties of the Higgs boson have also been

measured to be consistent with the SM predictions at the LHC [7].

Despite of its success, there are some observational problems that the SM cannot

account for. One of major missing pieces in the SM is the neutrino mass matrix. Right-

handed neutrinos are not included in the SM particle content in contrast to the other

fermions, so that neutrinos do not have their masses. However neutrino oscillation phe-

nomena among three neutrino flavors have been confirmed by the Super-Kamiokande

experiments in 1998 [8] and the Sudbury Neutrino Observatory (SNO) in 2001 [9]. Neu-

trino oscillation phenomena require neutrino masses and flavor mixings, and therefore we

need a framework beyond the SM. The seesaw mechanism [10, 11, 12, 13, 14] is probably

the most natural way to incorporate the tiny neutrino masses and their flavor mixing,

where right-handed neutrinos with Majorana masses are introduced.

Another major missing piece in the SM is the candidate of the dark matter particle.
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Based on the recent results of the precision measurements of the cosmic microwave back

ground (CMB) anisotropy by the Wilkinson Microwave Anisotropy Probe (WMAP) [15]

and the Planck satellite [16, 17], the energy budget of the present universe is determined

to be composed of 73% dark energy, 23% cold dark matter and only 4% from baryonic

matter. It is a prime open question in particle physics and cosmology to identify the

properties of the dark matter particle, although the SM has no suitable candidate for

it. Therefore, we need to extend the SM to incorporate the cold dark matter particle.

One of the most promising candidates for the dark matter in the present universe is the

weakly interacting massive particle (WIMP) [18]. The WIMP was in thermal equilibrium

in the early universe and its relic density is determined by the interactions with the SM

particles. Note that the calculation of the relic density is independent of the history of

the Universe before the dark matter has gotten in thermal equilibrium.

The minimal B−L extended SM [19, 20, 21, 22, 23] is a very simple extension of the SM

to naturally incorporate the seesaw mechanism. In this model, the accidental global B−L
(baryon number minus lepton number) symmetry in the SM is gauged, and an introduction

of three generations of right-handed neutrinos is required to keep the model from the gauge

and gravitational anomalies. Associated with the B − L gauge symmetry breaking, the

right-handed neutrinos acquire Majorana masses, and the SM neutrino Majorana masses

are generated through the seesaw mechanism after the electroweak symmetry breaking.

The mass spectrum of new particles introduced in the minimal B − L model, the B − L

gauge boson (Z ′
B−L boson), the right-handed Majorana neutrinos and the B − L Higgs

boson, is controlled by the B − L symmetry breaking scale. The B − L model can be

tested at the LHC, if the breaking scale lies around the TeV scale.

Although the minimal B − L model incorporates the neutrino masses and mixings, a

candidate for the cold dark matter is still missing in the model. A simple and concise way

to introduce a dark matter candidate in the context of the minimal B−L model has been

proposed in [24], where only a Z2 symmetry is introduced without any extensions of the

particle content of the model. An odd parity is assigned to one right-handed neutrino,

while the other particles have even parties. Because of the Z2 symmetry conservation,

the Z2-odd right-handed neutrino cannot decay into other particles and hence plays a

role of dark matter. The neutrino oscillation data can be reproduced by the so-called

minimal seesaw [25, 26], where only two generations of the right-handed neutrinos are
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involved, predicting one massless neutrino. Dark matter phenomenology in this model

context has been investigated in [24, 27, 28]. The right-handed neutrino dark matter can

annihilate into the SM particles through its interactions with (i) the Z ′
B−L boson and (ii)

two Higgs bosons which are realized as linear combinations of the SM Higgs and the B−L
Higgs bosons. The case (i) and (ii) are called“ Z ′ portal”and“ Higgs portal”dark

matter scenarios, respectively. The Higgs portal dark matter scenario has been extensively

studied in [24, 27, 28].

Recently, the Z ′ portal dark matter has atracted a lot of attention [29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41], where a dark matter particle is introduced along with an

extra gauge extension of the SM, and the dark matter particle communicates with the

SM particles through an electric charge neutral gauge boson (Z ′ boson), associated with

an extra gauge group. The Z ′ boson as a mediator allows us to investigate a variety of

dark matter physics, such as the dark matter relic density and the direct and indirect

dark matter search. Interestingly, the search for Z ′ boson resonance at the LHC provides

information that is complementary to dark matter physics.

The minimal B − L model with the right-handed neutrino dark matter discussed

above is a very simple example of the Z ′ portal dark matter model. In this thesis, we

first investigate the Z ′ portal dark matter in the minimal B − L model. Because of the

simplicity of the model, dark matter physics is controlled by only three free parameters,

the B − L gauge coupling (αB−L), the Z ′
B−L boson mass (mZ′) and the dark matter

mass (mDM). We will identify allowed parameter regions of the model by considering the

cosmological bound on the dark matter relic density and the recent results by the LHC

Run-2 on search for Z ′ boson resonance with dilepton final states [42, 43].

Next, we generalize the minimal B − L model to the so-called nonexotic U(1)X ex-

tension of the SM [44]. The U(1)X model is the most general extension of the SM with

an extra anomaly-free U(1) gauge symmetry. A new parameter xH , which is the U(1)X

charge of the SM Higgs doublet, is introduced. The minimal B − L model corresponds

to the limit of xH = 0. The particle content of the model is the same as the one in

the minimal B − L model except for the generalization of the U(1)X charge assignment

for particles. Hence, we can easily extend the minimal B − L model with right-handed

neutrino dark matter to the U(1)X case. In this context, we perform detailed analyses

to identify a phenomenologically viable parameter region through the complementarity
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between dark matter physics and the LHC Run-2 results. Because of the U(1)X gener-

alization, the Z ′ boson couplings with the SM particles are modified for xH ̸= 0 and the

allowed parameter region is found to be quite different from the one obtained in the B−L
model (xH = 0).

This thesis is organized as follows. In Chapter 2, we briefly review particle cosmology,

in particular, we focus on WIMP dark matter physics. We begin with the Big Bang

cosmology, which is the standard cosmological theory of the expanding universe. Based

on the evolution of the Big Bang cosmology, we discuss the thermal history of the early

universe, and how the WIMP dark matter decouples from the thermal plasma. We present

the procedure to calculate the relic density of the WIMP dark matter. In Chapter 3, we

give a review on the basic structure of the SM. Particle content and Lagrangian of the SM

are presented. We discuss the spontaneous symmetry breaking and the Higgs mechanism

to generate the masses for weak gauge bosons, quarks and leptons. We also discuss the

flavor mixing and CP violation in the quark sector. Observational problems on the SM,

in particular, the neutrino oscillation phenomena and the existence of dark matter are

introduced. In Chapter 4, we review the minimal U(1) extended SM as a simple extension

of the SM to incorporate the neutrino masses and flavor mixings. We first discuss the

minimal B − L model, and give detailed structure of the model. Next, we generalize the

B−L model to the minimal U(1)X model. In Chapter 5, LHC physics is briefly reviewed.

We present the cross section formula of a process to produce a dilepton final state l+l− at

the LHC. Chapter 6 and 7 are our original works in [45, 46]. In Chapter 6, we discuss one

of the main topics in this thesis: Z ′
B−L portal dark matter in the minimal B−L extended

SM. We discuss a complementarity between the cosmological and the LHC constraints,

and identify the allowed parameter region. In Chapter 7, the other main topic is discussed:

Z ′ portal dark matter in the minimal U(1)X extended SM. Here, we generalize the B−L

gauge symmetry to the U(1)X gauge symmetry. We discuss a complementarity between

the cosmological and the LHC constraints, and identify the allowed parameter region.

Chapter 8 is devoted to conclusions and future plans. In Appendix A, we discussed

the rephasing of quarks to eliminate unphysical degrees of freedom from the quark mass

matrices.
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Chapter 2

Particle cosmology

2.1 Big Bang cosmology

Edwin Powell Hubble measured the distances and the red shifts of spectra for twenty four

galaxies, and led to the so-called Hubble law in 1929 [47]:

v = H0d, (2.1.1)

where v and d are recession velocity and distance of a galaxy, and the constant of propor-

tionality H0 is called the Hubble constant. This is the discovery of the expanding universe

and also suggests the universe is isotropic and homogeneous. The Hubble law is well de-

scribed by the Big Bang cosmology, the standard cosmological model of the expanding

universe, developed in the twentieth century. Based on the theory, the early universe was

in an extremely hot and dense state, and the present universe, which is cold and dilute, is

a result from the expansion. In the following, we briefly review the Big Bang cosmology.

The evolution of the universe is described by the Einstein equation given by (for a

review, see, for example, [48])

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (2.1.2)

where Rµν , R, gµν and Tµν are the Ricci tensor, the scalar curvature, the metric and

the energy-momentum tensor, respectively. G = 1/M2
pl is the gravitational constant with

the Planck mass (Mpl = 1.22 × 1019 GeV) and Λ is a cosmological constant. The left-

hand side of (2.1.2) describes a geometry of the universe, which is determined by the

energy-momentum tensor.
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Since the universe is observed to be isotropic and homogeneous in large scales over 100

Mpc [49], we adopt the Friedmann-Robertson-Walker metric in the spherical coordinates

[48],

ds2 = dt2 − a(t)2
[

dr2

1−Kr2
+ r2dΩ2

]
, (2.1.3)

and solve (2.1.2). Here, a(t) is the so-called scale factor, which parametrizes the size of

the universe, K is the curvature constant (K = +1, 0, −1 correspond to open, flat, closed

universe, respectively), and dΩ is the solid angle, dΩ2 = dθ2 + sin2 θdϕ2. In the following,

we set K = 0 according to the observational results that our universe is very flat [17]. In

the perfect fluid approximation, the energy-momentum tensor is given by

T µ
ν = diag(ρ,−p,−p,−p), (2.1.4)

where ρ and p are the energy density and the pressure of the universe, respectively.

Non-vanishing components in (2.1.2) turn out to be the (0,0)- and (i, i)-components.

The (0,0)-component leads to the Friedmann equation,(
ȧ

a

)2

= H2 =
1

3M2
p

ρ+
Λ

3
, (2.1.5)

where H is the expansion rate called the Hubble parameter, and Mp = Mpl/
√
8π ≃

2.44× 1018 GeV is the reduced Planck mass. The (i, i)-components (i = 1, 2, 3) lead to

2

(
ä

a

)
+

(
ȧ

a

)2

= − 1

M2
p

p+ Λ. (2.1.6)

Combining (2.1.5) and (2.1.6), we obtain the energy conservation law,

dρ

dt
+ 3H(ρ+ p) = 0. (2.1.7)

(2.1.5) and (2.1.7) are the fundamental equations for the Big Bang cosmology.

We define the critical density as

ρcrit = 3M2
pH

2, (2.1.8)

which coincides with the total energy density of the flat universe. Using the critical

density, the density parameter of a state X (X = radiation, matter and cosmological

constant) is defined by

ΩX ≡ ρX
ρcrit

, (2.1.9)
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radiation w = 1/3 ρ ∝ a−4 a ∝ t
1
2

matter w = 0 ρ ∝ a−3 a ∝ t
2
3

cosmological constant w = −1 ρ = constant a ∝ eHit

Table 2.1: Solutions to the Friedman equation (2.1.5), when the total energy density is

dominated by one state with w = 1/3, 0,−1.

where ρX is the energy density of X. We suppose that the total energy density of the uni-

verse consists of the energy densities of radiation (ρrad), matter (ρmatter) and cosmological

constant (ρcc = ΛM2
p ) such that

ρtotal = ρrad + ρmatter + ρcc, (2.1.10)

and then we express the Friedmann equation (2.1.5) in terms of the density parameters

as

Ωrad + Ωmatter + Ωcc = 1. (2.1.11)

2.2 Thermal history

We specify an equation of state by

p = wρ (2.2.1)

with a constant w. Substituting (2.2.1) into (2.1.7), we obtain

ρa3(1+w) = constant → ρ ∝ a−3(1+w). (2.2.2)

The values of w = 1/3, 0 and −1 correspond to the equation of state for radiation, matter

and cosmological constant, respectively. When the total energy density is dominated by

only one state with a fixed w, we can easily find a solution to the Friedmann equation as

a ∝ eHit (w = −1), where Hi =
√

Λ/3, and a ∝ tα (w ̸= −1) with

α =
2

3(1 + w)
. (2.2.3)

These results are summarized in Table 2.1.
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Figure 2.1: The evolutions of the energy densities of radiation (solid line), matter (dashed

line) and cosmological constant (horizontal dotted line), as a function of temperature of

the universe.

From Table 2.1, the energy densities in the early universe are given by

ρcc = ρ0cc,

ρmatter = ρ0matter

(a0
a

)3
,

ρrad = ρ0rad

(a0
a

)4
, (2.2.4)

where quantities with subscript/superscript 0 are the values in the present universe. From

the results of the Planck satellite observation (Planck 2015 results) [50], the ratio of the

energy densities in the present universe is determined as

ρ0cc : ρ
0
matter : ρ

0
rad ≃ 0.68 : 0.32 : 4.8× 10−5. (2.2.5)

According to (2.2.4), the relations among ρrad, ρmatter and ρcc evolve from the early time

to the present as follows:

1. ρrad ≫ ρmatter ≫ ρcc
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2. ρrad = ρmatter ≫ ρcc

3. ρmatter ≫ ρrad ≫ ρcc

4. ρmatter ≫ ρrad = ρcc

5. ρmatter ≫ ρcc ≫ ρrad

6. ρmatter = ρcc ≫ ρrad

7. ρcc > ρmatter ≫ ρrad (at present)

Since a becomes smaller back in time, it is clear from (2.2.4) that ρrad dominates in the

very early time. This era between 1 to 2 is called the radiation dominated era. After the

so-called equal epoch, 2, the era between 2 to 6 is called the matter dominated era. The

present universe is in the epoch 7 (see (2.2.5)), and the expansion is accelerated. Figure

2.1 shows the evolution of the energy densities.

2.2.1 Equilibrium thermodynamics

As mentioned previously, the early universe was in a very hot and dense thermal plasma

state, where all SM particles were in thermal equilibrium. In the following, let us discuss

the properties of thermodynamic variables of a particle X in thermal equilibrium: number

density, energy density, pressure and entropy density.

The phase space distribution of the particle X is given by

f(p⃗) =
1

e
E−µ
T ± 1

, (2.2.6)

where E and µ are the energy and the chemical potential of the particle X, T is the tem-

perature of the system, and the + and − signs are for fermions and bosons, respectively.

In the following discussion, we neglect the chemical potential µ, since E ≫ |µ| in the

early universe. The number density (nX), energy density (ρX) and pressure (pX) of the

particle X are given in terms of f(p⃗):

nX =
gX

(2π)3

∫
d3pf(p⃗),

ρX =
gX

(2π)3

∫
d3pE(p⃗)f(p⃗),

pX =
gX

(2π)4

∫
d3p

|p⃗|2

3E(p⃗)
f(p⃗). (2.2.7)
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Here, gX is the number of degrees of freedom of the particle X. For example, gX = 2 for

photon, and gX = 1 for a real scalar. Rewriting d3p = 4π
√
E2 −m2

XEdE, we have

nX =
gX
2π2

∫ ∞

mX

EdE

√
E2 −m2

X

e
E
T ± 1

,

ρX =
gX
2π2

∫ ∞

mX

E2dE

√
E2 −m2

X

e
E
T ± 1

,

pX =
gX
6π2

∫ ∞

mX

dE
(
√
E2 −m2

X)
3

e
E
T ± 1

. (2.2.8)

In the relativistic limit, T ≫ mX ,

nX =


ζ(3)

π2
gXT

3 (Bose-Einstein)

3

4

ζ(3)

π2
gXT

3 (Fermi-Dirac),

ρX =


π2

30
gXT

4 (Bose-Einstein)

7

8

π2

30
gXT

4 (Fermi-Dirac),

pX =
1

3
ρX , (2.2.9)

where ζ(3) is the Riemann zeta function at 3 given by ζ(3) ≃ 1.20206. In non-relativistic

limit, T ≪ mX ,

nX = gX

(
mXT

2π

) 3
2

e−
mX
T ,

ρX = mXnX ,

pX = nXT. (2.2.10)

Using the fundamental thermodynamic relation for an equilibrium system,

dU = TdS − pdV, (2.2.11)

where U , S and V are the total energy, the total entropy and the volume of the system,

respectively, we have

dρ− Tds = (Ts− ρ− p)
dV

V
. (2.2.12)

Here, ρ = U/V and s = S/V are the energy density and the entropy density, respectively.

