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Signal transduction is thought to control flexible cellular responses by combining a specific robust 
response with a regulatory ability to interact with multiple signals. Previous biophysical studies have 
proposed that cell behavior be expressed in a multidimensional space with a basin of attractors. 
Alternatively, flow cytometry analysis provides mean fluorescence intensity （MFI） and coefficient of 
variation （CV） in an arbitrary cell population. In terms of the biophysical concept, MFI and CV are 
considered to be the activation energy and cell fluctuations, respectively. In the current study, we 
present a new approach to understand cell signaling pathways associated with cell behavior linking 
the above concepts. To link the biophysical concept and flow cytometry data, we measured the 
phosphorylation levels of signal transducers in a cell and the fluctuation of the phosphorylation level 
in a population of cells. Topologically, the changes in MFI and CV were categorized into five patterns, 
which indicated emergent properties of cell behavior. The novel classification method is a simple 
and effective approach for classifying unknown network systems without using machine learning 
algorithms or ontology analysis.
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Introduction

Life is a complex phenomenon that combines 
plasticity and robustness of molecular and other 
responses. Accordingly, various signaling molecules 
have been identi f ied and complex signal ing 
mechanisms have been investigated to dissect this 
complexity１）. However, in order to understand 
complex systems, it is necessary not only to apply 
the molecular reduction method but also to recognize 
the emergent properties caused by molecular 
organization.

For a comprehensive understanding of complex 
systems, comprehensive （-omics） analyses of various 
hierarchies, such as nucleic acids, proteins, or 
metabolites, have been performed, and many types 

of simulation have been constructed to accommodate 
the amassed data. Recently, transomics, which 
combines the knowledge of signal transduction 
mechanisms and databases of -omics analyses with 
systems biology, has been successfully developed as 
a tool to understand complex systems２），３）. However, 
these -omics approaches are based on the assumption 
that a population of cells behaves in a uniform 
manner.

Although lysis （homogenization） of a cel l 
population is a powerful method for detecting 
the protein-protein interactions, or an increase or 
decrease in levels of a small number of molecules, 
cell population in such experiments is typically 
treated as a single large cell. However, response 
heterogeneity is always a factor in experiments 
that involve biological material; consequently, 
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mathematical induction proof using statistics is used 
to decide a significance. The heterogeneous response 
of a cell population reflects the plasticity of complex 
systems; however, this response is ignored as an 
error caused by undetectable early differences or 
stochastic environmental differences. Therefore, 
to understand a complex system, heterogeneous 
responses of a cell population should be analyzed. 

To overcome problems associated with sample 
analysis by lysis, single-cell analysis methods using 
mass cytometry or next-generation sequencing have 
been developed４）. However, these analysis methods 
also compare based on the amount of increase or 
decrease of arbitrary parameters, and do not deal 
with information on the variance of cell populations. 
When data from single-cell analysis are presented as 
a higher-dimensional space, the data are reproduced 
in a two-dimensional space using statistical methods, 
such as t-distributed stochastic neighbor embedding 

（t-SNE） or uniform manifold approximation and 
projection （UMAP）５），６）. These methods help to 
identify new cell populations, but their novelty 
depends on the number of parameters （number 
of gene types） and the amount of data （number 
of cells）. As the analyzed gene types （or number 
of cells） increases, new cell populations continue 
to emerge. Furthermore, these low-dimensional 
processing by these statistical processing methods 
does not maintain the dispersion of the cell 
population for one parameter. In addition, as far as 
I know, there is no multidimensional analysis using 
the variance of cell signaling in a cell population. 
Diffusion maps and Bayesian approaches are often 
used for cell clustering in single-cell analyses. It is 
perfectly fine to apply diffusion maps and Bayesian 
approaches for force and optical correction of 
physical mechanical events in cells. It is also 
possible to make up for missing data using physical, 
mechanical and statistical methods to classify the 
emergent characteristic behavior of cells as a novel 
population of cells. However, if we assume that the 
emergent properties of the cellular response consist 
of reactions that differ from molecule to molecule, 
such as enzyme substrate specificity, receptor 
specificity, and mRNA stability, this assumption 
contradicts the method of mechanical calculation 

relying on uniform physical dynamics and statistical 
algorithms.

Module analysis using ontology is another 
approach for correcting data variability. However, 
non-verbalized events （events that are unrecognized 
or related to many other events, etc.） are excluded 
from ontology analysis. The ontology analysis is 
used to explain a discovered phenomenon, instead 
of detecting a novel phenomenon. Perhaps it is 
currently not possible to verify the emergent 
properties of cell behavior to understand complex 
systems using single-cell analysis.

Kaneko et al. devised various biophysical theories 
and proposed a model focusing on cell behavior７）－９）. 
They proposed that cell behavior is regulated by 

“attractors” and “basins” in a higher dimensional 
space. In the current study, we focused on cell 
signals as representative phenomena of cell response 
and attempted to establish a method for classifying 
cell behavior based on bio-physical theory using 
flow cytometry （FCM） analysis. We attempted to 
integrate the bio-physical assumptions with FCM 
measurements, which have been shown to be a 
useful tool for verifying the emergent properties of 
cell behavior. These findings will be a simple and 
effective approach for classifying unknown network 
systems.

The biophysical theory is explained as follows. A 
cell receives many signals from the extracellular 
milieu and responds to these signals. According to 
the biophysical theory, the behavior of a cell can be 
expressed in multi-dimensional space X, as shown 
by the X1, 2... k axes in Figure 1a. These X-axes 
are parameters defined by each experimental 
observation. A cell （small ball） freely moves in 
space X. It is attracted to a basin （ψ１ or ψ２） of 
attractors, indicating that it responds to some signals. 
Many attractors in space X perturb cell movement. 
The cell is trapped for a relatively long time by a 
strong attraction （dashed arrow of ψ１, Figure 1a）, 
indicating a robust cell response. However, a weak 
attraction cannot trap the cell for a long time in the 
basin （dashed arrow of ψ２, Figure 1a）, indicating 
that the cell is susceptible to other attractors. 
Therefore, weak attractors possess a large basin 
range and strong attractors possess a small basin 
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range. The basin ranges are fluctuations.
When the basins （ψ１ or ψ２） are observed from 

a suitable axis, they are either seen as valleys or 
mountains （Figure 1b）. The power of attraction 
is represented by the valley depth. Removal to 
another valley requires a significant amount of 
energy, which is considered the height of a mountain. 
This theoretical cell behavior has been proposed 
in previous biophysics studies10）. Furthermore, it is 
evident that the amount of energy is equivalent to 
the level of activated signaling pathways, such as ion 
influx, electron transfer, or protein phosphorylation.

Materials and Methods

Human Peripheral Blood Sampling
All methods were performed in accordance with 

the relevant guidelines and regulations. All healthy 
volunteers signed an informed consent form prior 
to the blood collection. This study was approved 
by the Ethics Committee of Yamagata University 
Faculty of Medicine （Yamagata, Japan; approval 
number: H28-265）. Peripheral blood was collected 
from the brachial vein and heparinized with 5 U/
mL of low-molecular-weight heparin. The average 
age of the volunteers was 47.0 ± 1.6 years （n = 5, 
male）. Following sample collection, the blood was 
immediately transferred into 1.5-mL microtubes and 
used for experiments.

Cell Lines
HL-60 cells were obtained from the JCRB Cell 

Bank of the National Institutes of Bio-medical 
Innovation, Health and Nutrition （Tokyo, Japan）. 
U937 cells were a gift of Prof. N. Ishii （Department of 
Immunology, Tohoku University School of Medicine, 
Sendai, Japan）. These cells were maintained in RPMI 
1640 medium （Sigma-Aldrich, St. Louis, MO）. The 
culture media were supplemented with 10% （v/v） 
heat-inactivated fetal calf serum （Biowest, Nuaillé, 
France）, 50 U/mL penicillin G potassium, and 50 µg/
mL streptomycin sulfate. The cell lines were cultured 
at 37℃ and 5% CO2 in a high-humidity chamber.

Antibodies
The following antibodies were used in the current 

study: Pacific Blue-conjugated anti-human CD3 
mAb （UCHT1）, phycoerythrin （PE）-conjugated 
anti-Bcl-6 mAb （7D1）, and Alexa647-conjugated 
ant i -phosphory lated tyros ine mAb （PY20）, 
from BioLegend （San Diego, CA）; fluorescein 
isothiocyanate （FITC）- or PE-conjugated anti-
human CD14 mAb （MψP9）, Alexa488-conjugated 
anti-pY701-STAT1 mAb （4a）, Alexa488-conjugated 
anti-pY705-STAT3 mAb （4/P-STAT3）, Alexa488-
conjugated anti-pY694-STAT5 mAb （47/Stat5）, 
Alexa647-conjugated anti-pT202/pY204-ERK1/2 mAb 

（20A）, V450-conjugated anti-pS473-Akt mAb （M89-
61）, and Alexa488-conjugated anti-pT180/pY182-
p38MAPK mAb （36/p38）, from BD Biosciences 

（Franklin Lakes, NJ）; PE-conjugated anti-GPI-80 
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Figure 1． Schematic representation of the theoretical relationship between cell behavior and an attractor. A 
cell （gray ball） moves freely in space X. When the cell responds to ψ１ or ψ２, it is attracted to ψ１ or ψ２. 
The trapping of a cell in ψ１ or ψ２ is indicated by whorled arrows. The basin of attraction is reflected in the 
fluctuation of the moving cell. Cell transiting to another basin is indicated by dashed arrows. The attractive 
power of ψ１ is stronger than that of ψ２. （a） Schematic representation of cell behavior in the multiparametric 
space X. （b） Schematic representation of cell behavior considering a single parameter. The basins of attraction 
are presented as valleys and mountains. The attractive powers are presented as the valley depth. These 
diagrams summarized past studies that Kaneko et al. devised various biophysical theories and a model on cell 
behavior ７）－９）.
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mAb （3H9）, from MBL （Nagoya, Japan）; Alexa647-
conjugated or non-conjugated anti-pS536-NF-κBp65 
rabbit mAb （93H1）, from Cell Signaling Technology 

（Beverly, MA）; and Alexa488-conjugated goat anti-
rabbit IgG Ab, from Thermo Fisher （Molecular 
probes, Eugene, OR）. As mouse control mAbs, IgG1 

（MOPC-21） and IgG2a （G155–178） were used, from 
BD Biosciences and BioLegend, respectively.