Since ρ(T ) and s(T ) are functions of T , the left-hand side is proportional to dT ,

dρ− Tds ∝ dT. (2.2.13)
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On the other hand, the right-hand side is proportional to dV independent of dT , and hence

(2.2.12) can be satisfied only if the coefficients of dT (left-hand side) and dV (right-hand

side) vanish. Thus, we express the entropy density as

s =
ρ+ p

T
=

2π2

45
g∗T

3, (2.2.14)

where in the last equality we have used (2.2.9) in the radiation dominated era, and g∗ is

the effective number of degrees of freedom given by

g∗ =
∑
i

giB +
7

8

∑
i

giF . (2.2.15)

Here, giB and giF are the degrees of freedom of bosons and fermions of i species, respectively.

For the SM, g∗ = 106.75 when all the SM particles are in the relativistic limit. Taking a

variation of (2.2.11) with respect to t,

dS

dt
=

1

T

(
dU

dt
+ p

dV

dt

)
=

V

T

(
dρ

dt
+ 3H(ρ+ p)

)
= 0, (2.2.16)

where in the last equality, we have used (2.1.7). Therefore, the total entropy of the

universe is conserved. Combining S ∝ sa3 = constant with (2.2.14), we find a relation

between the scale factor (a) and the temperature of a radiation (T ) such that a ∝ T−1, and

the temperature decreases along with the expansion of the universe. Using this relation,

the scale of the universe can be measured by the temperature of a radiation, for example,

photon, independently of what dominates the energy density of the universe.

2.2.2 Era of dark matter physics

Since we have found a ∝ T−1 (from now on, T is the temperature of photon), we consider

the evolution of the universe in terms of the photon temperature of the universe. Using

the ratio of the energy densities (2.2.5) and the temperature (T0 = 2.73 K= 2.35 × 10−4

eV) [51] in the present universe, let us calculate the temperature at typical epochs in

the thermal history of the universe. At the epoch of ρmatter = ρcc, we find T = 3.50

K= 3.02 × 10−4 eV, while T = 29.7 K= 2.56 × 10−3 eV at the epoch of ρrad = ρcc. The

equal epoch is defined as ρrad(Te) = ρmatter(Te), at which Te = 1.82× 104 K= 1.56 eV.
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σ

vrel

Figure 2.2: Schematic picture of the annihilation rate of X particles (black dots). The

leftmost X particle moves to the right with a velocity vrel in the frame where the others

are at rest. Here, σ (shaded area) is the annihilation cross section of X particle, and vrel
is a traveling distance of X per unit time. The leftmost X collides (annihilates) with Xs

inside the cylinder per unit time.

In this thesis, we consider the radiation dominated era (T > Te) for discussion about

Weakly Interacting Massive Particle (WIMP) dark matter, since a typical scale of WIMP

dark matter physics is around the TeV scale (see the following sections). The total energy

density of the universe in the radiation dominated era is approximately

ρtotal = ρrad =
π2

30
g∗T

4, (2.2.17)

and hence the Friedmann equation is given by

H2 =
π2

90
g∗
T 4

M2
p

. (2.2.18)

2.3 Decoupling from the equilibrium system

In the radiation dominated era at a very high temperature, particles are in thermal

equilibrium. Due to the expansion, the temperature of the universe goes down and some
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particles decouple from the equilibrium system. This phenomenon is called “decoupling”.

Here, we discuss the physics of decoupling.

We consider a thermal equilibrium system of particles X and Y in an expanding

universe. When X and Y are in thermal equilibrium, the pair annihilation/creation

processes XX → Y Y and Y Y → XX arise as the same rate. To simplify our discussion,

suppose X is heavy with a mass of, say, mX = 1 TeV, while Y is massless. Along with

the expansion, the temperature of the universe and the number densities of X and Y

are decreasing. In particular, for temperature T < mX the particle X becomes non-

relativistic, and the number density of X is exponentially suppressed by the Boltzmann

factor e−mX/T .

Certain temperature (TD) at which a particle decouples from the thermal equilib-

rium system is called “decoupling temperature.” It is well known that the decoupling

temperature is roughly estimated by [48]

ΓX(TD) = H(TD). (2.3.1)

Here, ΓX(TD) is the pair annihilation rate of X, and H(TD) is the Hubble parameter at

the temperature TD. ΓX is given by

ΓX = nX⟨σvrel⟩, (2.3.2)

where nX is the number density of X, vrel is a relative velocity (the traveling distance

of X per unit time), and ⟨σvrel⟩ is the thermal average of the annihilation cross section

times relative velocity. Thus, ⟨σvrel⟩ is the volume of the cylinder in Figure 2.2). The

leftmost X particle collides (annihilates) with X particles inside the cylinder, and ΓX is

the number of collisions of leftmost X per unit time. Since tH = 1/H is a typical time

scale of the expansion universe (an age of the universe estimated by the expansion rate),

(2.3.1) means that the number of collisions (NX) for time interval tH is 1.

Let us see what happens before or after the decoupling. Since ΓX(T ) = nX⟨σvrel⟩ ∝
e−mX/T in the non-relativistic limit (T < mX) and H(T ) ∝ T 2 (see (2.2.10) and (2.2.18)),

ΓX(T ) decreases more rapidly than H(T ) as the temperature goes down. In an early

time (T > TD), the annihilation rate is greater than the Hubble parameter, ΓX(T ) >

H(T ), which means NX > 1 and thus X and Y are in the thermal equilibrium system.

The temperature goes down along with the expansion of the universe, then ΓX becomes
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comparable withH at the temperature TD, the decoupling temperature, at which NX ∼ 1.

After the decoupling (T < TD), ΓX(T ) < H(T ), which meansNX < 1 and thusX particles

no longer annihilate.

2.4 Dark matter physics

In 1930s, Fritz Zwicky estimated the mass of the Coma Cluster. Assuming the Coma

Cluster is in a mechanical equilibrium, we can estimate the mass of the cluster from

the velocity distribution of galaxies in the cluster. We can also estimate the mass from

the brightness of galaxies. Zwicky found that the mass from the velocity distribution

was smaller than the one from the brightness. The total mass of the optically observed

galaxies was not enough to cause the observed revolutions of galaxies in the cluster. This

is the so-called missing mass problem. In order to solve this problem, Zwicky proposed

a matter that we can not optically observe, “dark matter” [52]. Dark matter carries the

missing mass.

2.4.1 Evidences of dark matter

One of the clear evidences for the existence of dark matter is the galaxy rotation curve,

which is a relation between distances of stars from the galactic center and their speeds

of revolution. In 1980s, galaxy rotation curves were measured for various galaxies. From

Newtonian mechanics, a circular velocity vc(r) of a star is given by

vc(r) =

√
GM(r)

r
, (2.4.1)

where r and M(r) are a radius from the center of galaxy and the total mass inside the

radius (enclosed mass), respectively. If the mass is concentrated in the galactic disk, the

enclosed mass M(r) is constant for r greater than the radius of the galactic disk. In this

case, the circular velocity is given by

vc(r) ∝ r−1/2. (2.4.2)

However, the observed results show that the circular velocity is almost constant (see

Figure 2.3). This discrepancy between the observational results and the expectation is

called the galactic rotation problem. The observational results suggest

M(r) ∝ r, (2.4.3)
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Figure 2.3: The rotation curve of galaxy NGC 6503 [53]. The dark matter halo contribu-

tion is shown by the dashed-dotted line.

which implies that optically unobservable matters exist beyond the radius of the galactic

disk. This is an evidence of dark matter.

Another evidence of the dark matter has been seen in the observations in the anisotropy

of the cosmic microwave back ground (CMB). Since the power spectrum of the CMB re-

lates the energy budget of the universe, precise measurements can reveal the existence of

the dark matter. The Cosmic Background Explorer (COBE) [51] is the first satellite for

precision measurements of the CMB. The COBE observed that the energy distribution

of the CMB obeys the Planck distribution for T0 = 2.73 K in the accuracy of 10−4. It

also measured the anisotropy of the CMB and found that the fluctuation of the temper-

ature of the CMB is extremely small, δT0/T0 ≃ 10−5, but non-zero. The COBE satellite
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experiment is the pioneer of precision cosmology. To determine the energy budget of

the dark matter, more precise measurements were necessary. After the COBE satellite,

the Wilkinson Microwave Anisotropy Probe (WMAP) [15] and the Planck satellite [16]

measured the CMB anisotropy with greatly improved resolutions and sensitivities, and

determined the energy budget very precisely. The energy budget of the present universe

is determined to be composed of 73% dark energy, 23% cold dark matter and only 4%

from baryonic matter [17].

2.4.2 Weakly Interacting Massive Particle as dark matter can-
didate

It is a prime question in particle physics and cosmology to identify the properties of the

dark matter particle. One of the most promising candidates for the dark matter in the

present universe is the so-called Weakly Interacting Massive Particle (WIMP), which was

in thermal equilibrium in the early universe and its relic density is determined by the

interactions with the SM particles. In this thesis, we consider a WIMP as the cold dark

matter.

In the next subsection, we will evaluate the thermal relic density of a dark matter.

We will see that the scale of the interactions of dark matter with SM particles is around

the weak scale to reproduce the observed dark matter density.

2.4.3 Thermal relic density of WIMP

In order to evaluate the dark matter relic density, we need to know a time-evolution of

the total number of dark matter particle in the universe (NDM). The time-evolution is

described by the Boltzmann equation expressed as

dNDM(t)

dt
= V (t)ΛDM(t)− ΓDM(t)NDM(t), (2.4.4)

where V is the volume of the universe, and ΛDM and ΓDM are the creation and annihilation

rates of the dark matter particles, respectively. When dark matter particles are in thermal

equilibrium with SM particles in the early universe, dark matter pair annihilation/creation

is comparable in rate to SM particle pair creation/annihilation,

V ΛDM = Γeq
DMN

eq
DM. (2.4.5)
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Here, N eq
DM is the total number of dark matter particles in the thermal equilibrium, and

Γeq
DM is the annihilation rate in the thermal equilibrium, which can be expressed Γeq

DM =

neq
DM⟨σvrel⟩ with neq

DM = N eq
DM/V being the number density of dark matter in thermal

equilibrium. Using

ΛDM = Γeq
DM

N eq
DM

V
= (neq

DM)
2⟨σvrel⟩, (2.4.6)

the Boltzmann equation is rewritten as

dnDM

dt
+ 3HnDM = −⟨σvrel⟩(n2

DM − (neq
DM)

2), (2.4.7)

where we have used V ∝ a(t)3 and dV/dt = 3HV . We further rewrite the Boltzmann

equation. The relation s ∝ a−3 leads to

ds

dt
= −3sH. (2.4.8)

We define the dimensionless quantities

x ≡ mDM

T
, (2.4.9)

YDM ≡ nDM

s
, (2.4.10)

where mDM is the dark matter mass, and YDM is the so-called yield, which means a

comoving number density. The relation T ∝ a−1 leads to

d

dt
=
dx

dt

d

dx
= xH

d

dx
. (2.4.11)

Using (2.4.8)-(2.4.11), we rewrite (2.4.7) to

dYDM

dx
= −s⟨σvrel⟩

xH
(Y 2

DM − (Y eq
DM)

2). (2.4.12)

Since H ∝ T 2 and s ∝ T 3, we express

H(T ) =
H(mDM)

x2
,

s(T ) =
s(mDM)

x3
(2.4.13)

and obtain the final expression:

dYDM

dx
= −s(mDM)⟨σvrel⟩

x2H(mDM)
(Y 2

DM − (Y eq
DM)

2). (2.4.14)
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Now we approximately solve the Boltzmann equation (2.4.14) for the dark matter

particle which decouples in the non-relativistic regime, x > 1 (such a dark matter particle

is called “cold dark matter”). For simplicity, we parametrize

⟨σvrel⟩ = σnx
−n, (2.4.15)

where σn is a constant, and n = 0 and 1 correspond to dark matter pair annihilation

processes through the s-wave and the p-wave, respectively, and obtain

dYDM

dx
=

λn
xn+2

(Y 2
DM − (Y eq

DM)
2) (2.4.16)

with

λn =
s(mDM)

H(mDM)
σn

=
2π2

45
g∗m

3
DM√

1
3M2

p

π2

30
g∗m4

DM

σn ≃ 1.32
√
g∗MpmDMσn. (2.4.17)

From (2.2.10) and (2.2.14),

Y eq
DM =

neq
DM

s
≃ 0.145

gDM

g∗
x3/2e−x, (2.4.18)

where gDM is the degrees of freedom of dark matter particle.

We first consider a small deviation of YDM from its thermal equilibrium value,

YDM = Y eq
DM +∆ (∆ ≪ Y eq

DM). (2.4.19)

The first derivative of YDM with respect to x is approximately given by

dYDM

dx
=
dY eq

DM

dx
+
d∆

dx
≃ dY eq

DM

dx
≃ −Y eq

DM, (2.4.20)

where we have used Y eq
DM ∼ e−x. The Boltzmann equation (2.4.16) is approximately

−Y eq
DM ≃ − λn

xn+2
2Y eq

DM∆, (2.4.21)

and hence

∆ ≃ xn+2

2λn
. (2.4.22)

The small deviation ∆ grows as x becomes larger, or equivalently the universe evolves.
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Next, we define xd (the value of x at the decoupling) by ∆(xd) = Y eq
DM(xd). For x > xd,

∆(x) ≫ Y eq
DM(x) and the Boltzmann equation is simplified as

d∆

dx
≃ − λn

xn+2
∆2, (2.4.23)

and integrating from xd to x, we find

1

∆(x)
− 1

∆(xd)
≃ λn
n+ 1

(
1

xn+1
d

− 1

xn+1

)
. (2.4.24)

In the limit x → ∞, we obtain the final expression of the approximate solution to the

Boltzmann equation:

∆(∞) ≃ YDM(∞) ≃ (n+ 1)xn+1
d

λn

=
(n+ 1)xn+1

d

1.32
√
g∗MpmDM⟨σvrel⟩xd

. (2.4.25)

The energy density of dark matter in the present universe is given by

ρDM(T0) = mDMnDM(T0)

≃ mDMY (∞)s0

≃ (n+ 1)xds0
1.32

√
g∗Mp⟨σvrel⟩xd

. (2.4.26)

We express the thermal relic density in terms of the density parameter,

ΩDMh
2 =

ρDM(T0)

ρ0crit
h2

= 8.7× 10−11[GeV−2]× (n+ 1)xd√
g∗⟨σvrel⟩xd

. (2.4.27)

Note that the thermal relic density of a dark matter particle is controlled by its annihi-

lation cross section (in the following discussion, we will see xd ∼ 20 for a WIMP dark

matter). For g∗ = 100 and n = 1, we have

ΩDMh
2 ≃ 10−10[GeV−2]

⟨σvrel⟩
(2.4.28)

In order to reproduce the observed dark matter relic density, ΩDMh
2 ≃ 0.1 [50], the

annihilation cross section is found to be

⟨σvrel⟩ ≃ 10−9[GeV−2]

≃ 1 pb. (2.4.29)
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Figure 2.4: Numerical solutions for σ0 [GeV−2] = 10−10 (upper (green) solid line), 10−9

(middle (red) solid line), and 10−8 (lower (blue) solid line), respectively, along with Y eq
DM

(dashed line).

We may parametrize the annihilation cross section as

⟨σvrel⟩ ≃
1

16π

(
1

ΛDM

)2

. (2.4.30)

Note that a typical scale of the physics of the dark matter annihilation is roughly ΛDM ≃ 1

TeV, which is close to the weak scale. This is the reason why we call this cold dark matter

“WIMP.”

Let us now calculate the dark matter relic density by numerically solving the Boltz-

mann equation (2.4.14). For simplicity, we take

⟨σvrel⟩ = σ0,

mDM = 1 TeV,

g∗ = 106.75,

gDM = 2. (2.4.31)
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In Figure 2.4, we show the numerical solutions for σ0 [GeV−2] = 10−10 (upper (green)

solid line), 10−9 (middle (red) solid line), and 10−8 (lower (blue) solid line), respectively,

along with Y eq
DM (dashed line). For small x values, the yield YDM(x) traces Y

eq
DM, the yield

starts deviating from its equilibrium value at x = xd ∼ 20 (decoupling), and it eventually

becomes constant. As the annihilation cross section increases, the resultant relic density

decreases. From our numerical results, we can see (2.4.25) is a good approximation and

YDM(∞) ∝ 1/⟨σvrel⟩.
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Chapter 3

The Standard Model

3.1 Particle content and Lagrangian

In Nature, there are four fundamental interactions, namely, strong, weak, electromagnetic

and gravitational interactions. The strong interaction is mediated by gluons, and confines

quarks to make up a nucleon. The weak interaction is mediated by weak bosons, by which

a neutron decays into a proton, an electron and an anti-neutrino (beta-decay). Particles

which posses electric charges interact with each other through the exchange of photons.

This is the electromagnetic interaction. Gravitation is well described by Einstein’s theory

of general relativity. In the particle physics point of view, the gravitational interaction is

mediated by “graviton.”

The Standard Model (SM) is the best theory that describes elementary particles and

the three (strong, weak, and electromagnetic) interactions among them. Theoretical

framework of the SM is based on the gauge field theory, where the SM gauge groups

and elementary particle content are introduced, and invariance of Lagrangian density un-

der gauge (local) transformations is required (gauge principle). The SM is based on the

gauge group SU(3)C × SU(2)L ×U(1)Y . Here SU(3)C , SU(2)L and U(1)Y correspond to

Quantum Chromodynamics, weak interaction and hypercharge interaction, respectively.

The SM particle content is given in Table 3.2.

Lagrangian of the SM, which is required to be gauge invariant under the SM gauge
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interaction gauge boson gauge symmetry

strong gluon SU(3)C
weak W±, Z boson SU(2)L × U(1)Y

electromagnetic photon

Table 3.1: Fundamental interactions in the Standard Model. The strong interaction is

mediated by gluons, and confines quarks to make up a nucleon. The weak interaction

is mediated by weak bosons, by which a neutron decays into a proton, an electron and

an anti-neutrino (beta-decay). Particles which posses electric charges interact with each

other through the exchange of photons. This is the electromagnetic interaction.

SU(3)C SU(2)L U(1)Y

qiL =

(
uiL
diL

)
3 2 1/6

uiR 3 1 2/3
diR 3 1 -1/3

liL =

(
νiL
eiL

)
1 2 -1/2

eiR 1 1 -1

H =

(
H0

H−

)
1 2 -1/2

Table 3.2: Particle content of the Standard Model. i = 1, 2, 3 is the generation index.

qL and lL are left-handed quark and lepton SU(2)L doublets, respectively. uR and dR
are, respectively, right-handed up-type and down-type quarks, while eR is right-handed

charged lepton. The SU(2)L Higgs doublet scalar is denoted as H.

transmations, is given by

LSM = −1

2
tr[GµνGµν ]−

1

2
tr[F µνFµν ]−

1

4
BµνBµν

+ qiLiγ
µDµq

i
L + liLiγ

µDµl
i
L

+ uiRiγ
µDµu

i
R + diRiγ

µDµd
i
R + eiRiγ

µDµe
i
R

+ (DµH)†(DµH)− λ

(
H†H − 1

2
v2
)2

− {Y ij
u q

i
LHu

j
R + Y ij

d q
i
LH̃d

j
R + Y ij

e l
i
LH̃e

j
R +H.c.}, (3.1.1)

where Gµν , Fµν and Bµν are field strengths of SU(3)C , SU(2)L and U(1)Y gauge bosons
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respectively,

Gµν = ∂µGν − ∂νGµ − ig3[Gµ, Gν ],

Fµν = ∂µAν − ∂νAµ − ig2[Aµ, Aν ],

Bµν = ∂µBν − ∂νBµ, (3.1.2)

and g3, g2 and g1 are SU(3)C , SU(2)L and U(1)Y gauge coupling constants, respectively.

Here, Y ij
f (i, j = 1, 2, 3 are the generation indices, and f = u, d, e) is the Yukawa coupling

constant, H̃ ≡ −iσ2H, and summation convention is assumed for the repeated indices i,

j. Note that gauge bosons are massless because of the gauge invariance. However, the

weak gauge bosons are known to be massive by experiments [3, 4]. In the next section, we

discuss the Higgs mechanism, which generates masses for gauge bosons. The SM fermions

acquire their masses from Higgs field as well.

3.2 Higgs mechanism

We first discuss a global U(1) model with a complex scalar, whose U(1) charge is Q. The

Lagrangian invariant under the global U(1) transformation, Φ → eiQαΦ (α is a constant

phase), is given by

Lscalar = (∂µΦ)†(∂µΦ)− V (Φ), (3.2.1)

where

V (Φ) = λ

(
Φ†Φ− 1

2
v2
)2

. (3.2.2)

Here, λ is a positive coupling constant, and v is a positive constant with mass dimension

one.

Potential minimum appears along |Φ| = v/
√
2, and we choose the vacuum of our

theory as

⟨Φ⟩ = v√
2
, (3.2.3)

by which the global U(1) symmetry is spontaneously broken. Introducing the physical

real scalars (ϕ and χ) around the vacuum,

Φ =
1√
2
(v + ϕ+ iχ), (3.2.4)
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we rewrite the Lagrangian as

Lscalar =
1

2
(∂µϕ)(∂µϕ) +

1

2
(∂µχ)(∂µχ)− V (ϕ, χ), (3.2.5)

where

V (ϕ, χ) =
1

2
(2λv2)ϕ2 +

λ

4
(ϕ2 + χ2)2 + λvϕ(ϕ2 + χ2). (3.2.6)

Note that the scalar ϕ has mass
√
2λv while χ is massless. The massless χ is nothing but

the Nambu-Goldstone (NG) boson [54, 55, 56].

Spontaneous symmetry breaking in the context of a U(1) gauge theory was proposed

by Peter Higgs in 1964 [57], where the mass of the U(1) gauge boson is generated (Higgs

mechanism). We extend the previous global U(1) model to its local version. The scalar

Lagrangian, which is invariant under local U(1) gauge transformation Φ → eiQα(x)Φ, is

given by

Lscalar = (DµΦ)†(DµΦ)− V (Φ). (3.2.7)

Here, the covariant derivative Dµ is defined by

Dµ = ∂µ − iQgBµ, (3.2.8)

where Bµ and g are the U(1) gauge boson and the gauge coupling, respectively. Note that

a mass term of U(1) gauge boson (1/2)M2
BBµB

µ is forbidden because it is not invariant

under the gauge transformation Bµ → Bµ + ∂µα.

We choose the vacuum as

⟨Φ⟩ = v√
2

(3.2.9)

by which the U(1) gauge symmetry is spontaneously broken. We parametrize the scalar

field around the vacuum as

Φ =
1√
2
(v + ϕ(x))eiζ(x), (3.2.10)

where ζ(x) is the so-called would-be NG boson.

We consider a gauge transformation with the gauge parameter to be Qα(x) = −ζ(x),
so that we can eliminate ζ(x) from the theory,

Φ =
1√
2
(v + ϕ(x)). (3.2.11)
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This gauge choice is the so-called unitary gauge. The physical real scalar ϕ(x) is the

physical Higgs boson with the mass of

mϕ =
√
2λv. (3.2.12)

Let us now calculate the mass of gauge field Bµ. In the unitary gauge,

(DµΦ)†(DµΦ) =
1

2
(∂µϕ(x))(∂µϕ(x)) +

1

2
(Qg)2BµBµ(v + ϕ(x))2. (3.2.13)

Therefore, the gauge field acquires its mass mB = Qgv. In addition to the two degrees of

freedom corresponding to the transverse modes, the massive gauge boson has one more

degree of freedom corresponding to its longitudinal mode, which is supplied by the degree

of freedom of the would-be NG boson. This is called the Higgs mechanism.

We should note here that the vacuum expectation value (VEV) of Higgs field plays a

role of giving masses to the fermions, as will be seen in the next section.

3.3 Spontaneous symmetry breaking in the Standard

Model

3.3.1 Weak gauge boson masses

In the SM, the electroweak gauge symmetry, SU(2)L × U(1)Y , is spontaneously broken

to the electromagnetic U(1)em gauge symmetry. We apply the previous discussion about

the Higgs mechanism to the SM and calculate the weak gauge boson masses.

Lagrangian of the Higgs field

H =

(
H0

H−

)
, (3.3.1)

SU(2)L doublet field, is given by

LHiggs = (DµH)†(DµH)− V (H). (3.3.2)

Here, the covariant derivative is

Dµ = ∂µ − ig2Aµ − ig1

(
−1

2

)
Bµ

=

(
∂µ +

i
2
(−g2A3

µ + g1Bµ) − i
2
g2(A

1
µ − iA2

µ)
− i

2
g2(A

1
µ + iA2

µ) ∂µ +
i
2
(g2A

3
µ + g1Bµ)

)
(3.3.3)
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where Aµ = (1/2)σiAi
µ(i = 1, 2, 3) with the Pauli matrices σi is the SU(2)L gauge boson,

Bµ is the U(1)Y gauge boson, and g1 (g2) is the U(1)Y (SU(2)L) gauge coupling constant.

We define the charged vector bosons as complex combinations of A1
µ and A2

µ,

W+
µ ≡ 1√

2
(A1

µ − iA2
µ),

(W+
µ )∗ =

1√
2
(A1

µ + iA2
µ) ≡ W−

µ . (3.3.4)

Furthermore the electric-charge neutral vector bosons are defined as

Zµ ≡ A3
µ cos θW −Bµ sin θW ,

A0
µ ≡ A3

µ sin θW +Bµ cos θW , (3.3.5)

where

cos θW =
g2
gZ
, sin θW =

g1
gZ
, (3.3.6)

gZ ≡
√
g21 + g22, and θW is the weak mixing angle. Then we rewrite the covariant derivative

as

Dµ =

(
∂µ − i

2
gZZµ − i√

2
g2W

+
µ

− i√
2
g2W

−
µ ∂µ +

i
2
gZ(Zµ cos 2θW + A0

µ sin 2θW )

)
. (3.3.7)

Choosing a VEV of Higgs boson as

⟨H⟩ = 1√
2

(
v
0

)
, (3.3.8)

by which the electroweak symmetry is broken down to the electromagnetic symmetry

(SU(2)L × U(1)Y → U(1)em), we have

Dµ⟨H⟩ = 1

2

( i√
2
gZZµv

−ig2W−
µ v

)
, (3.3.9)

(DµH)†(DµH) ⊃ 1

8
g2Zv

2ZµZµ +
1

4
g22v

2W−µW+
µ . (3.3.10)

Here, v = 246 GeV [58], and ⊃ means that the left-hand side includes terms of the

right-hand side. Hence W boson and Z boson masses are identified as

mW =
1

2
g2v,

mZ =
1

2
gZv, (3.3.11)
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respectively. The gauge boson A0
µ is still massless, which is nothing but the photon, the

U(1)em gauge boson.

The weak gauge bosons were discovered in 1983 [3, 4], and their masses are currently

measured very precisely [58]:

mW = 80.385± 0.015 GeV,

mZ = 91.1876± 0.0021 GeV. (3.3.12)

The weak mixing angle θW is also measured as

sin2 θW = 0.23129± 0.00005. (3.3.13)

3.3.2 Fermion sector

quark sector

After the electroweak symmetry breaking, we rewrite the fermion Lagrangian with the

massive weak gauge bosons and photon. First, we consider the quark sector, whose

Lagrangian is given by

Lquark = qiLiγ
µ(Dq

µq
i
L) + uiRiγ

µ(Du
µu

i
R) + diRiγ

µ(Dd
µd

i
R)

−{Y ij
u q

i
LHu

j
R + Y ij

d q
i
LH̃d

j
R +H.c.}. (3.3.14)

The covariant derivatives of quarks are

Dq
µ = ∂µ − ig2Aµ − ig1

(
1

6

)
Bµ − ig3Gµ

=

(
Dq

11 Dq
12

Dq
21 Dq

22

)
− ig3Gµ,

Du
µ = ∂µ − ig1

(
2

3

)
Bµ − ig3Gµ

= ∂µ + i
2

3
g1(Zµ sin θW − A0

µ cos θW )− ig3Gµ,

Dd
µ = ∂µ − ig1

(
−1

3

)
Bµ − ig3Gµ

= ∂µ + i

(
−1

3

)
g1(Zµ sin θW − A0

µ cos θW )− ig3Gµ, (3.3.15)
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where

Dq
11 = ∂µ − igZ

(
−1

2
− 2

3
sin2 θW

)
Zµ − igZ

(
2

3

)
cos θW sin θWA

0
µ

Dq
12 = − i√

2
g2W

+
µ

Dq
21 = − i√

2
g2W

−
µ

Dq
22 = ∂µ − igZ

(
−1

2
− 2

3
sin2 θW

)
Zµ − igZ

(
−1

3

)
cos θW sin θWA

0
µ. (3.3.16)

Hence the kinetic terms, the first line of the right-hand side of (3.3.14), are written as

Lkin
quark = uiLiγ

µ(∂µu
i
L) + diLiγ

µ(∂µd
i
L)

+uiRiγ
µ(∂µu

i
R) + diRiγ

µ(∂µd
i
R)

+Jµ
−W

+
µ + Jµ

+W
−
µ + Jµ

ZZµ + Jµ
emA

0
µ. (3.3.17)

Here, Jµ
±, J

µ
Z and Jµ

em are the charged, neutral and electromagnetic currents, respectively:

Jµ
− =

g2√
2
(uiLγ

µdiL),

Jµ
+ =

g2√
2
(diLγ

µuiL) = (Jµ
−)

†,

Jµ
Z = gZ

{
1

2
(uiLγ

µuiL) +

(
−1

2

)
(diLγ

µdiL)− sin2 θW

(
2

3
(uiγµui) +

(
−1

3

)
(diγµdi)

)}
,

Jµ
em = e

{
2

3
(uiγµui) +

(
−1

3

)
(diγµdi),

}
, (3.3.18)

where ui = (uiL u
i
R)

T (T denotes to take transpose), di = (diL d
i
R)

T , and the electromag-

netic coupling constant is defined as e ≡ g1g2/gZ . In general, the neutral current Jµ
Z is

written by

Jµ
Z = gZfL

(
1

2
T f
3 −Qf

em sin2 θW

)
fL + gZfR(−Qf

em sin2 θW )fR (3.3.19)

for left-handed and right-handed fermions (fL and fR), where T
f
3 and Qf

em are the isospin

and the electric charge of fermion f , respectively.

The quark masses are also generated by the electroweak symmetry breaking through

the Yukawa couplings. Substituting ⟨H⟩ = (v/
√
2 0)T , we have

Lmass
quark = −Y ij

u

v√
2
uiLu

j
R − Y ij

d

v√
2
diLd

j
R +H.c.

= −M ij
u u

i
Lu

j
R −M ij

d d
i
Ld

j
R +H.c., (3.3.20)
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where M ij
u and M ij

d are mass matrices for the up-type and the down-type quarks, respec-

tively.

lepton sector

Next, we consider the lepton sector with the Lagrangian given by

Llepton = l̄iLiγ
µ(Dl

µl
i
L) + ēiRiγ

µ(De
µe

i
R)− {Y ij

e l
i
LH̃e

j
R +H.c.}. (3.3.21)

The covariant derivatives of leptons are

Dl
µ = ∂µ − ig2Aµ − ig1

(
−1

2

)
Bµ

=

(
∂µ +

i
2
(−g2A3

µ + g1Bµ) − i
2
g2(A

1
µ − iA2

µ)
− i

2
g2(A

1
µ + iA2

µ) ∂µ +
i
2
(g2A

3
µ + g1Bµ)

)
=

(
∂µ +

i
2
gZZµ − i√

2
g2W

+
µ

− i√
2
g2W

−
µ ∂µ +

i
2
gZ(Zµ cos 2θW + A0

µ sin 2θW )

)
,

De
µ = ∂µ − ig1(−1)Bµ

= ∂µ + ig1(sin θWZµ − cos θWA
0
µ). (3.3.22)

Hence the kinetic terms are written as

Lkin
lepton = νiLiγ

µ(∂µν
i
L) + eiLiγ

µ(∂µe
i
L) + eiRiγ

µ(∂µe
i
R)

+Jµ
−W

+
µ + Jµ

+W
−
µ + Jµ

ZZµ + Jµ
emA

0
µ. (3.3.23)

For the leptons, the charged, neutral and electromagnetic currents are given by

Jµ
− =

g2√
2
(νLγ

µeL)

Jµ
+ =

g2√
2
(eLγ

µνL) = (Jµ
−)

†

Jµ
Z =

1

2
gZ((νLγ

µνL)− (eLγ
µeL)) + gZ sin2 θW (eγµe)

Jµ
em = −e(eγµe), (3.3.24)

where e = (eL eR)
T .

The lepton masses are also generated by the electroweak symmetry breaking through

the Yukawa couplings. Substituting ⟨H⟩ = (v/
√
2 0)T , we have

Lmass
lepton = −Y ij

e

v√
2
eiLe

j
R +H.c.

= −M ij
e e

i
Le

j
R +H.c., (3.3.25)
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where M ij
e is a mass matrix for the charged leptons. Note that there is no the neutrino

mass term in the SM, because right-handed neutrinos are not included in the SM particle

content in contrast to the other fermions.

3.4 Quark flavor mixing and CP violation

Without mixings between generations (flavor mixings), u-quark can only couple to d-quark

in the charged current. However, flavor mixing phenomena are observed by experiments

(for example, see [59]). Here we discuss the origin of the quark flavor mixings.