Cytokines and Stimulants
IFN-α and G-CSF were purchased from Takeda 

Pharmaceutical Co. Ltd （Osaka, Japan） and Chugai 
Pharmaceutical （Tokyo, Japan）, respectively. IL-
21 was purchased from Peprotech （Rocky Hill, NJ）. 
LPS from Escherichia coli O127:B8 and PMA were 
purchased from Sigma-Aldrich. 

Stimulation of Cell Lines and Whole-blood Cells 
Cell stimulation was performed as previously 

reported11）. Briefly, HL60 and U937 cells （2 × 10５ 

cells/mL, 1 mL/tube） were preincubated in 1.5 
mL microtubes for 60 min at 37℃ in RPMI 1640 
containing 10% fetal calf serum. Whole peripheral 
blood cells were transferred into microtubes （0.3 
mL） and preincubated for 20 min at 37℃. After 
the addition of various stimulants, the microtubes 
were immediately vortex-mixed for few seconds and 
incubated at 37℃ in a heat block for the indicated 
times. After stimulation, the cells （1 mL） were 
immediately fixed by the addition of 0.2 mL of 5× 
Lyse/Fix buffer （BD Biosciences） for 10 min at 37℃. 
Whole-blood cells （0.1 mL） were immediately fixed 
by suspending in 1.4 mL of 1× Lyse/Fix buffer （BD 
Biosciences） for 10 min at 37℃. The fixed cells were 
collected by centrifugation at 800 × g for 1 min at 
24℃, and then stored in 90% methanol （0.3 mL） at 
－20℃ until staining with antibodies.

Cell Staining with Antibodies and FCM Analysis
The fixed cells were washed with 0.8 mL of 

phosphate-buffered saline （PBS）, and suspended 
in PBS containing 3% fetal calf serum and 0.1% 
sodium azide. The cells were incubated with each 
antibody for 45 min at 22–25℃ after Fc receptor 
blocking using an Fc blocker （Human TruStain 
FcX, Biolegend）. After the reaction, the cells 

were washed with PBS and analyzed by FCM 
（ec800, Sony, Tokyo, Japan, or FACSCanto II, BD 
Biosciences, as indicated）. Cell debris was excluded 
from the analysis by forward- and side-scatter gating. 
MFI and robust CV were analyzed using FlowJo 
software （version 7.6.5, TreeStar, Ashland, OR）. 
FlowJo software calculates the robust CV using the 
following formula: CV = 100 × 1/2 [（intensity at 
84.13 percentile） – （intensity at 15.87 percentile）] / 
Median. The number of cell events did not affect this 
calculation.

Statistical Analysis
Data are presented as the mean ± standard error 

（SE）. The calculation of standard deviation （SD） 
was used for the classification of “Type 3”. Statistical 
analysis was performed using Prism software 

（version 5.03, GraphPad Software, San Diego, CA）. 
Statistical significance was set at p < 0.05.

Results

FCM Observations Reflect Theoretical Cell Behavior
FCM is useful for measuring antigen expression 

on cells. When cells are stained with a fluorescence-
conjugated antibody raised against a phosphorylated 
molecule from a signaling pathway, FCM analysis can 
be used to define the activation level of the signaling 
pathway per cell. Furthermore, the cell data can be 
used to construct a histogram of activation levels in 
a cell population. Hence, the coefficient of variation 

（CV） of the histogram indicates a fluctuation of each 
data point, corresponding to a basin of an attractor. 
Furthermore, the mean fluorescence intensity （MFI） 
is the same as the mean value of the histogram, 
corresponding to the level of activated signaling 
pathway in a cell cluster.

 In this study, we consider that the variability at 
the initial observation point and the variability at 
any observation point are necessary fluctuations as 
a response of the cell cluster. Therefore, since we 
can only recognize the amount of change compared 
between the two points to be observed, we can only 
recognize the direction of cell behavior between the 
two points. If the changes between these two points 
are classified by MFI and CV, they can be classified 
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as follows. It is generally assumed that the final state 
histograms adapt five topologically distinct patterns 
when compared to the initial state histograms 

（Figure 2a）. In Figure 2a, gray-filled histograms 
represent the initial state of a signaling pathway. 
During response to a signal, the histograms change 
and follow five different patterns: type 1, an increase 
in MFI and decrease in CV; type 2, an increase in 
both MFI and CV; type 3, both MFI and CV remain 
unchanged; type 4, a decrease in MFI and increase in 
CV; and type 5, a decrease in both MFI and CV.