In (3.3.20) we see that the quark mass matrices are not diagonalized in general. We

need to rewrite the Lagrangian of quark sector in terms of quark mass eigenstates. With-

out loss of generality, we work on a basis where the up-type quark mass matrix (Mu) is

diagonal (see Appendix A), while the down-type quark mass matrix (Md) is needed to be

diagonalized. Let us first consider two generation case.

3.4.1 Cabibbo angle

In the two generation case, flavor eigenstates are related to mass eigenstates through a

2× 2 orthogonal matrix as (
d′

s′

)
= V

(
d
s

)
, (3.4.1)

where d and s are the mass eigenstates, d′ and s′ are the flavor eigenstates, and

V =

(
Vud Vus
Vcd Vcs

)
=

(
cos θC sin θC
− sin θC cos θC

)
. (3.4.2)

Here θC is the Cabibbo angle [60].

Now we express the charged, neutral and electromagnetic currents in terms of the

mass eigenstates.

Jµ
− =

g2√
2
(uiLγ

µd′iL) =
g2√
2
{uLγµ(cos θCdL + sin θCsL) + cLγ

µ(− sin θCdL + cos θCsL)},

Jµ
Z = gZ

{
1

2
(uiLγ

µuiL) +

(
−1

2

)
(diLγ

µdiL)− sin2 θW

(
2

3
(uiγµui) +

(
−1

3

)
(diγµdi)

)}
,

Jµ
em = e

{
2

3
(uiγµui) +

(
−1

3

)
(diγµdi),

}
. (3.4.3)

The flavor mixings only appear in the charged currents, while the neutral and electro-

magnetic currents are flavor diagonal, because d′iγµd′i = diγµdi.
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creation weak interaction detection mixing matrix
quark mass eigenstate flavor eigenstate mass eigenstate CKM matrix

creation propagation detection mixing matrix
neutrino flavor eigenstate mass eigenstate flavor eigenstate MNS matrix

Table 3.3: Flavor physics of quarks and neutrinos. In flavor mixing phenomena among

quarks, quarks are created and detected as mass eigenstates, while the weak interaction

occurs for flavor eigenstates. In neutrino oscillation phenomena, neutrinos are created

and detected as flavor eigenstates, while they propagate as mass eigenstates.

3.4.2 Cabibbo-Kobayashi-Maskawa matrix

Now we consider three generations case. Flavor eigenstates are related to mass eigenstates

through a 3× 3 unitary matrix as d
s
b

 = V

 d′

s′

b′

 . (3.4.4)

3 × 3 unitary matrix has nine degrees of freedom, out of which we can eliminate five

diagonal phases by redefinition the phases of down-type quarks (see Appendix A). As a

result, the physical degrees of freedom of V are four (three mixing angles and one CP

phase). An explicit form of V is given by

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


=

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 , (3.4.5)

where cij = cos θij, sij = sin θij, θij(i, j = 1, 2, 3, i ̸= j) are the mixing angles, and δ is

the CP -violating phase. This matrix VCKM is called the Cabbibo-Kobayashi-Maskawa

(CKM) matrix [61]. The magnitudes of the CKM matrix elements are measured by
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K π

q̄

s u

q̄

l
−

νl

W
−

µ

i
g2
√

2
γ
µVus

Figure 3.1: K meson decay process (K → πl−νl) through |Vus|. q denotes anti-up or down

quark.

experiments [58] as

|Vud| = 0.97417± 0.00021,

|Vus| = 0.2248± 0.0006,

|Vub| = (4.09± 0.39)× 10−3,

|Vcd| = 0.220± 0.005,

|Vcs| = 0.995± 0.016,

|Vcb| = (40.5± 1.5)× 10−3,

|Vtd| = (8.2± 0.6)× 10−3,

|Vts| = (40.0± 2.7)× 10−3,

|Vtb| = 1.009± 0.031. (3.4.6)

As an example, we show a K meson decay process (K → πl−νl) in Figure 3.1. The

element |Vus| in the CKM matrix is determined through this process in the experiments.

The generations of quarks are distinguished by observed (their bound state) mass

eigenvalues. In flavor mixing phenomena among quarks, quarks are created and detected
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as mass eigenstates, while the weak interaction occurs for flavor eigenstates (Table 3.3).

3.5 Observational problems

Although the SM is a very successful theory, there are some observational results that

the SM cannot account for. In this section, we discuss such observational problems on

the SM, in particular, neutrino oscillation phenomena and the existence of dark matter

in the universe.

3.5.1 Neutrino masses and mixings

Neutrino oscillation between neutrino and anti-neutrino is first proposed by Bruno Pon-

tecorvo in 1957 [62]. Neutrino oscillation phenomena among three neutrino flavors have

been confirmed by the Super-Kamiokande experiments in 1998 [8], and the Sudbury Neu-

trino Observatory (SNO) in 2001 [9]. Neutrino oscillation phenomena require neutrino

masses and mixings, however neutrinos are massless fermions in the SM. In the following,

we will briefly review the neutrino oscillation and see that neutrino masses and mixings

are essential for the neutrino oscillation phenomena to occur.

Neutrino oscillation phenomena originate from the discrepancy between the flavor and

mass eigenstates (Table 3.3). Suppose neutrinos have masses. We define the neutrino fla-

vor eigenstates να (α = e, µ, τ) as the states paired with corresponding charged leptons in

the charged currents. While a neutrino generated through the charged current interaction

is the flavor eigenstate, it propagates as the mass eigenstate, and is detected as the flavor

eigenstate. As we have discussed in the previous section, the neutrino mass eigenstates

do not coincide with the flavor eigenstates in general.

Let us consider neutrino oscillation in two generation case. The neutrino mass eigen-

states |νim(t)⟩ (i = 1, 2) obey the Schrödinger equation:

i
d

dt
|νim(t)⟩ = H|νim(t)⟩. (3.5.1)

Since neutrino mass eigenvalues are much smaller than energies of propagating neutrinos,
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Hamiltonian is approximated as

H = E =
√
|p⃗|2 +m2

≃ |p⃗|
(
1 +

1

2

m2

|p⃗|2
+ · · ·

)
≃ E

(
1 +

1

2

m2

E2
+ · · ·

)
≃ E +

1

2

m2

E
. (3.5.2)

The solution of the Schrödinger equation (3.5.1) is given by

|νim(t)⟩ = e−iHt|νim(0)⟩

= e−iEite
−i

m2
i

2Ei
t|νim(0)⟩. (3.5.3)

We express the flavor eigenstates by a superposition of the mass eigenstates,

|να(t)⟩ = Uαi|νim(t)⟩

= Uαie
−iEte−i

m2
i

2E
t|νim(0)⟩, (3.5.4)

where we have taken E1 = E2 = E since E ≫ m1, m2, and U is the mixing matrix,

U =

(
cos θ sin θ
− sin θ cos θ

)
. (3.5.5)

The flavor eigenstates at time t are given by

(
|νe(t)⟩
|νµ(t)⟩

)
= e−iEt

(
cos θ sin θ
− sin θ cos θ

) e−i
m2

1
2E

t 0

0 e−i
m2

2
2E

t

( |ν1m(0)⟩
|ν2m(0)⟩

)

= e−iEte−i
m2

1
2E

t

(
cos θ sin θ
− sin θ cos θ

)(
1 0

0 e−i
∆m2

21
2E

t

)

×
(

cos θ − sin θ
sin θ cos θ

)(
|νe(0)⟩
|νµ(0)⟩

)
, (3.5.6)

where ∆m2
21 = m2

2 −m2
1. Suppose νe is created at t = 0, namely(

|νe(0)⟩
|νµ(0)⟩

)
=

(
1
0

)
, (3.5.7)

we find the flavor states at t such that(
|νe(t)⟩
|νµ(t)⟩

)
= e−i(Et+

m2
1

2E
)

 cos2 θ + e−i
∆m2

21
2E

t sin2 θ

(1− e−i
∆m2

21
2E

t) sin θ cos θ

 . (3.5.8)
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Thus, the probability to detect the flavor eigenstate νµ at t is obtained as

P (νe → νµ) = |⟨νµ(t)|νe(0)⟩|2

= sin2 2θ sin2

(
∆m2

21

4E
t

)
. (3.5.9)

Therefore, the conversion probability of νe → νµ can be non-zero, if both of the mixing

angle and the mass squared difference are non-zero. This is the neutrino oscillation.

It is straightforward to extend our discussion to the realistic three generation case,

where the above mixing matrix U is extended to a 3 × 3 unitary matrix, the so-called

Maki-Nakagawa-Sakata(MNS) matrix [63],

UMNS =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 ,(3.5.10)

where cij = cos θij, sij = sin θij, θij (i, j = 1, 2, 3) are the mixing angles, and δCP is

CP -violating phase. The recent neutrino oscillation data from a variety of experiments

are listed bellow [58]: for the mass squared differences,

∆m2
12 = (7.53± 0.18)× 10−5 eV2,

|∆m2
23| = (2.44± 0.06)× 10−3 eV2 (normal mass hierarchy),

(2.51± 0.06)× 10−3 eV2 (inverted mass hierarchy). (3.5.11)

Here, ∆m2
12 ≡ m2

2 − m2
1, ∆m

2
23 ≡ m2

3 − m2
2, and the normal mass hierarchy means the

mass spectrum m1 < m2 < m3, while m3 < m1 < m2 for the inverted mass hierarchy. For

the mixing angles,

sin2 θ12 = 0.304± 0.014,

sin2 θ23 = 0.51± 0.05 (normal mass hierarchy),

0.50± 0.05 (inverted mass hierarchy),

sin2 θ13 = (2.19± 0.12)× 10−2. (3.5.12)

Note that observed neutrino oscillation phenomena require an extension of the SM to

incorporate neutrino masses.

The so-called seesaw mechanism [10, 11, 12, 13, 14] is a simple and natural way to

generate small neutrino masses and flavor mixings. For simplicity, we first consider one
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generation case to discuss the essence of the seesaw mechanism. We introduce a right-

handed neutrino (NR) to the SM, which is totally singlet under the SM gauge groups,

and new terms to the SM Lagrangian,

Lmass
neutrino1 = −YDlLHNR − 1

2
MNC

RNR +H.c., (3.5.13)

where YD is the Dirac Yukawa coupling constant, and M is a Majorana mass. Note that

since NR is totally singlet, we can add the Majorana mass term. After the electroweak

symmetry breaking, we have a neutrino mass matrix,

Mneutrino1 =

(
0 mD

mD M

)
, (3.5.14)

where mD = YDv/
√
2 is the Dirac mass. Then, mass eigenvalues are given by

λ± =
M ±

√
M2 + 4m2

D

2
. (3.5.15)

Let us consider a limit mD ≪M , we obtain

λ+ ∼ M,

λ− ∼ −m
2
D

M
= −mD

(mD

M

)
. (3.5.16)

Therefore, the light mass eigenvalue λ− is highly suppressed by |mD/M | ≪ 1. This is the

seesaw mechanism. For example, if we take mD ∼ me = 5 × 10−4 GeV (electron mass)

and M ∼ O(1) TeV, we obtain λ− ∼ O(10−2) eV, which is a natural neutrino mass scale,√
|∆m2

23|.
Next, we consider a realistic case, which can reproduce the neutrino oscillation data,

(3.5.11) and (3.5.12). In the following, we discuss the so-called minimal seesaw [25, 26],

in which only two generations of right-handed neutrinos are introduced. It turns out that

two right-handed neutrinos are enough to reproduce the neutrino oscillation data. We

introduce two right-handed neutrinos (N j
R, j = 1, 2) to the SM, and new terms to the SM

Lagrangian,

Lmass
neutrino2 = −Y ij

D l
i
LHN

j
R − 1

2
MklNkC

R N l
R +H.c., (3.5.17)

where Y ij
D (i = 1, 2, 3, j = 1, 2) is the Dirac Yukawa coupling constant, and Mkl (k, l =

1, 2) is a Majorana mass matrix for two right-handed neutrinos. For simplicity, we take
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M11 = M22 = M and M12 = M21 = 0. After the electroweak symmetry breaking, we

have a neutrino mass matrix,

Mneutrino2 =

(
0 mD

mT
D M12×2

)
, (3.5.18)

where mD is 3 × 2 matrix defined as mij
D = Y ij

D v/
√
2, and 12×2 is the 2 × 2 unit matrix.

Assuming mij
D ≪M , we can approximately block-diagonalize this matrix as

Mneutrino2 →
(
mν 0
0 M12×2

)
, (3.5.19)

where mν is a 3× 3 symmetric mass matrix of the light neutrinos:

mν ≃ −mDM
−1mT

D. (3.5.20)

The rank ofmν is 2, and it has one zero and two nonzero mass eigenvalues. Therefore, two

mass squared differences of the neutrino oscillation data (3.5.11) can be reproduced. Note

that if we introduce only one right-handed neutrino, the rank of mν is 1, and two mass

squared differences cannot be reproduced. Since mD is 3×2 complex matrix, it has twelve

degrees of freedom. Three degrees of freedom can be removed by rephasing with three

left-handed neutrinos as we have discussed in the quark sector (see Appendix A), and as

a result nine degrees of freedom are left, which are enough to reproduce six observables

(two mass squared differences, three mixing angles, and one CP -violating phase) of the

neutrino oscillation data. The neutrino oscillation data can be reproduced by the seesaw

mechanism with only two generations of right-handed neutrinos.

3.5.2 Dark matter

The necessary conditions for a particle to be a suitable dark matter candidate are [48]

1. electrically neutral.

2. stable.

3. cold dark matter.

The condition 1 is from the fact that the dark matter have not optically observed. The

dark matter particle exists in the present universe, which means its lifetime is longer than

the age of the universe, τU ≃ 1017 sec (condition 2). The structure of the universe is
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generated by non-relativistic dark matter particles as seeds. The condition 3 is related

with the structure of the present universe. We explain this below.

The minimum scale of the structure of the present universe is characterized by a

temperature (TNR) at which the dark matter particle becomes non-relativistic. According

to [48], this scale is estimated as

LFS ≃ 20

(
TNR

30 eV

)−1

Mpc. (3.5.21)

The scale of the galactic halo is about 100 kpc, and in order to create the structure of

the halo, we obtain TNR > 1 keV. A dark matter particle which satisfies this condition

is called “cold dark matter” [48]. The SM neutrinos, once their masses are generated by

some new physics (e.g. the seesaw mechanism), satisfy the conditions 1 and 2. However,

the condition 3 is not satisfied because their typical mass scale is
√
|∆m2

23| = O(10−2)

eV, which is too small. Therefore, there is no suitable cold dark matter candidate in the

SM, and we need to extend the SM so as to incorporate a cold dark matter candidate.
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Chapter 4

The minimal U(1)X extended
Standard Model

4.1 The minimal B − L model

The SM Lagrangian at the tree-level is invariant under the global U(1)B and U(1)L

transformations,

ψ → ψ′ = eiQBθBψ,

ψ → ψ′ = eiQLθLψ, (4.1.1)

where θB and θL are constant phases associated with the U(1)B and U(1)L transforma-

tions, and QB and QL are charges identified as a baryon number (B) and a lepton number

(L) of the fermion ψ, respectively. The baryon number is a quantum number to charac-

terize fermions. A quark (antiquark) has a baryon number 1/3 (−1/3), while a SM lepton

has 0. The lepton number is a quantum number similar to baryon number. A lepton

(antilepton) has a lepton number 1 (−1), while a quark has 0. Although these global

U(1) symmetries are anomalous under the SM gauge group, the combination of B − L is

anomaly free. The B − L symmetry means that the SM Lagrangian is invariant under

the global U(1)B−L transformation,

ψ → ψ′ = ei(QB−QL)θB−Lψ, (4.1.2)

where θB−L is a constant phase associated with the U(1)B−L transformation.

In the minimal B−Lmodel [19, 20, 21, 22, 23], this global B−L symmetry in the SM is

gauged, and hence the gauge group of the model is SU(3)C ×SU(2)L×U(1)Y ×U(1)B−L.
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SU(3)C SU(2)L U(1)Y U(1)B−L

qiL 3 2 1/6 1/3
uiR 3 1 2/3 1/3
diR 3 1 −1/3 1/3
liL 1 2 −1/2 −1
N i

R 1 1 0 −1
eiR 1 1 −1 −1
H 1 2 −1/2 0
Φ 1 1 0 2

Table 4.1: Particle content of the minimal B − L model.

Three right-handed neutrinos (N i
R, i = 1, 2, 3 is a generation index) are introduced to

make the theory gauge anomaly free, while an SM singlet scalar field (Φ) are introduced

to break the U(1)B−L gauge symmetry. The particle content of the minimal B−L model

is listed in Table 4.1.