We considered the relative change in the five 
histogram patterns to reflect the five types of cells 
transition （Figure 2b）. An MFI increase compared 
to the initial level （dashed gray line in Figure 2b） 
indicates that the cell receives a significant amount of 

energy to move into another basin. An MFI decrease 
denotes the disappearance of a mountain, meaning 
that the decrease in energy is fused （disappear of 
basin） with another basin. The power of attraction 
is shown as valley depth, which is detected as 
CV. Therefore, type 1 is responsive to a robust 
attractor; type 2 is a response to a weak attractor; 
type 3 is an initial attractor; type 4 is a response to 
weak attractors counteracting the initial attractor; 
and type 5 is a level drop to the ground state. We 
provisionally defined the power of attraction as 
follows: type 1, “attractive”; type 2, “subsequent”; 
type 3, “passive”; type 4, “countering”; and type 5, 

“negative arbiter” （Table 1）. This classification has 
also been proposed in previous reports12），13）.

MFI

CVCVCVCVCV

(a)
Type 1Type 2Type 3Type 4Type 5

increasedecrease

CV CVCV

CVCV

(b)

MFIMFI

MFIMFI

Type 1Type 2

Type 3

Type 4
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Figure 2． Schematic representation of the theoretical relationship between cell behavior and flow cytometry 
（FCM） analysis. （a） Five topological histogram patterns from FCM analysis. The gray-filled histograms and 
open histograms indicate the initial cell status and cell status after receiving a signal, respectively. The latter 
histogram patterns are topologically categorized into five types （types 1–5） based on the increase or decrease 
in mean fluorescence intensity （MFI; gray arrows） combined with an increase or decrease in coefficient 
of variation （CV; range of bars）. （b） Relationship between FCM-analyzed parameters （MFI and CV） and 
theoretical cell behavior. A fluctuation in cells （basin） corresponds to a range of CV, and an amount of energy 
（height of mountain） is equivalent to the value of MFI. The changes in MFI and CV represent five types of 
the cells transition.

Table 1． Hypothetical categorization of cells transition by FCM analysis.

26 
 

Categories Change in MFI/CV Provisional name of cells transition 

Type 1 MFI↑/ CV↓ Attractive 

Type 2 MFI↑/ CV↑ Subsequent 

Type 3 unchanged Passive 

Type 4 MFI↓/ CV↑ Counter 

Type 5 MFI↓/ CV↓ Negative arbiter 

The categories correspond to Fig 2. “↑” or “↓” are indicated as increase or decrease, respectively. 
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Changes in CV Indicate that Differences in Cell Behavior 
are Stimulant-dependent

Previously ,  we measured MFI and CV of 
several phosphorylated signal transducers using 
FCM11），13）. We showed that stimulants or inhibitors 
induce fluctuations in the phosphorylated signal 

（change in CV）, which is related to the level of 
phosphorylation （change in MFI）13）. However, it 
is still unclear whether CV is dependent on the 
character （affinity or specificity） of the antibody 
used the experiments and whether it is regulated by 
the stimulant dose.

To test the effect of the antibody and the 
stimulant dose on CV, HL60 cells were stimulated 
with interferon （IFN） α or granulocyte colony-
st imulating factor （G-CSF）. MFI and CV of 
phosphorylated signal transducer and activator of 
transcription 3 （p-STAT3） in cells were measured 
by one type of specific antibody [anti-phosphorylated 

STAT3 monoclonal antibody （mAb）]. Representative 
FCM data for HL60 cells are shown in Fig. S1a–
c. IFN-α led to increased p-STAT3 MFI, with a 
peak at 30 min （Figure 3a）. Similarly, G-CSF led 
to increased p-STAT3 MFI, with a peak at 10–30 
min （Figure 3a）. The same anti-p-STAT3 mAb was 
used in these experiments. However, G-CSF led to a 
significantly increased p-STAT3 CV, with a peak at 
10 min, while IFN-α did not lead to an increase in 
p-STAT3 CV during the incubation period （Figure 
3b）. These observations indicate that the changing 
CV pattern during cell activation is dependent on the 
stimulant, but not on the char-acter of the antibody 
used.

Next, we investigated whether different cytokine 
concentrations caused different changes in MFI 
and CV. Cells were stimulated with several doses 
of IFN-α （33, 100, or 300 U/mL） or G-CSF （0.33, 
1, or 3 nM） for 10 min. Stimulation with both IFN-
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Figure 3． Changes in MFI and CV after cell stimulation with IFN-α or G-CSF. HL60 cells were stimulated 
with a vehicle （open circle）, IFN-α （closed circle）, or G-CSF （closed triangle）. The cells were stimulated with 
IFN-α （100 U/mL） or G-CSF （1 nM） for 0, 10, 30, and 90 min （a and b）. In another set of experiments, the 
cells were stimulated with various doses of IFN-α （0.3, 33 U/mL; 1, 100 U/mL; 3, 300 U/mL） or G-CSF （0.3, 
0.33 nM; 1, 1, 3, and 3 nM） for 10 min （c and d）. After stimulation, the cells were fixed, permeabilized, and 
stained with Alexa488-conjugated mAb raised against phosphorylated （p） STAT3. The cells were analyzed 
by FCM （ec800）, and MFI （a and c） and CV （b and d） of the resultant histograms determined. Data are 
represented as the mean ± standard error （SE） from three independent experiments. Statistical analysis was 
performed using two-way ANOVA with post-hoc test using Bonferroni’s correction for comparison to the 
vehicle in （a） and （b）, or one-way ANOVA with post-hoc test using Bonferroni’s correction for comparison 
to the dose of 0 in （c） and （d）. *p < 0.05; **p < 0.01; ***p < 0.001. （e and f） Correlations between MFI and 
CV during cell stimulation with IFN-α or G-CSF. HL60 cells were stimulated with a vehicle （open circle; 
e and f）, IFN-α （closed circle; e）, or G-CSF （closed triangle; f）. The cells were analyzed by FCM （ec800）, 
and p-STAT3 MFI （horizontal axis） and p-STAT3 CV （vertical axis） were determined. The data represent 
three independent experiments. The statistical significances of correlation were calculated using Pearson’s 
correlation coefficient （p-value is indicated in each figure）.
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α and G-CSF significantly increased p-STAT3 MFI 
in a dose-dependent manner （Figure 3c）. However, 
IFN-α and G-CSF induced opposite changes in the 
p-STAT3 CV, with IFN-α decreasing p-STAT3 CV 
and G-CSF increasing p-STAT3 CV （Figure 3d）. 
These observations indicated that the direction of 
CV change was dependent on the type of stimulus, 
but not on the stimulant dose, even in the same cell 
line.

Signaling Pathways that Involve Transient Activation Can 
Be Distinguished Based on Correlations Between MFI and 
CV

The activation of a signaling pathway is generally 
transient. Although statistically significant changes 
in both MFI and CV are easily detected at the 
peak of activation, it is unclear whether significant 
changes in both MFI and CV can also be detected 
before or after the peak of activation. Logically, 
when a cell population profile changes from the 
initial state to type 1 histogram, the increase in 
MFI is accompanied by a decrease in CV; and when 
a cell population profile changes from the initial 
state to type 2 histogram, the increase in MFI is 
accompanied by an increase in CV. Consequently, 
a negative correlation between MFI and CV is 
detected for type 1 （attractive） and a positive 
correlation between MFI and CV is detected in 
type 2 （subsequent）. Therefore, it is possible that 
transient and simple activation may be detected 
based on the correlation between MFI and CV, 
independent of the observation time. 

To test these possibilities, the correlation between 
MFI and CV was analyzed. We observed that 
p-STAT3 MFI in cells stimulated with IFN-α or 
G-CSF transiently increased （Figure 3a）. IFN-α 
exposure slightly decreased CV, with a negative 
correlation between p-STAT3 MFI and CV （Figure 
3e）. G-CSF exposure led to a transient increase in 
CV, with a positive correlation between p-STAT3 
MFI and CV （Figure 3f）. These analyses provide 
evidence that a signaling pathway involving transient 
and simple activation can be distinguished based on 
the correlation between MFI and CV. Hence, at any 
time point or during the sum of time points, type 1 

（attractive） exhibits a negative correlation between 

MFI and CV, while type 2 （subsequent） exhibits a 
positive correlation between these parameters.

Because types 4 and 5 are mirror images of 
types 2 and 1, respectively, the positive or negative 
correlations can also be applied to transient 
deactivation （i.e., temporal decrease in MFI） to 
type 4 （countering） or type 5 （negative arbiter）, 
respectively. 

Signaling Pathways with Oscillating Activation Can Be 
Recognized by Persistence of Type 2 （Subsequent） Without 
a Positive Correlation Between MFI and CV

Activation of nuclear factor （NF）-κB is controlled 
in an oscillatory manner to regulate its biological 
function14）. We asked if this oscillating-activation 
signaling pathway can be recognized using FCM. It 
is known that the level of NF-κB activation in the 
early phase （t１） is higher than that in the late phase 

（t２） of response （Figure 4a）. Thus, the oscillation 
pattern indicates that cell movement from the initial 
basin （ψ０） to another basin （ψ１） will occur in the 
early phase （t１） but not in the late phase （t２）, as 
shown in the conceptual schema in Figure 4b. If the 
oscillation is highly synchronized in a cell population, 
the oscillation signal should be simply detected as 
oscillatory changes in MFI with-out changes in CV. 
However, oscillatory changes are not generally 
synchronized in a cell population. Therefore, the 
amplitudes should be accompanied by an increase 
in CV （Figure 4b）, indicating that the persistence 
of oscillation should be recognized as an increase in 
CV compared to the initial CV status （t０ vs. t１ or t２; 
Figure 4b）. Furthermore, the amplitudes in the late 
phase are smaller than the amplitudes in the early 
phase （Figure 4a）, indicating that MFI in the late 
phase should be lower than that in the early phase 

（t１ vs. t２; Figure 4b）. In summary, the oscillation 
signal is detected as the persistence of an increase in 
both MFI and CV （type 2）, with a decrease in MFI 
in the late phase.