4.1.1 Gauge sector

Lagrangian of gauge bosons in the B − L model is generally given by

LB−L
gauge = −1

2
tr[GµνG

µν ]− 1

2
tr[FµνF

µν ]− 1

4
BµνB

µν − 1

4
B′

µνB
′µν − cmixBµνB

′µν , (4.1.3)

where

B′
µν = ∂µ(Z

′
B−L)ν − ∂ν(Z

′
B−L)µ (4.1.4)

is the field strength for the new neutral gauge boson (Z ′
B−L) associated with U(1)B−L.

Note that in general, we can introduce the last term for a kinetic mixing between the

U(1)Y and the U(1)B−L gauge bosons. In the following, we define the minimal B − L

model with cmix = 0 at the scale of the B − L symmetry breaking.

4.1.2 Scalar sector

Lagrangian of the scalar sector in the B − L model is given by

LB−L
scalar = (DµH)†(DµH) + (DµΦ)†(DµΦ)− V (H,Φ), (4.1.5)
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where H and Φ are the SM Higgs field and the SM singlet scalar field (B − L Higgs),

respectively, and the scalar potential is given by

V (H,Φ) = λH

(
H†H − v2

2

)2

+ λΦ

(
Φ†Φ−

v2B−L

2

)2

+λmix

(
H†H − v2

2

)(
Φ†Φ−

v2B−L

2

)
. (4.1.6)

Here, λH (> 0), λΦ (> 0) and λmix are real coupling constants, v = 246 GeV [58], and vB−L

is a real and positive constant. We will derive a condition for λmix to make the potential

bounded from below. In this scalar potential, the SM Higgs doublet and U(1)B−L Higgs

field develop the VEVs,

⟨H⟩ =
1√
2

(
v
0

)
,

⟨Φ⟩ =
vB−L√

2
. (4.1.7)

We expand the Higgs fields around the VEVs such that

H =
1√
2

(
v + h
0

)
,

Φ =
vB−L + h′√

2
, (4.1.8)

where h, h′ are physical Higgs bosons. Substituting this expansion into the scalar potential

(4.1.6), we read out the mass terms of the Higgs bosons as

V (H,Φ) ⊃ λHv
2h2 + λΦv

2
B−Lh

′2 + λmixvvB−Lhh
′

=
1

2
(h h′)

(
2λHv

2 λmixvvB−L

λmixvvB−L 2λΦv
2
B−L

)(
h
h′

)
=

1

2
(h h′)Mscalar

(
h
h′

)
. (4.1.9)

In order for the scalar potential to be bounded from below, the mass matrix Mscalar must

be positive definite, in particular,

det[Mscalar] = (4λHλΦ − λ2mix)v
2v2B−L > 0, (4.1.10)

and hence |λmix| < 2
√
λHλΦ. Now we diagonalize the mass matrix by(

h
h′

)
=

(
cosα sinα
− sinα cosα

)(
h1
h2

)
, (4.1.11)
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where h1, h2 are mass eigenstates, and the mixing angle is given by

tan 2α = − λmixvvB−L

λHv2 − λΦv2B−L

. (4.1.12)

The mass eigenstates are given by

m2
h1

= λHv
2 + λΦv

2
B−L +

√
(λHv2 − λΦv2B−L)

2 + (λmixvvB−L)2,

m2
h2

= λHv
2 + λΦv

2
B−L −

√
(λHv2 − λΦv2B−L)

2 + (λmixvvB−L)2. (4.1.13)

For simplicity, we assume a very small λmix, so that one mass eigenstate is an SM-like

Higgs boson, and the other is almost a B − L Higgs boson.

Let us now calculate the mass of the B − L gauge boson Z ′
B−L. The kinetic term of

the B − L Higgs field is given by

LB−L kin
scalar = (DµΦ)

†(DµΦ), (4.1.14)

where the covariant derivative is

Dµ = ∂µ − 2igB−L(Z
′
B−L)µ, (4.1.15)

and gB−L is the coupling constant of U(1)B−L gauge interaction. Substituting Φ → ⟨Φ⟩,
the Z ′

B−L gauge boson mass is found to be

MZ′ = 2gB−LvB−L. (4.1.16)

4.1.3 Yukawa sector

Lagrangian of the Yukawa sector in the B − L model is given by

LB−L
Yukawa ⊃ −

3∑
i=1

3∑
j=1

Y ij
D l

i
LHN

j
R − 1

2

3∑
k=1

Y k
NΦN

kC
R Nk

R +H.c., (4.1.17)

where Y ij
D and Y k

N are Dirac Yukawa coupling constant and Majorana Yukawa coupling

constant. A non-zero VEV of the B −L Higgs field Φ breaks the B −L gauge symmetry

and generates the Majorana masses for the right-handed neutrinos through the Majorana

Yukawa coupling. The seesaw mechanism is automatically implemented in the model after

the electroweak symmetry breaking. Neutrino mass matrix is given by

Mneutrino =

(
0 mD

mT
D M

)
. (4.1.18)
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SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH + (1/3)xΦ
uiR 3 1 2/3 (2/3)xH + (1/3)xΦ
diR 3 1 −1/3 −(1/3)xH + (1/3)xΦ
liL 1 2 −1/2 −(1/2)xH − xΦ
N i

R 1 1 0 −xΦ
eiR 1 1 −1 −xH − xΦ
H 1 2 −1/2 −(1/2)xH
Φ 1 1 0 2xΦ

Table 4.2: Particle content of the minimal U(1)X model. The U(1)X charges of fields are

determined by two real parameters, xH and xΦ. Without loss of generality we fix xΦ = 1

throughout this thesis.

Here, mD and M are Dirac and Majorana mass matrices, respectively, which are given by

mD =
YD√
2
v,

M =
YN√
2
vB−L. (4.1.19)

Assuming |mij
D| ≪Mk, we can block diagonalize the mass matrix Mneutrino to be(

0 mD

mT
D M

)
→

(
−mT

DM
−1mD 0

0 M

)
. (4.1.20)

As we have discussed in Section 3.5.1, when we consider only one generation, the mass

eigenvalues are simply

mνl ≃ −m
2
D

M
,

mνh ≃ M. (4.1.21)

Because of the seesaw mechanism, a huge mass hierarchy between the light eigenstate (νl)

and the heavy eigenstate (νh).

4.2 The minimal U(1)X model

We can generalize the minimal B − L model to the minimal U(1)X model [44]. This is

the most general extension of the SM with an extra anomaly-free U(1) gauge symmetry.

The particle content is listed in Table 4.2. The fermions and scalars have suitable U(1)X
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charges as linear combinations of their U(1)Y and U(1)B−L charges, and hence the U(1)X

charges of fields are determined by two real parameters, xH and xΦ. Except for the U(1)X

charge assignments, the particle content of this model is the same as the minimal B − L

model. Note that in the model the charge xΦ always appears as a product with the

U(1)X gauge coupling and it is not an independent free parameter. Hence, without loss

of generality we fix xΦ = 1 throughout this thesis. In this way, we reproduce the minimal

B−L model with the conventional charge assignment as the limit of xH → 0. The limit of

xH → +∞(−∞) indicates that the U(1)X is (anti-)aligned to the U(1)Y direction, which

is the so-called “hypercharge oriented U(1)X model” [64]. The anomaly structure of the

model is the same as the minimal B − L model and the model is free from all gauge and

gravitational anomalies in the presence of the three right-handed neutrinos.

4.2.1 Scalar sector and Yukawa sector

Lagrangian of the scalar sector in the U(1)X model is given by

LX
scalar = (DH

µ H)†(DHµH) + (DΦ
µΦ)

†(DΦµΦ)− V (H,Φ), (4.2.1)

where H and Φ are the SM Higgs field and the U(1)X Higgs field, respectively, and the

scalar potential V (H,Φ) is identical to (4.1.6). In this scalar potential, the SM Higgs

doublet and U(1)X Higgs field develop the VEVs,

⟨H⟩ =
1√
2

(
v
0

)
,

⟨Φ⟩ =
vX√
2
. (4.2.2)

The discussion about the Higgs boson mass spectrum is the same as the B −L case with

the replacement of vB−L → vX .

Let us now calculate the mass of the U(1)X gauge boson (Z ′ boson). The kinetic terms

of the SM Higgs and the U(1)X Higgs fields are given by

LX kin
scalar = (DH

µ H)†(DHµH) + (DΦ
µΦ)

†(DΦµΦ), (4.2.3)

where the covariant derivatives with respect to the U(1)X gauge symmetry are

DH
µ = ∂µ − i

(
−1

2
xH

)
gXZ

′
µ,

DΦ
µ = ∂µ − 2igXZ

′
µ, (4.2.4)
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and gX is the coupling constant of U(1)X gauge interaction. Substituting H → ⟨H⟩ and
Φ → ⟨Φ⟩, the Z ′ gauge boson mass is found to be

MZ′ = gX

√
4v2X +

x2Hv
2

4
≃ 2gXvX , (4.2.5)

where gX is the U(1)X gauge coupling, and the Large Electron-Positron Collider (LEP)

constraint [5, 6] v2X ≫ v2 has been used. Because of the LEP constraint, the mass mixing

of the Z ′ boson with the SM Z boson is very small, and we neglect it in our analysis in

this thesis.

Lagrangian of the Yukawa sector in the U(1)X model is given by

LX
Yukawa ⊃ −

3∑
i=1

3∑
j=1

Y ij
D l

i
LHN

j
R − 1

2

3∑
k=1

Y k
NΦN

kC
R Nk

R +H.c., (4.2.6)

which is identical to the Lagrangian of the Yukawa sector in the B−L model. A non-zero

VEV of the U(1)X Higgs field Φ breaks the U(1)X symmetry and generates the Majorana

mass matrix (M) for the right-handed neutrinos:

M =
YN√
2
vX . (4.2.7)

All discussions about neutrino mass generation via the seesaw mechanism is the same as

in the B − L model.
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Chapter 5

Large Hadron Collider physics

5.1 Overview of Large Hadron Collider

The Large Hadron Collider (LHC), which was built at the European Organization for

Nuclear Research (CERN) between 1998 and 2008, is the most powerful proton-proton

circular collider (see Figure 5.1 for the overall view). Its length is 26.7 kilometers, the

design center of mass energy is 14 TeV, and the design luminosity is 1034 cm−2s−1. The

first physics run (LHC Run-1) has been in operation during 2010-2013 at a center of mass

energy of 7 to 8 TeV. After its upgrade of a center of mass energy from 8 TeV to 13

TeV, the second physics run (LHC Run-2) started in 2015 and is planned to continue

until 2018. After the Run-2, the upgrade of its luminosity by a factor of 10 to reach 1035

cm−2s−1 is planned, which is the so-called High Luminosity LHC.

Two general-purpose detectors, A Toroidal LHC Apparatus (ATLAS) experiment and

the Compact Muon Solenoid (CMS) are constructed at the LHC to explore TeV scale

particle physics, namely, testing the SM at the TeV scale and searching for new physics

beyond the SM. In 2012, the ATLAS and CMS collaborations independently discovered

the Higgs boson [1, 2], the last particle in the SM to be directly observed.

5.2 Basics of LHC physics

In order to discuss basics of LHC physics, let us consider a process to produce a dilepton

final state l+l− from a pair annihilation of quark (q) and antiquark (q) at the LHC. We

assume that this process is mediated by an intermediate state X, qq → X → l+l−, and

express the cross section of this process as σqq(ŝ), where
√
ŝ is the center of mass energy
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Figure 5.1: Overall view of the LHC [https://home.cern/].

for the initial state qq, and qq can be uu, dd and so on. Since the LHC is a proton-proton

collider, we need to calculate the cross section of the process, pp → X → l+l−, by using

σqq(ŝ), such that

σLHC(pp→ X → l+l−) = 2

∫ 1

0

dx

∫ 1

0

dy
∑

q,q=u,u,···

[fq(x,Q)fq(y,Q)σqq(ŝ)] . (5.2.1)

Here, fq(x,Q) is a parton distribution function (PDF) (see, for example, [65]), which

is a probability to find a parton (quark in our case) with its energy xEproton inside a

proton with energy Eproton, and Q is an energy transfer between partons in the process

(we naturally take Q =
√
ŝ). Overall factor 2 is a combinatorial factor from choosing q

in one proton or the other. The center of mass energy of qq is related to the LHC center

of mass energy
√
s as ŝ = xys (for the LHC Run-2,

√
s = 13 TeV). From the energy

conservation,
√
s =Ml+l− , where Ml+l− is an invariant mass of the dilepton final state.
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For later use, it is convenient to rewrite the cross section into the differential cross

section, dσLHC/dMl+l− . Using

dσLHC

dy
=

xs

2Ml+l−

dσLHC

dMl+l−
, (5.2.2)

we have

dσLHC

dMl+l−
= 2

∫ 1

xmin

dx
2Ml+l−

xs
fq(x,Ml+l−)fq(

M2
l+l−

xs
,Ml+l−)σ(M

2
l+l−), (5.2.3)

where xmin =M2
l+l−/s. For example, the differential cross section shows a resonance peak

at Ml+l− = MX , where MX is the mass of the intermediate state X. The ATLAS and

CMS collaborations have been searching for such a resonance peak at the LHC.
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Chapter 6

Z ′
B−L portal dark matter in the

minimal B − L extended Standard
Model

6.1 The minimal B − L model with Z2 symmetry

As we have discussed in the previous chapter, the minimal B−L extended Standard Model

naturally incorporate the neutrino masses and mixings through the seesaw mechanism.

However, a cold dark matter candidate is still missing in the model to be incorporated.

Among a lot of possibilities, we consider a concise way of introducing a dark matter

candidate to the model without extending its particle content [24]. We introduce a Z2

symmetry: one right-handed neutrino NR is assigned to be Z2-odd, while the other fields

are Z2-even. The particle content listed on Table 6.1. Except for the introduction of the

Z2 symmetry and its assignments, the particle contents is identical to that of the minimal

B−Lmodel in Table 4.1. The conservation of the Z2 symmetry ensures the stability of the

Z2-odd NR, and therefore, this right-handed neutrino is a unique dark matter candidate

in the model [24].

With the Z2 symmetry, the Yukawa sector of the minimal B−L model is modified to

be

LB−L
Yukawa ⊃ −

3∑
i=1

2∑
j=1

Y ij
D l

i
LHN

j
R − 1

2

2∑
k=1

Y k
NΦN

kC
R Nk

R − 1

2
YNΦNC

RNR +H.c. (6.1.1)

Note that because of the Z2 symmetry, only the two generation right-handed neutrinos

have the neutrino Dirac Yukawa coupling. The renormalizable scalar potential for the SM

Higgs and the B−L Higgs fields are the same as the minimal B−L model, and the Higgs
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SU(3)C SU(2)L U(1)Y U(1)B−L Z2

qiL 3 2 1/6 1/3 +
uiR 3 1 2/3 1/3 +
diR 3 1 -1/3 1/3 +
liL 1 2 -1/2 -1 +

N j
R 1 1 0 -1 +

NR 1 1 0 -1 -
eiR 1 1 -1 -1 +
H 1 2 -1/2 0 +
Φ 1 1 0 2 +

Table 6.1: The particle content of the minimal B − L extended SM with Z2 symmetry.

We introduce the three right-handed neutrinos [N j
R (j = 1, 2) and NR] and the B − L

Higgs field (Φ) to the SM particle content (i = 1, 2, 3). Because of the Z2 symmetry

assignment shown here, the NR is a unique (cold) dark matter candidate. Without loss

of generality, we fix xΦ = 1 throughout this thesis.

fields develop their VEVs. Associated with the B −L symmetry breaking, the Majorana

neutrinos N j
R (j = 1, 2), the dark matter particle NR and the B − L gauge boson (Z ′

B−L

boson) acquire their masses as

mj
N =

Y j
N√
2
vB−L,

mDM =
YN√
2
vB−L,

mZ′ = 2gB−LvB−L. (6.1.2)

The seesaw mechanism [10, 11, 12, 13, 14] is automatically implemented in the model after

the electroweak symmetry breaking. Because of the Z2 symmetry, only two generation

right-handed neutrinos are relevant to the seesaw mechanism, and this so-called minimal

seesaw [25, 26] has an enough number of free parameters in Y ij
D and can reproduce the

neutrino oscillation data.

The dark matter particle can communicate with the SM particles in two ways. One is

through the Higgs bosons. In the Higgs potential of (4.1.6), the SM Higgs boson and the

B−L Higgs boson mix with each other in the mass eigenstates (see (4.1.11) and (4.1.12)),

and this Higgs boson mass eigenstates mediate the interactions between the dark matter

particle and the SM particles. Dark matter physics with the interactions mediated by

the Higgs bosons have been investigated in [24, 27, 28]. The analysis involves four free
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parameters: Yukawa coupling YN and three free parameters from the Higgs potential

after two conditions of v = 246 GeV and the SM-like Higgs boson mass fixed to be 125

GeV are taken into account. The other way for the dark matter particle to communicate

with the SM particles is through the B − L gauge interaction with the Z ′
B−L gauge

boson. In this case, only three free parameters (gB−L, mZ′ and mDM) are involved in dark

matter physics analysis. In this thesis, we concentrate on dark matter physics mediated

by the Z ′
B−L boson, namely “Z ′ portal dark matter.” When |λmix| ≪ 1 in the Higgs

potential (4.1.6), the Higgs bosons mediated interactions are negligibly small, and the dark

matter particle communicates with the SM particles only through the Z ′
B−L boson. For

example, this situation is realized in supersymmetric extension of our model [66], where

λmix is forbidden by supersymmetry in the Higgs superpotential at the renormalizable

level. When squarks and sleptons are all heavier than the dark matter particles, there

is no essential difference in dark matter phenomenology between the nonsupersymmetric

case and the supersymmetric case (see [66]). For a limited parameter choice, the Z ′
B−L

portal dark matter scenario has been investigated in [27, 28, 66].

6.2 Cosmological constraints on Z ′
B−L portal dark mat-

ter

The dark matter relic density is measured at the 68% limit as [50]

ΩDMh
2 = 0.1198± 0.0015. (6.2.1)

We now evaluate the relic density of the dark matterNR and identify an allowed parameter

region that satisfies the upper bound on the dark matter relic density of ΩDMh
2 ≤ 0.1213.

The relic density of dark matter NR is evaluated by solving the Boltzmann equation:

dYDM

dx
= − s⟨σvrel⟩

xH(mDM)
(Y 2

DM − (Y eq
DM)

2), (6.2.2)

where YDM = nDM/s is the yield of the dark matter particle with the dark matter number

density (nDM) and the entropy density (s), YDM in thermal equilibrium is denoted as Y eq
DM,

x ≡ mDM/T (T is temperature of the universe) is time normalized by the dark matter

mass, H(mDM) is the Hubble parameter at T = mDM, and ⟨σvrel⟩ is the thermal average

of the cross section for dark matter annihilation process times relative velocity. We give
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Figure 6.1: The relic density of the Z ′
B−L portal right-hard neutrino dark matter as a

function of the dark matter mass (mDM) for mZ′ = 3 TeV and various values of the

gauge coupling αB−L = 0.001, 0.0014, 0.002, 0.003 and 0.005 (solid lines from top to

bottom). The two horizontal lines denote the range of the observed dark matter relic

density, 0.1183 ≤ ΩDMh
2 ≤ 0.1213.

explicit formulas of the quantities in the Boltzmann equation:

s =
2π2

45
g∗
m3

DM

x3
,

H(mDM) =

√
4π3

45
g∗
m2

DM

Mpl

,

sY eq
DM =

gDM

2π2

m3
DM

x
K2(x), (6.2.3)

where Mpl = 1.22 × 1019 GeV is the Planck mass, g∗ is the effective total degrees of

freedom for SM particles in thermal equilibrium (g∗ = 106.75 is employed in the following

analysis), gDM = 2 is the degrees of freedom for the right-handed neutrino dark matter,

and K2 is the modified Bessel function of the second kind. In our Z ′
B−L portal dark matter

scenario, the dark matter particles pair-annihilate into the SM particles mainly through

the s-channel Z ′
B−L boson exchange (see the left panel of Figure 6.2). The thermal average
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Figure 6.2: Left panel: Majorana neutrino dark matter (NR) pair annihilation process into

the SM fermions (f) through the Z ′
B−L exchange in the s-channel, NRNR → Z ′

B−L → ff̄ .

Right panel: parton level process (quark (q) and anti-quark (q̄) annihilation process) to

produce a dilepton final state (l+l−) through an s-channel Z ′ exchange at the LHC.

of the annihilation cross section is calculated as

⟨σvrel⟩ = (sY eq
DM)

−2g2DM

mDM

64π4x

∫ ∞

4m2
DM

dsσ̂(s)
√
sK1

(
x
√
s

mDM

)
, (6.2.4)

where σ̂(s) = 2(s − 4m2
DM)σ(s) is the reduced cross section with σ(s) being the total

annihilation cross section. The total cross section of the annihilation process NRNR →
Z ′

B−L → ff̄ (f denotes an SM fermion) is calculated as

σ(s) = πα2
B−L

√
s(s− 4m2

DM)

(s−m2
Z′)2 +m2

Z′Γ2
Z′

[
37

9
+

1

3
βt

(
1− 1

3
β2
t

)]
, (6.2.5)

with βt(s) =
√

1− 4m2
t/s, top quark mass of mt = 173.34 GeV [58] and the total decay

width of Z ′
B−L boson given by

ΓZ′ =
αB−L

6
mZ′

[
37

3
+
βt(m

2
Z′)

3
(3− βt(m

2
Z′)2) +

(
1− 4m2

DM

m2
Z′

) 2
3

θ

(
m2

Z′

m2
DM

− 4

)]
.(6.2.6)

Here, we have taken mj
N > mZ′/2, for simplicity.

Solving the Boltzmann equation numerically, we evaluate the dark matter relic density

by

ΩDMh
2 =

mDMs0Y (∞)

ρcrit/h2
, (6.2.7)

where Y (∞) is the yield in the limit of x → ∞, s0 = 2890 cm−3 is the entropy density

of the present universe, and ρcrit/h
2 = 1.05× 10−5 GeV/cm3 is the critical density. Note
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Figure 6.3: The dark matter mass as a function of αB−L for mZ′ = 3 TeV (top panel)

and 4 TeV (bottom panel). Along the solid (black) curve in each panel, ΩDMh
2 = 0.1198

is satisfied. The dotted lines correspond to mDM = mZ′/2. The vertical solid lines (in

red) denote the upper bound on αB−L obtained from the recent LHC Run-2 results (see

Figures 6.5 and 6.6). In the top panel, the left vertical line represents the constraint from

the ATLAS result [42], while the right one is from the CMS result [43]. In the bottom

panel, the vertical line represents the constraint from the ATLAS result [42].
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that we have only three parameters, αB−L = g2B−L/(4π), mZ′ and mDM, in our analysis.

For mZ′ = 3 TeV and various values of the gauge coupling αB−L, Figure 6.1 depicts the

resultant dark matter relic density as a function of its mass mDM, along with the observed

bounds 0.1183 ≤ ΩDMh
2 ≤ 0.1213 [50] (two horizontal dashed lines). The solid curves

from top to bottom correspond to the results for αB−L = 0.001, 0.0014, 0.002, 0.003

and 0.005, respectively. We find that in order to reproduce the observed relic density, the

dark matter mass must be close to half of the Z ′
B−L boson mass. In other words, normal

values of the dark matter annihilation cross section leads to overabundance, and it is

necessary that an enhancement of the cross section through the Z ′
B−L boson resonance in

the s-channel annihilation process.

For a fixed mDM in the Figure 6.1, the resultant relic density becomes larger as the

gauge coupling αB−L is lowered. As a result, there is a lower bound on αB−L in order to

satisfy the cosmological upper bound on the dark matter relic density ΩDMh
2 ≤ 0.1213.

For an αB−L value larger than the lower bound, we can find two values of mDM which

result in the center value of the observed relic density ΩDMh
2 = 0.1198. In Figures 6.3,

we show the dark matter mass yielding ΩDMh
2 = 0.1198 as a function of αB−L. The top

panel shows the result for mZ′ = 3 TeV, while the corresponding result for mZ′ = 4 TeV is

shown in the bottom panel. As a reference, we also show the dotted lines corresponding to

mDM = mZ′/2. In Figure 6.1, we see that the minimum relic density is achieved by a dark

matter mass which is very close to, but smaller than mZ′/2. Although the annihilation

cross section of (6.2.5) has a peak at
√
s = mZ′ , the thermal averaged cross section given

in (6.2.4) includes the integral of the product of the reduced cross section and the modified

Bessel function K1. Our results indicate that for mDM taken to be slightly smaller than

mZ′/2, the thermal averaged cross section is larger than the one for mDM = mZ′/2.

As mentioned above, for a fixed Z ′
B−L boson mass, we can find a corresponding lower

bound on the gauge coupling αB−L in order for the resultant relic density not to exceed

the cosmological upper bound ΩDMh
2 = 0.1213. Figure 6.4 depicts the lower bound of

αB−L as a function of mZ′ [solid (black) line]. Along this solid (black) line, we find that

the dark matter mass is approximately given by mDM ≃ 0.49mZ′ . The dark matter relic

density exceeds the cosmological upper bound in the region below the solid (black) line.

Along with the other constraints that will be obtained in the next section, Figure 6.4 is

our main results in this chapter.
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Figure 6.4: Allowed parameter region for the Z ′
B−L portal dark matter scenario. The solid

(black) line depicts the lower bound on αB−L as a function of mZ′ from the cosmological

upper bound on the dark matter relic density. The dashed line (in red) shows the upper

bound on αB−L as a function of mZ′ from the ATLAS results of the search for Z ′ boson

resonance, while the (blue) diagonal line in the range of 2000 GeV ≤ mZ′ ≤ 3500 GeV

denotes the upper bound obtained from the result by the CMS collaboration. The LEP

bound is depicted as the dotted line. The regions above these dashed, solid and dotted

lines are excluded. We also show a theoretical upper bound on αB−L to avoid the Landau

pole of the running B − L gauge coupling below the Planck mass Mpl.

6.3 LHC Run-2 constraints

Recently, the LHC Run-2 started its operation with a 13 TeV collider energy.1 Preliminary

results from the ATLAS and the CMS collaborations have been reported. The Run-2

results have provided constraints on new physics models. The ATLAS and the CMS

collaborations continue search for Z ′ boson resonance with dilepton final states at the

LHC Run-2 (see the right panel of Figure 6.2), and have improved the upper limits on

the Z ′ boson production cross section from those in the LHC Run-1 [67, 68]. Employing

the LHC Run-2 results, we will derive an upper bound on αB−L as a function of mZ′ .

1This chapter is based on my original work [45], where the first LHC Run-2 results [42, 43] were
employed in our analysis.
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Figure 6.5: Top panel: the solid line shows the cross section as a function of the Z ′
SSM

mass for k = 1.31, along with the ATLAS result in [42]. Bottom panel: the cross sections

calculated for various values of αB−L with k = 1.31. The solid lines from left to right

correspond to αB−L = 0.0001, 0.001, 0.01 and 0.05, respectively.
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Figure 6.6: Top panel: The solid line shows the cross section as a function of the Z ′
SSM

mass for k = 1.80, along with the CMS result in [43]. Bottom panel: the cross section

ratios calculated for various values of αB−L with k = 1.80. The solid lines from left to

right correspond to αB−L = 0.0001, 0.0005, 0.001, 0.005 and 0.01, respectively.
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Since we have obtained in the previous section the lower bound on αB−L as a function

of mZ′ from the constraint on the dark matter relic density, the LHC Run-2 results are

complementary to the cosmological constraint. As a result, the parameter space of the

Z ′
B−L portal dark matter scenario is severally constrained once the two constraints are

combined.

Let us consider the Z ′
B−L boson production process, pp → Z ′

B−L + X → l+l− + X,

where X denotes hadron jets. The differential cross section is given by

dσ

dMll

=
∑
a,b

∫ 1

M2
ll

E2
CM

dx
2Mll

xE2
CM

fa(x,Q
2)fb

(
M2

ll

E2
CM

, Q2

)
σ̂(qq̄ → Z ′

B−L → l+l−), (6.3.1)

where ECM = 13 TeV is the LHC Run-2 energy in the center-of-mass frame, Mll is the

invariant mass of the dilepton final state, and fa is the PDF for a parton“ a.”For the

PDFs we utilize CTEQ6L [69] with Q = mZ′ as the factorization scale. Here, the cross

section for the colliding partons is given by

σ̂ =
4πα2

B−L

81

M2
ll

(M2
ll −m2

Z′)2 +m2
Z′Γ2

Z′
. (6.3.2)

In calculating the total cross section, we set a range of Mll that is used in the analysis

by the ATLAS and the CMS collaborations, respectively. We compare our results of the

total cross section with the upper limits of the ATLAS and CMS results.

The so-called sequential SM Z ′ (Z ′
SSM) model [70] has been considered as a reference

model in the analysis by the ATLAS and the CMS collaborations. In this model, the

couplings of the Z ′
SSM boson with quarks and leptons are exactly the same as those of the

SM Z boson, while its mass is a free parameter. In order to examine the consistency of

our analysis with those by the ATLAS collaboration, we first calculate the cross section

σ(pp→ Z ′
SSM+X → l+l−+X) for the sequential Z ′ boson like (6.3.1). By integrating the

differential cross section for the region of 128 GeV ≤Mll ≤ 6000 GeV [67], we obtain the

total cross section as a function of Z ′
SSM boson mass. The top panel on Figure 6.5 shows

our result (diagonal solid line), along with the plot presented by the ATLAS collaboration

[42] (diagonal dashed line). The ATLAS collaboration obtains the upper limit of the cross

section of the process pp → Z ′ +X → l+l− +X (red line in Figure 6.5). Comparing the

limit with the theory prediction for the Z ′
SSM boson production (diagonal dashed line),

we obtain a lower bound of Z ′
SSM boson mass as mZ′

SSM
≥ 3.4 TeV. When we compare

our theory calculation with the one by the ATLAS collaboration, we need to consider a

68



difference between PDFs used in two analysis and uncertainties from QCD corrections.

Taking these factors into account, we have scaled our cross section to obtain the same

bound of mZ′
SSM

≥ 3.4 TeV. In the top panel on Figure 6.5, we have chosen this scaling

factor to be k = 1.31. We see that the two lines from our calculation (diagonal solid line)

and the ATLAS collaboration [42] (diagonal dashed line) are very well overlapping. We

use this factor k = 1.31 in our LHC analysis for the Z ′
B−L production. For various values

of αB−L, we calculate the cross section σ(pp → Z ′
B−L +X → l+l− +X). Our results are

shown in the bottom panel of Figure 6.5, along with the plot in [42]. The diagonal solid

lines from left to right correspond to αB−L = 0.0001, 0.001, 0.01 and 0.05, respectively.

From the intersections of the horizontal curve and diagonal solid lines, we can read off

a lower bound on the Z ′
B−L boson mass for a fixed αB−L value. In this way, we have

obtained the upper bound on αB−L as a function the Z ′
B−L boson mass, which is depicted

in Figure 6.4 [dashed (red) line].

We also consider the result by the CMS collaboration [43]. Corresponding to their

analysis, we integrate the differential cross section for the range of 0.97mZ′
SSM

≤ Mll ≤
1.03mZ′

SSM
. The limits provided by the CMS collaboration are given as the ratio of

the cross sections, σ(pp → Z ′
SSM + X → l+l− + X))/σ(pp → Z + X → l+l− + X),

where σ(pp → Z + X → l+l− + X) = 1928 pb is the dilepton production cross section

mediated by the Z/γ∗ exchange in a mass window of 60 to 120 GeV. Our result is shown

as a diagonal solid line in the top panel of Figure 6.6, along with the plot presented in

[43]. The CMS collaboration obtains the upper limit of the ratio, σ(pp → Z ′
SSM +X →

l+l−+X)/σ(pp→ Z+X → l+l−+X) (blue line in Figure 6.6). Comparing the limit with

the theory prediction for the Z ′
SSM boson production (diagonal dashed line), we obtain

a lower bound of Z ′
SSM boson mass as mZ′

SSM
≥ 3.15 TeV. In our calculation, we set a

factor k = 1.80 to yield the same bound of mZ′
SSM

≥ 3.15 TeV. The top panel shows that

our results are well-overlapping with the theoretical cross section presented in [43].

Using k = 1.80, we calculate σ(pp→ Z ′
B−L+X → l+l−+X) for various values of αB−L.

Our results are shown in the bottom panel of Figure 6.6, along with the plot in [43]. The

diagonal solid lines from left to right correspond to αB−L = 0.0001, 0.0005, 0.001, 0.005

and 0.01, respectively. From the intersections of the horizontal (blue) curve and diagonal

solid lines, we can read off a lower bound on the Z ′
B−L boson mass for a fixed αB−L value.

In Figure 6.4, the diagonal solid (blue) line in the range of 2000 GeV ≤ mZ′ ≤ 3500 GeV
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shows the upper bound on αB−L as a function the Z ′ boson mass. The ATLAS and the

CMS bounds are similar, and the ATLAS bound is slightly more severe than the CMS

bound, and applicable to a higher mass range up to mZ′ = 5000 GeV.