To  ver i fy  th i s  hypothes i s ,  the  l eve l s  o f 
phosphorylated p65 NF-κB （p-p65 NF-κB） MFI 
and p-p65 NF-κB CV were determined in U937 cells 
stimulated by phorbol myristate acetate （PMA）. 
Representative FCM data for U937 cells are shown 
in Figure S1d–f. The in-crease in p-p65 NF-κB MFI 
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stimulated by PMA was accompanied by an increase 
in p-p65 NF-κB CV in the early phase （t０ compared 
to t１; Figure 4c, d）. After the early phase, the 
levels of p-p65 NF-κB MFI decreased significantly 
depending on the time point in the late phase （t１ 
compared to t２; Figure 4c）. Similarly, p-p65 NF-κB 
CV decreased in the late phase, but not significantly 

（t１ compared to t２; Figure 4d）. These changes in 
MFI and CV were categorized as follows: the change 
between t０ and t１ was an increase in both MFI and 
CV, indicating a typical type 2 pattern （subsequent）; 
the change between t１ and t２ was a decrease in 
MFI; and the change between t０ and t２ was an 
increase in both MFI and CV, which was type 2 
pattern （subsequent）. Overall, the oscillation signal 
was recognized as an increase in both MFI and 
CV, representing type 2 （subsequent）. During the 
entire observation period from t０ to t２, no correlation 
between MFI and CV was apparent （Figure 4e） 

because type 2 and type 4/5 （an intermediate 
between countering and a negative arbiter） were 
mixed in the time point. These observations indicate 
that the categorization using FCM can be used to 
class the oscillating signaling pathway as “type 2 and 
no correlation”. 

Homeostatic extracellular signal-regulated kinase 1/2 
（ERK1/2） Pathway is a Special Type 3 （Passive） Pattern 

with a Constant Negative Correlation Between MFI and CV
Type 3 （passive） belongs to a category in which 

the stimulatory and initial states are not significantly 
different （Figure 2, Table 1）. Previously, we reported 
a negative correlation between phosphorylated 
ERK1/2 （p-ERK1/2） MFI and p-ERK1/2 CV in 
Jurkat cells, without significant changes in either 
MFI or CV13）.

In the current study, we measured p-ERK1/2 
levels in human neutrophils and T cells in whole 
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Figure 4． Analysis of the oscillatory signal of nuclear factor （NF）-κB using flow cytometry （FCM）. 
（a） Schematic representation of oscillatory NF-κB activation according to a previous report [14]. 
After stimulation, NF-κB is quickly activated from the initial status （t０） in the early phase （t１）.  
The activation gradually decreases in the late phase （t２）. （b） Schematic representation of the 
relationship between oscillatory cell behavior and FCM analysis （MFI and CV）. The transition of 
a phosphorylated （signaling） cell into an oscillatory basin （ψ１, t１） from the initial basin （ψ０, t０）  
in the early phase is indicated by dashed arrows. The amplitudes in the oscillatory basin （ψ１） decrease 
depending on the level of phosphorylation in the late phase （t２）. （c and d） Changes in phosphorylated p65 NF-
κB （p-p65 NF-κB） levels in activated U937 cells. The cells （2 × 10５ cells/mL） were stimulated with PMA 

（100 ng/mL） for 15, 30, 60, 90, and 120 min. After stimulation, the cells were fixed, permeabilized, and stained 
with rabbit anti-p-p65 NF-κB mAb and Alexa488-conjugated goat anti-rabbit polyclonal Ab. The cells were 
analyzed by FCM （ec800）, and changes in p-p65 NF-κB MFI （c） and p-p65 NF-κB CV （d） were determined. 
Statistical significance was calculated by one-way ANOVA with post-hoc by Tukey’s test （n = 3）, *p < 0.05, 
**p < 0.01, compared to 0 min; #p < 0.05, ##p < 0.01, compared to 15 min; †p < 0.05, compared to 30 min. 
There was no significant difference among the other pairs （not indicated）. （e） Correlations between p-p65 
NF-κB MFI and p-p65 NF-κB CV. The statistical significance of correlations was calculated with Pearson’s 
correlation coefficient （not significant, ns）.
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Figure S1． Representative gating strategy for HL60 cells and U937 cells. HL60 cells （a–c） were analyzed by 
flow cytometry （ec800）. （a） Gating for the exclusion of cell debris and aggregated cells （FS-Lin vs. SS-Lin）. 
The gated cell population is presented on the histograms for phosphorylated signal transducer and activator 
of transcription 3 （p-STAT3） data, as p-STAT3 （horizontal axis） in （b） and （c）. The gray-filled histograms 
represent the initial state of the cells （0 min）, and the open black histograms in （b） and （c） indicate cells 
stimulated for 10 min with 300 U/mL interferon （IFN）-α or 3 nM granulocyte colony-stimulating factor 