In Figure 6.4, we also show the LEP bound (dotted line) on 4-Fermi interactions

generated by the Z ′
B−L boson exchange [71]. An updated limit with the final LEP 2 data

[6] is found to be [72]

mZ′

gB−L

≥ 6.9 TeV (6.3.3)

at 95% confidence level. We find that the ATLAS results at the LHC Run-2 provide more

severe constraints than the LEP results for mZ′ ≤ 4.3 TeV. In order to avoid the Landau

pole of the running B − L coupling αB−L(µ), below the Plank mass (1/αB−L(Mpl) > 0),

we find

αB−L <
π

6 ln
[
Mpl

mZ′

] , (6.3.4)

which is shown as the dashed-dotted line in Figure 6.4. Here, the gauge coupling αB−L

used in our analysis for dark matter physics and LHC physics is defined as the running

gauge coupling αB−L(µ) at µ = mZ′ , and we have employed the renormalization group

equation at the one-loop level with m1
N = m2

N = mΦ = mZ′ , for simplicity.
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Chapter 7

Z ′ portal dark matter in the minimal
U(1)X extended Standard Model

7.1 The minimal U(1)X model with Z2 symmetry

In this chapter, we generalize Z ′
B−L portal dark matter in the minimal B − L model to

the minimal U(1)X model. This model is defined by the particle content listed on Table

7.1. The introduction of the Z2 symmetry is crucial to incorporate a DM candidate in

the model while keeping the minimality of the particle content. The conservation of the

Z2 symmetry ensures the stability of the Z2-odd right-handed neutrino, and, therefore, it

is a unique DM candidate in the model.

The Yukawa sector of the SM is extended to have

LYukawa ⊃ −
3∑

i=1

2∑
j=1

Y ij
D l

i
LHN

j
R − 1

2

2∑
k=1

Y k
NΦN

kC
R Nk

R − 1

2
YNΦNC

RNR +H.c., (7.1.1)

where the first term in the right-hand side is the Dirac Yukawa coupling, and the sec-

ond and third terms are the Majorana Yukawa couplings. Without loss of generality, the

Majorana Yukawa couplings are diagonal. Note that because of the Z2 symmetry, only

the two-generation right-handed neutrinos have the neutrino Dirac Yukawa coupling. A

nonzero VEV of the U(1)X Higgs field Φ breaks the U(1)X gauge symmetry and generates

the Majorana masses for the right-handed neutrinos. Then, the seesaw mechanism is au-

tomatically implemented in the model after the electroweak symmetry breaking. Because

of the Z2 symmetry, only two-generation right-handed neutrinos are relevant to the seesaw

mechanism. Even with two right-handed neutrinos, the Dirac Yukawa coupling constants

Y ij
D have an enough number of free parameters to reproduce the neutrino oscillation data.
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SU(3)C SU(2)L U(1)Y U(1)X Z2

qiL 3 2 1/6 (1/6)xH + 1/3 +
uiR 3 1 2/3 (2/3)xH + 1/3 +
diR 3 1 -1/3 −(1/3)xH + 1/3 +
liL 1 2 -1/2 −(1/2)xH − 1 +

N j
R 1 1 0 −1 +

NR 1 1 0 −1 −
eiR 1 1 -1 −xH − 1 +
H 1 2 -1/2 −(1/2)xH +
Φ 1 1 0 2 +

Table 7.1: The particle content of the minimal U(1)X extended SM with Z2 symmetry.

In addition to the SM particle content (i = 1, 2, 3), the three right-handed neutrinos

[N j
R (j = 1, 2) and NR] and the U(1)X Higgs field (Φ) are introduced. Because of the Z2

symmetry assignment shown here, the NR is a unique (cold) dark matter candidate. The

U(1)X charges of fields are determined by two real parameters, xH and xΦ. Without loss

of generality, we fix xΦ = 1 throughout this thesis.

The baryon asymmetry in the universe can also be reproduced with the two right-handed

neutrinos [25, 26] (see, for example, [73] for detailed analysis of leptogenesis at the TeV

scale with two right-handed neutrinos).

The renormalizable scalar potential for the SM Higgs doublet (H) and the U(1)X

Higgs fields is given by

V = λH

(
H†H − v2

2

)2

+ λΦ

(
Φ†Φ− v2X

2

)2

+ λmix

(
H†H − v2

2

)(
Φ†Φ− v2X

2

)
,(7.1.2)

where all quartic couplings are chosen to be positive. At the potential minimum, the

Higgs fields develop their VEVs as

⟨H⟩ =

( v√
2

0

)
,

⟨Φ⟩ =
vX√
2
. (7.1.3)

In this thesis, we assume λmix ≪ 1 and neglect the mixing between the SM Higgs boson

and the U(1)X Higgs boson. Hence, right-handed neutrino dark matter communicates

with the SM particles only through the Z ′ boson. Associated with the U(1)X symmetry

breaking, the Majorana neutrinos N j
R (j = 1, 2), the dark matter particle NR, and the Z ′
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gauge boson acquire their masses as

mj
N =

Y j
N√
2
vX ,

mDM =
YN√
2
vX ,

mZ′ = gX

√
4v2X +

x2Hv
2
X

4
≃ 2gXvX , (7.1.4)

where gX is the U(1)X gauge coupling, and the Large Electron-Positron Collider (LEP)

constraint [5, 6] v2X ≫ v2 has been used. Because of the LEP constraint, the mass mixing

of the Z ′ boson with the SM Z boson is very small, and we neglect it in our analysis in the

following. Assuming λmix ≪ 1, we focus on the Z ′-portal nature of right-handed neutrino

dark matter. In this case, only four free parameters (gX , mZ′ , mDM, and xH) are involved

in our analysis. As we will discuss in the next section, it turns out that the condition

of mDM ≃ mZ′/2 must be satisfied to reproduce the observed dark matter relic density.

Thus, mDM does not work as an independent parameter, so that our results are described

by only three free parameters.

7.2 Cosmological constraints on Z ′ portal dark mat-

ter

We evaluate the dark matter relic density and identify an allowed parameter region to

satisfy the upper bound of ΩDMh
2 ≤ 0.1213 (see (6.2.1)). The dark matter relic density

is evaluated by integrating the Boltzmann equation (6.2.2). In our Z ′ portal dark matter

scenario, the dark matter particles pair-annihilate into the SM particles through the s-

channel Z ′ boson exchange. The thermally averaged annihilation cross section is given

by (6.2.4). In the minimal U(1)X model, the total cross section of the dark matter pair

annihilation process NRNR → Z ′ → ff (f denotes the SM fermions) is calculated as

σ(s) =
π

3
α2
X

√
s(s− 4m2

DM)

(s−m2
X)

2 +m2
Z′Γ2

Z′
F (xH), (7.2.1)

where

F (xH) = 13 + 16xH + 10x2H = 10(xH + 0.8)2 + 6.6, (7.2.2)
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Figure 7.1: The relic density of the Z ′ portal right-handed neutrino dark matter is shown

as a function of mDM for mZ′ = 4 TeV. In the top panel, we have fixed xH = 0 (the

minimal B − L model limit). The solid curves show the relic density for αX = 0.0025,

0.0027, 0.0028, and 0.0030, respectively, from top to bottom. In the bottom panel, we

have fixed αX = 0.0027. The solid curves show the relic density for various values of

xH = −0.8, 0, 0.5, and 1.0, respectively, from bottom to top. The region in between two

horizontal lines corresponds to the observed DM relic density, 0.1183 ≤ ΩDMh
2 ≤ 0.1213,

in (6.2.1).
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Figure 7.2: The lower bounds on αX as a function of mZ′ for various values of xH , to

satisfy the cosmological constraint of 0.1183 ≤ ΩDMh
2 ≤ 0.1213. The solid lines from top

to bottom correspond to xH = −3, +1, −2, 0, and −1, respectively. As the input xH
value is going away from the point of xH = −0.8, the lower bound on αX is increasing.

and the total decay width of Z ′ boson is given by

ΓZ′ =
αX

6
mZ′

[
F (xH) +

(
1− 4m2

DM

m2
Z′

) 3
2

θ

(
m2

Z′

m2
DM

− 4

)]
. (7.2.3)

Here, we have neglected all SM fermion masses and assumed mj
N > mZ′/2, for simplicity.

Solving the Boltzmann equation numerically, we evaluate the dark matter relic density

by

ΩDMh
2 =

mDMs0Y (∞)

ρcrit/h2
, (7.2.4)

where Y (∞) is the yield in the limit of x → ∞, s0 = 2890 cm−3 is the entropy density

of the present universe, and ρcrit/h
2 = 1.05× 10−5 GeV/cm3 is the critical density. Note

that we have only four parameters, αX = g2X/(4π), mZ′ , mDM and xH , in our analysis.

For mZ′ = 4 TeV, our results are shown in Figure 7.1, along with the observed dark
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matter relic density, 0.1183 ≤ ΩDMh
2 ≤ 0.1213 [50] (two horizontal dashed lines). In

the top panel, we have fixed xH = 0, which is the minimal B − L model limit. The

solid curves show the dark matter relic densities for αX = 0.0025, 0.0027, 0.0028, and

0.0030, respectively, from top to bottom. From the plots, we can see that the observed

relic density can be reproduced only for αX ≥ 0.0027. Furthermore, the cosmological

constraint is satisfied formDM ≃ mZ′/2, which indicates that the dark matter annihilation

cross section needs to be enhanced via the s-channel Z ′ boson resonance. The bottom

panel shows our results for various values of xH with the fixed αX = 0.0027. The solid

curves correspond to the results for xH = −0.8, 0, 0.5, and 1.0, respectively, from bottom

to top. From (6.2.4) and (7.2.1)-(7.2.3), we can see that the dark matter annihilation

cross section for mDM ≃ mZ′/2 is proportional to 1/F (xH). Therefore, the maximum

annihilation cross section for the fixed values of αX , mZ′ , and mDM ≃ mZ′/2 is achieved

for xH = −0.8. Since the function 1/F (xH) is symmetric about the point of xH = −0.8,

the results shown in the left panel indicate the constraint −1.6 ≤ xH ≤ 0 to satisfy the

cosmological bound for the fixed values of mZ′ = 4 TeV and αX = 0.027.

In Figure 7.2 we show the lower bounds on αX as a function of mZ′ for various values

of xH , to reproduce the observed dark matter relic density in the range of 0.1183 ≤
ΩDMh

2 ≤ 0.1213. The solid lines from top to bottom correspond to xH = −3, +1, － 2, 0,

and － 1, respectively. For fixed αX and mZ′ , the dark matter annihilation cross section

becomes maximum for xH = −0.8 with the minimum Z ′ boson decay width. As an input

xH value goes away from the point of xH = −0.8, the decay width becomes larger and

the dark matter annihilation cross section reduces. As a result, the lower bound on the

gauge coupling increases.

7.3 LHC Run-2 constraints

The recent results by the ATLAS and CMS collaborations with the combined 2015 and

2016 data were reported at the ICHEP 2016 conference. In this section, we will employ

this recent LHC Run-2 results to derive LHC constraints on the model parameters, αX ,

mZ′ , and xH .

Let us calculate the cross section of the dilepton production, pp→ Z ′+X → l+l−+X,

mediated by the Z ′ boson. Our analysis here is the same as that for the Z ′
B−L case in the
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Figure 7.3: Top panel: The solid line shows the cross section as a function of the Z ′
SSM

mass for k = 1.28, along with the ATLAS results in 2015 [42] and 2016 [74]. Bottom panel:

The cross sections calculated for various values of αX with k = 1.28, for the minimal B−L
model limit (xH = 0). The solid lines from left to right correspond to αX = 10−5, 10−4.5,

10−4, 10−3.5, 10−3, 10−2.5, 10−2, and 10−1.5, respectively.
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Figure 7.4: Top panel: The cross section ratio as a function of the Z ′
SSM mass (solid line)

with k = 1.61, along with the CMS results from 2015 [43] and 2016 [75] from the combined

dielectron and dimuon channels. Bottom panel: The cross section ratios calculated for

various values of αX with k = 1.61 for the minimal B − L model limit (xH = 0). The

solid lines from left to right correspond to αX = 10−4.5, 10−4, 10−3.5, 10−3, 10−2.5, 10−2,

and 10−1.75, respectively.
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Figure 7.5: The lower bound on mZ′/gX as a function of xH . We have employed the final

LEP 2 data [6] at the 95% confidence level.

previous chapter. The cross section for the colliding partons is given by

σ̂(qq → Z ′ → l+l−) =
π

1296
αX

M2
ll

(M2
ll −m2

Z′)2 +m2
Z′Γ2

Z′
Fql(xH), (7.3.1)

where the function Fql(xH) is given by

Ful(xH) = (8 + 20xH + 17x2H)(8 + 12xH + 5x2H),

Fdl(xH) = (8− 4xH + 5x2H)(8 + 12xH + 5x2H) (7.3.2)

for q being the up-type (u) and down-type (d) quarks, respectively. In calculating the

total cross section, we set a range of Mll that is used in the analysis by the ATLAS and

the CMS collaborations, respectively. We compare our results of the total cross section

with the upper limits of the ATLAS and CMS results.

The sequential SM Z ′ (Z ′
SSM) model [70] has been considered as a reference model

in the analysis by the ATLAS and the CMS collaborations. In order to examine the

consistency of our analysis with those by the ATLAS collaboration, we first calculate the

cross section σ(pp → Z ′
SSM + X → l+l− + X) for the sequential Z ′ boson like (6.3.1).
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Figure 7.6: Top panel: The upper bounds on αX as a function of mZ′ = −1, 0, and +1

from top to bottom, respectively, for the solid and dashed lines. The solid lines denote the

bounds from the ATLAS results [74] while the dashed lines denote the bounds from the

CMS results [75]. Bottom panel: The upper bounds on αX after combining the ATLAS

and CMS results shown in the top panel. The solid lines correspond to the combined upper

bounds for xH = −1, 0, and +1 from top to bottom, respectively. The perturbativity

bounds of (7.3.3) for xH = −1, 0, and +1 are shown as the horizontal dashed-dotted lines

from top to bottom, respectively.
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By integrating the differential cross section for the region of 128 GeV ≤Mll ≤ 6000 GeV

[67], we obtain the total cross section as a function of Z ′
SSM boson mass. The top panel

on Figure 7.3 shows our result (diagonal solid line), along with the plot presented by the

ATLAS collaboration [42, 74] (diagonal dashed line). The ATLAS collaboration obtains

the upper limit of the cross section of the process pp → Z ′ + X → l+l− + X (lower

horizontal red line in Figure 7.3). Comparing the limit with the theory prediction for

the Z ′
SSM boson production (diagonal dashed line), we obtain a lower bound of Z ′

SSM

boson mass as mZ′
SSM

≥ 4.05 TeV. Here, we have also shown the plot presented in [42]

(upper horizontal red line). We can see the dramatic improvement from the 2015 results

[42] to the 2016 results [74]. When we compare our theory calculation with the one by

the ATLAS collaboration, we need to consider a difference between PDFs used in two

analysis and uncertainties from QCD corrections. Taking these factors into account, we

have scaled our cross section to obtain the same bound of mZ′
SSM

≥ 4.05 TeV. In the

top panel on Figure 7.3, we have chosen this scaling factor to be k = 1.28. We see that

the two lines from our calculation (diagonal solid line) and the ATLAS collaboration [74]

(diagonal dashed line) are very well overlapping. We use this factor k = 1.28 in our LHC

analysis for the Z ′ production.

For various values of of αX , mZ′ and xH , we calculate the cross section σ(pp → Z ′ +

X → l+l−+X). For xH = 0 (the minimal B−L model limit), we show our results in the

bottom panel of Figure 7.3, along with the plots in the ATLAS papers [42, 74]. The diago-

nal solid lines from left to right correspond to αX = 10−5, 10−4.5, 10−4, 10−3.5, 10−3, 10−2,

and 10−1.5. From the intersections of the lower horizontal curve (in red) and diagonal solid

lines, we can read off the lower bounds on the Z ′ boson mass for the corresponding αX

values. For example, mZ′ > 3.1 TeV for αX = 0.001. In this way, we have obtained the

upper bound on αX as a function of the Z ′ boson mass. We do the same analysis for

various values of xH and find the upper bound.

We also consider the result by the CMS collaboration [75]. Corresponding to their

analysis, we integrate the differential cross section for the range of 0.95mZ′
SSM

≤ Mll ≤
1.05mZ′

SSM
. The limits provided by the CMS collaboration are given as the ratio of the

cross sections, σ(pp → Z ′
SSM + X → l+l− + X))/σ(pp → Z + X → l+l− + X), where

σ(pp→ Z+X → l+l−+X) = 1928 pb is the dilepton production cross section mediated by

the Z/γ∗ exchange in a mass window of 60 to 120 GeV. Our result is shown as a diagonal
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solid line in the top panel of Figure 7.4, along with the plot presented in [75]. The CMS

collaboration obtains the upper limit of the ratio, σ(pp→ Z ′
SSM+X → l+l−+X)/σ(pp→

Z +X → l+l− +X) (lower horizontal red line in Figure 7.4). Comparing the limit with

the theory prediction for the Z ′
SSM boson production (diagonal dashed line), we obtain a

lower bound of Z ′
SSM boson mass as mZ′

SSM
≥ 4.0 TeV. Here, we have also shown the plot

presented in [43] (upper horizontal red line). As in the top panel of Figure 7.4, we can

see the dramatic improvement from the 2015 results [43] to the 2016 results [75]. In our

calculation, we set a factor k = 1.61 to yield the same bound of mZ′
SSM

≥ 4.0 TeV. The

top panel shows that our results are well-overlapping with the theoretical cross section

presented in [75].