（G-CSF）, respectively. U937 cells （d–f） were also analyzed by flow cytometry （ec800）. （d） Gating for the 
exclusion of cell debris and aggregated cells （FS-Lin vs. SS-Lin）. The gated cell population is presented on the 
histograms for phosphorylated p65NF-κB （p-p65NF-κB） data, as p-p65NF-κB （horizontal axis） in （e） and 

（f）. The gray-filled histograms represent the initial state of the cells （0 min）, and the open black histograms 
in （e） and （f） indicate cells stimulated with 100 ng/mL phorbol myristate acetate （PMA） for 30 min or 120 
min, respectively. The raw data （mean fluorescence intensity, MFI; and robust coefficient of variation, CV） are 
presented in the rectangle on the right side of each histogram.

peripheral blood stimulated with various cytokines, 
such as IFN-α, interleukin （IL） 21, and G-CSF, alone 
or in combination, to confirm the negative correlation. 
Although IFN-α and IL-21 primarily activate STAT3 
pathways, these cytokines simultaneously activate 
the ERK pathway in various cell types15），16）. G-CSF 
also primarily activates STAT3 and concomitantly 
activates the ERK pathway in myeloid cells17）. 
Whole blood was stimulated with these cytokines, 
and p-ERK1/2 levels were analyzed in GPI-80+ 
cells （neutrophils）. Representative FCM data for 
T cells and neutrophils in the peripheral blood are 
shown in Figure S2. The various stimulations and 
cytokine combinations tested did not significantly 
change either MFI or CV of p-ERK1/2 in neutrophils 

（Figure 5a, b） and T cells （Figure S3a, b）. These 
observations indicate that the ERK1/2 pathway in 

both T cells and neutrophils is a type 3 （passive） 
pathway under all conditions tested. Interestingly, 
these analyses revealed a significantly negative 
correlation between p-ERK1/2 MFI and p-ERK1/2 
CV （Figure 5c and Figure S3c）. The negative 
correlation without a significant increase in MFI 
indicated the existence of persistently controlled 
signals without an increase in the moving energy. 
The ERK pathway, which plays a crucial role in cell 
survival, induces asynchronous pulses of varying 
frequencies and durations18），19）. Hence, the negative 
correlation without an MFI increase may indicate 
cell survival signals, i.e., “homeostatic” ERK pathway.

To verify that type 3 （passive） pathway with 
a negative correlation is the homeostatic ERK 
pathway, we compared the emergent response via 
the ERK pathway, i.e., an inflammatory response 
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Figure S2． Representative gating strategy for human T cells and neutrophils. Whole-blood cell samples were 
analyzed by flow cytometry （FACSCanto II）. （a） Gating for the exclusion of erythrocytes and cell ghosts 

（FSC-H vs. FSC-W）. （b） After the step described in （a）, the gated cells were re-gated according to SSC-H 
vs. SSC-W. Gating for the exclusion of cell debris and aggregated cells is also shown here. （c） Gating for the 
selection of CD3＋ T cells or GPI-80+ neutrophils （CD3 vs. GPI-80）. The T-cell or neutrophil populations are 
presented on the histograms for phosphorylated extracellular signal-regulated kinase 1/2 （p-ERK1/2） data, 
as p-ERK1/2 （horizontal axis） in （d） and （e）, respectively. The gray-filled histograms are the initial state 

（vehicle） of p-ERK1/2, and the open black histograms indicate cells stimulated with 100 U/mL IFN-α + 1 nM 
interleukin （IL）-21 + 1 nM G-CSF for 30 min. The open black histograms almost overlap with the gray-filled 
histograms in both （d） and （e）.
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Figure S3． Analysis of the homeostatic ERK pathway in T cells. Human peripheral blood cells were 
stimulated with IFN-α （100 U/mL）, IL-21 （1 nM）, or G-CSF （1 nM）, or a combination of these cytokines for 
30 min. After stimulation, the cells were fixed, permeabilized, and stained with Pacific Blue-conjugated anti-
human CD3 mAb and Alexa647-conjugated anti-phosphorylated ERK1/2 mAb. The cells were analyzed by 
flow cytometry （FACSCanto II）. CD3＋ cells were gated for T-cell analysis （a–c）. MFI （a） and CV （b） of 
phosphorylated ERK1/2 （p-ERK1/2） were analyzed. Data were obtained from four independent experiments, 
and statistical significance was calculated using one-way ANOVA （not significant, ns）. （c） Correlation between 
MFI and CV. The statistical significance of the correlation was calculated using the Pearson’s correlation 
coefficient （p < 0.0001）.