Using k = 1.61, we calculate σ(pp → Z ′ + X → l+l− + X) for various values of αX ,

mZ′ , and xH . For the minimal B − L model limit, we show our results in the bottom

panel of Figure 7.4, along with the plots in the CMS papers [43, 75]. The diagonal solid

lines from left to right correspond to αX = 10−4.5, 10−4, 10−3.5, 10−3, 10−2.5, 10−2, and

10−1.75. From the intersections of the lower horizontal curve and the diagonal solid lines,

we can read off the lower bounds on the Z ′ boson mass for the corresponding αX values.

For example, mZ′ > 3.8 TeV is read off for αX = 10−2.5. In this way, we have obtained

the upper bound on αX as a function of mZ′ . For various values of xH we do the same

analysis and find the upper bound.

Effective 4-Fermi interactions mediated by a Z ′ boson have been searched at the LEP

[5, 6]. Following the analysis in [71], we employ the LEP 2 data [6] at the 95% confidence

level and derive a lower bound on mZ′/gX as a function of xH . Our result is shown in

Figure 7.5. We find that for any values of xH , the LEP constraints are always weaker

than the LHC Run-2 constraints for mZ′ ≤ 5 TeV.

As a theoretical constraint, we may impose an upper bound on the U(1)X gauge cou-

pling to avoid the Landau pole in its renormalization group evolution αX(µ) up to the

Planck mass, 1/αX(Mpl) > 0, where Mpl = 1.22× 1019 GeV. Employing the renormaliza-

tion group equation at the one-loop level with m1
N = m2

N = mΦ = mZ′ , for simplicity, we

find

αX <
2π

bX ln
[
Mpl

mZ′

] , (7.3.3)

where bX = (72 + 64xH + 41x2H)/6 is the beta function coefficient.
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In Figure 7.6 we show the LHC Run-2 bounds on αX as a function ofmZ′ for xH = −1,

0, and +1. In the top panel, the solid (dashed) lines from top to bottom denote the upper

bounds on αX for xH = −1, 0, and +1, respectively, obtained from the ATLAS results

[74] (the CMS results [75]). For mZ′ ≲ 4 − 4.5 TeV, the CMS bounds are slightly more

severe than those from the ATLAS results. Combining the ATLAS and CMS results, we

obtain the upper bound shown in the bottom panel. The solid lines corresponds to the

combined upper bounds for xH = −1, 0, and +1 from top to bottom, respectively. The

perturbativity bounds of (7.3.3) for xH = −1, 0, and +1 are shown as the horizontal

dashed-dotted lines from top to bottom, respectively.

7.4 Complementarity between the cosmological and

the LHC constraints

Now we combine the constraints that we have obtained in the previous two sections. The

right-handed neutrino dark matter abundance has led to the lower bound on the U(1)X

gauge coupling for fixed mZ′ and xH , while the upper limit on the production cross

section of the Z ′ boson at the LHC has derived the upper bound on the gauge coupling.

Therefore, the two constraints are complementary to each other and, once combined, the

model parameter space is more severely constrained.

We show the results for various xH values in Figure 7.7. The top-left panel shows the

results for the minimal B − L model limit (xH = 0) as a function of mZ′ . The (black)

solid line denotes the lower bound on αX obtained from the cosmological constraints,

while the lower dashed line (in red) denotes the upper bound on αX obtained from the Z ′

boson search results by the ATLAS [74] and CMS [75] collaborations. Here, the ATLAS

and CMS bounds are combined as in the right panel on Figure 7.6. The shaded region is

the final result after combining the cosmological and the LHC constraints, leading to the

lower mass bound of mZ′ ≳ 3.6 TeV. For a comparison, we have also shown the upper

long-dashed line (in red), which is obtained in [45] from the ATLAS [42] and CMS [43]

results with the 2015 data. We can see the dramatic improvement from the previous result

of mZ′ ≳ 2.5 TeV. The upper bound on αX from the LEP constraint in (7.5) is depicted

as the dotted line, which turns out to be weaker than the LHC bound. We also show the

theoretical upper bound on αX in (7.3.3) as the dashed-dotted line. If we impose this
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Figure 7.7: Allowed parameter region for the Z ′ portal right-handed neutrino dark matter

scenario. The top-left panel shows the results for the minimal B−L model limit (xH = 0).

The (black) solid line denotes the lower bound on αX obtained from the cosmological

bounds, while the lower dashed line (in red) denotes the upper bound on αX obtained

from the Z ′ boson search results at the LHC. The shaded region is the final result after

combining the cosmological and the LHC constraints, leading to the lower mass bound

of mZ′ ≫ 3.6 TeV. For a comparison, we have also shown the upper long-dashed line

(in red) obtained in [45] by using the LHC results in 2015. The LEP upper bound in

[5, 6] is depicted as the dotted line. We also show the perturbativity bound on αX as the

dashed-dotted line. The top-right, bottom-left, and bottom-right panels are the same as

the top-left panel, but xH = −1, −2, and +1, respectively.
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Figure 7.8: Allowed parameter region for the Z ′ portal right-handed neutrino dark matter

scenario for mZ′ = 4 TeV. The (black) solid line denotes the cosmological lower bound

on αX , while the dashed line (in red) shows the upper bound on αX obtained from the

combined ATLAS and CMS bounds. The shaded region is the final result for the allowed

parameter space after combining the cosmological and the LHC constraints, leading to

the allowed range of −2.1 ≤ xH ≤ 0.3. The LEP bound appears above the plot range.

The dashed-dotted line denotes the theoretical upper bound on αX in (7.3.3).

bound, it provides the most severe upper bound for the range of 4.5 TeV ≲ mZ′ ≲ 5.0

TeV. In Figure 7.7, the top-right, bottom-left, and bottom-right panels are same as the

top-left panel, but xH = −1, −2, and +1, respectively. We find that the largest allowed

region is obtained for xH = −1, while no allowed region has been found for a xH value

outside the range of −2.5 ≤ xH ≤ 1.

Finally, for a fixed mZ′ = 4 TeV, we show the allowed parameter region in Figure

7.8. The (black) solid line denotes the cosmological lower bound on αX . As discussed

in Chapter 3, the minimum αX appears at xH = −0.8. The dashed line (in red) shows

the upper bound on αX obtained from the combined ATLAS and CMS constraints. The

shaded region is the final result for the allowed parameter space after combining the

85



cosmological and the LHC constraints, leading to the allowed range of −2.1 ≤ xH ≤ 0.3.

The LEP upper bound appears above the plot range. The dashed-dotted line denotes the

theoretical upper bound from the perturbativity of the running αX(µ) up to the Planck

scale.

The maximum value of αX to satisfy the LHC bound appears at xH ≃ −1. This means

that the cross section of the Z ′ boson production at the LHC exhibits its minimum at

xH ≃ −1. This fact can be roughly understood by using the narrow width approximation.

When the decay width of the Z ′ boson is very narrow, we approximate (7.3.1) as

σ̂(qq → Z ′ → l+l−) ≃ π

1296
αX2

[
π

mZ′ΓZ′
δ(M2

ll −m2
Z′)

]
Fql(xH)

∝ Fql(xH)

F (xH)
. (7.4.1)

Using the explicit formulas for F (xH) and Fql(xH) given in (7.2.2) and (7.3.2), we can

verify that the function Fql(xH)/F (xH) exhibits a minimum at xH ≃ −1.
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Chapter 8

Conclusions and future plans

8.1 Z ′
B−L portal dark matter in the minimal B − L

extended Standard Model

We have first discussed a simple extension of the SM where the global B−L symmetry in

the SM is promoted to the B−L gauge symmetry. In the minimal version of this extension,

which is the so-called minimal B − L model, we introduce three right-handed neutrinos

with a B − L charge −1 and the B − L (SM singlet) Higgs field with a B − L charge

+2. The three right-handed neutrinos cancel all the gauge and gravitational anomalies

caused by gauging the B − L symmetry. The VEV of the B − L Higgs field breaks the

B − L gauge symmetry and generates the B − L gauge boson (ZB−L) mass but also the

Majorana masses for the right-handed neutrinos. The SM neutrino mass matrix is then

generated after the electroweak symmetry breaking. In order to supplement the minimal

B − L model with a dark matter candidate, we have introduced a Z2 symmetry and one

right-handed neutrino of a unique Z2-odd particle in the model plays the role of the dark

matter. In this way, the minimal B−L model with Z2 symmetry supplements the major

missing pieces of the SM, the neutrino mass matrix and a dark matter candidate, while

the original particle content of the minimal B − L model is kept intact.

In this model context, we have investigated the“Z ′
B−L portal”dark matter scenario,

where the dark matter particle (Z2-odd right-handed neutrino) mainly communicates with

the SM particles through the Z ′
B−L boson. We have only three free parameters in our

analysis, namely, the gauge coupling (αB−L), the dark matter mass (mDM), and the Z ′
B−L

boson mass (mZ′). We have derived the lower bound on αB−L as a function of mZ′ by

using the cosmological bound on the dark matter relic abundance. On the other hand, the
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LHC Run-2 results on the search for a narrow resonance constrain the Z ′
B−L production

cross section at the LHC. We have interpreted the LHC Run-2 results by the ATLAS and

the CMS collaborations and obtained the upper bound on αB−L as a function of mZ′ .

Similar (but weaker) upper bounds on αB−L have been obtained from the results by the

LEP experiment and the perturbativity condition of the running B − L gauge coupling

below the Planck mass. After combining all constraints, we have obtained the allowed

parameter space shown in Figure 6.4. We can see that the cosmological bound and the

collider constraints are complementary for narrowing down the arrowed parameter space:

mZ′ ≥ 2.5 TeV [45].

8.2 Z ′ portal dark matter in the minimal U(1)X ex-

tended Standard Model

Next we have generalized the minimal B − L model to the minimal non-exotic U(1)X

model, which has the same particle content as the B − L model one while extending the

U(1)X charge assignment. In the U(1)X model, the U(1)X charge of a fermion is given by

a linear combination of its hypercharge and B − L charge. The anomaly structure is the

same as the B − L model, and the three right-handed neutrinos cancel all the gauge and

gravitational anomalies. Similarly to the B − L model, the U(1)X gauge boson (Z ′) and

the three right-handed neutrinos acquire their masses when the U(1)X gauge symmetry

is broken. The seesaw mechanism is implemented in this model as well. In order to

supplement the minimal U(1)X model with a dark matter candidate, we have introduced

a Z2 symmetry and one right-handed neutrino of a unique Z2-odd particle in the model

plays the role of the dark matter. In this way, the Z ′
B−L portal dark matter scenario in

the context of the minimal B − L model is now generalized to the U(1)X case.

In this generalized model, we have four free parameters in our analysis, namely, the

U(1)X gauge coupling (αX), the right-handed neutrino dark matter mass (mDM), the Z
′

boson mass (mZ′), and the U(1)X charge of the SM Higgs doublet (xH). We have first

investigated the allowed parameter space to satisfy the cosmological constraint on the

dark matter relic density. It turns out that the dark matter annihilation process must

be enhanced to achieve the observed relic density, and therefore mDM ≃ mZ′/2 is always

required. As a result, our four free parameters are effectively reduced into three. As in
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the Z ′
B−L portal dark matter scenario, once xH is fixed, we can derive the lower bound on

αX as a function of mZ′ by using the cosmological constraint. We have also investigated

the LHC Run-2 constraints on the Z ′ boson production cross section. The LHC Run-2

results by the ATLAS and the CMS collaborations on the search for a narrow resonance

have been interpreted to the constraints on our Z ′ boson case, and the upper bound on αX

as a function of mZ′ has been derived for a fixed xH . We have found a complementarity

between the cosmological bound and the collider constraints for narrowing down the

arrowed parameter space. In the U(1)X model, we have found the lower mass bound as

mZ′ ≥ 2.7 TeV. Similar (but weaker) constraints on the model parameters have also been

obtained from the LEP constraints and the perturbativity condition of 1/αX(Mpl) > 0.

Future LHC experiments will fully cover the current allowed region, and the Z ′ boson of

the minimal U(1)X extended SM might be discovered in the near future.

8.3 Future plans

I have a plan to work on the minimal U(1)X model with alternative U(1)X charge assign-

ment. The U(1)X charge assignment for the right-handed neutrinos is not unique, and

an alternative charge assignment such as −4 for 2 RHNs while +5 for one RHN is known

as another way to make the model anomaly free. This charge assignment is interesting

because the three RHNs are categorized into 2 + 1. Using the difference of charges, the

RHN with +5 charge can be automatically stable. I plan to extend the U(1)X model

I have worked out to this alternative case and investigate the complementarity between

the dark matter physics and the LHC physics. Since the RHNs U(1) charges are big, we

expect an allowed parameter region is quite different from the one I figured out before.

Another interesting feature of the model is that because of the large RHN charge, the Z ′

boson mainly decays into paris of RHNs and this characteristic Z ′ boson decay has an

impact on Z ′ boson search as well as the RHN search at the future LHC experiments.

I plan to investigate baryogenesis via leptogenesis scenario in the context of the U(1)X

model that I have been working on. The parameter space of the model for successful

leptogenesis is expected to be very limited. I plan to examine if the parameter space

overlaps with the allowed region that I have identified from the dark matter physics and

the LHC physics.
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Appendix A

Rephasing of quarks

The mass terms of quarks are given by

Lmass = −M ij
u u

i
Lu

j
R −M ij

d d
i
Ld

j
R +H.c., (A.0.1)

where Mu and Md are 3× 3 complex matrices. Using unitary matrices Uu/d and Vu/d, we

diagonalize Mu and Md,

U †
uMuVu = Du = diag(mu,mc,mt),

U †
dMdVd = Dd = diag(md,ms,mb). (A.0.2)

The eigenvalue mq (q = u, c, t, d, s, and b) are the mass of quark q. Then the mass

eigenstates are given by

u′L = U †
uuL, u′R = V †

uuR,

d′L = U †
ddL, d′R = V †

d dL. (A.0.3)

Under the unitary transformation, the neutral current and the electromagnetic current

are invariant. However, the charged current is changed because of the difference between

an unitary transformation for up-type and down-type.

J−
µ =

g2√
2
(uLγµdL)

=
g2√
2
(u′LγµUd

′
L), (A.0.4)

where U = U †
uUd. In general, a 3 × 3 unitary matrix has nine degrees of freedom (three

angles and six phases) and can be written by

U = P1 UKM P2, (A.0.5)
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where P1 and P2 are given by

P1 = eiαeiβλ3eiγλ8 ,

P2 = eiβ
′λ3eiγ

′λ8 . (A.0.6)

Here, α, β, β′, γ, and γ′ are real constants, and λ3 and λ8 are the Gell-Mann matrices:

λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (A.0.7)

We rewrite the charged current as

J−
µ =

g2√
2
(u′LγµP1UKMP2d

′
L)

=
g2√
2
(u′′LγµUKMd

′′
L), (A.0.8)

with

u′′L = P †
1u

′
L,

d′′L = P2d
′
L. (A.0.9)

In terms of u′′L and d′′L, the mass terms are rewritten as

Lmass = −Dij
u u

′
Lu

′
R −Dij

d d
′
Ld

′
R +H.c.

= −Dij
u u

′′
LP

†
1P1u

′′
R −Dij

d d
′′
LP2P

†
2d

′′
R +H.c.

= −Dij
u u

′′
Lu

′′
R −Dij

d d
′′
Ld

′′
R +H.c. (A.0.10)

In the last line, we have introduced

u′′R = P †
1u

′
R,

d′′R = P2d
′
R. (A.0.11)

Since the neutral current and the electromagnetic current are invariant under the trans-

formations, unphysical phases in P1 and P2 are eliminated. These processes are called

“rephasing.” After the rephasing, only physical parameters (three mixing angles and one

CP phase) are left.
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We can generalize the above discussion to a case with N generation quarks. An N×N
unitary matrix has N2 degrees of freedom (N from diagonal elements and N(N − 1) from

off diagonal elements). The 2N − 1 degrees of freedom are absorbed by the rephasing

of quark fields, as a result, nC2 = N(N − 1)/2 mixing angles and (N − 1)(N − 2)/2

CP -violating phases are left as observables. Note that observable CP phases appear for

N ≤ 3 [61].
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