induced by lipopolysaccharide （LPS）20），21）. Whole 
blood was stimulated with LPS, and p-ERK1/2 levels 
were analyzed in CD14＋ monocytes. Representative 
FCM data for monocytes in the peripheral blood 
are shown in Figure S4. Both p-ERK1/2 MFI and 
p-ERK1/2 CV increased significantly after LPS 
stimulation, that is, indicating type 2 （subsequent） 

（Figure 5d）. Furthermore, the correlation be-tween 
p-ERK1/2 MFI and p-ERK1/2 CV was not detected 

（Figure 5e）, suggesting that the “subsequent 
and no correlation” pattern showed oscillatory 
activation similar to the NF-κB pathway in U937 
cells stimulated with PMA （Figure 4e）. The ERK 
pathway is an oscillating signaling pathway22）. 
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These observations indicate that the behavior of the 
ERK pathway shows two different signaling types, 
oscillating type 2 and homeostatic type 3, depending 
on the stimulant and cell type. 

Detection of Regulatory and Robust Signaling Pathways
The network of signaling pathways consists of 

many signaling modules. These signaling modules act 
either coordinately or independently. The interaction 
of these modules is considered to induce various 
plasticity responses１）. We asked whether the FCM-
based categorization could be useful for detecting 
coordinate modules （regulatory signaling pathways） 
or independent modules （robustness signaling 
pathways）. 

Theoretically, robustness is a small basin and 
perturbed fluctuation is a large basin （Figure 1）, 
indicating that robust or regulatory pathways fall 
into types 1 or 2, respectively. Previously, it was 
demonstrated that the phosphatidylinositol 3-kinase-
Akt pathway limits LPS activation of signaling 
pathways （i.e., MAPK/ERK pathway） in human 

monocytes23）. Therefore, we speculated that the Akt 
pathway is a robust signaling pathway, and that the 
MAPK/ERK pathway, which is regulated by the 
Akt pathway, is a perturbed regulatory signaling 
pathway.

To verify the correspondence between changes 
in CV and the above types of signaling pathways, 
phosphorylation of Akt and p38 MAPK in monocytes 
was analyzed using FCM （Figure 6）. Following 
LPS stimulation, changes in phosphorylated p38 
MAPK （p-p38MAPK） indicated type 2 （subsequent） 
pattern, which is a category with an increase in both 
MFI and CV, similar to that observed for p-ERK1/2 

（Figure 5c and Figure 6a）. Phosphorylated Akt 
（p-Akt） was categorized as type 1 （attractive）, 
which is a category with an increase in MFI and 
a decrease in CV （Figure 6b）. These observations 
suggest that the initial hypothesis was consistent 
with previous observations of LPS signaling modules.

Further, we analyzed total phosphorylated tyrosine 
（p-tyrosine） levels in monocytes. Conceptually, an 
increase in module interaction can be detected as the 

Figure S4． Representative gating strategy for human monocytes. Whole-blood cell samples were analyzed by 
flow cytometry （FACSCanto II）. To exclude erythrocytes, cell ghosts, cell debris, and aggregated cells, gating 
was performed as shown in Figure S2. The CD14 vs. CD3 （a） and CD14 vs. AmCyan background staining （b） 
panels show gating for the selection of monocytes. The monocyte population is presented on the histograms 
for phosphorylated ERK1/2 （p-ERK1/2） （c）, phosphorylated tyrosine （p-Y） （d）, phosphorylated Akt （p-Akt） 

（e）, or phosphorylated p38MAPK （p-p38MAPK） （f）. The gray-filled histograms represent cells treated with a 
vehicle [lipopolysaccharide （LPS） （–）] for 30 min, and the open black histograms indicate cells stimulated with 
LPS [LPS（+）] for 30 min. The raw data for each histogram （MFI and CV） are presented in a rectangle on the 
right side of each histogram.
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Figure 5． Analysis of the homeostatic and emergent ERK pathway using FCM in human 
peripheral blood. （a–c） Human peripheral blood cells were stimulated with IFN-α （100 U/mL）, IL-
21 （1 nM）, G-CSF （1 nM）, or a combination of these cytokines for 30 min. After stimulation, the 
cells were fixed, permeabilized, and stained with PE-conjugated anti-GPI-80 mAb, and Alexa647-
conjugated anti-phosphorylated ERK1/2 mAb. The cells were analyzed by FCM （FACSCanto II）. 
GPI-80+ cells were gated as neutrophils, and phosphorylated ERK1/2 （p-ERK1/2） signals were 
analyzed. The MFI and CV values of neutrophils are shown in （a） and （b）, respectively. Data 
were obtained from four independent experiments, and the statistical significance was calculated 
by one-way ANOVA （not significant, ns）. （c） Correlation between MFI and CV. The statistical 
significance of the correlation was calculated with Pearson’s correlation coefficient （p < 0.0001）. 

（d,e） Human peripheral blood cells were stimulated （+） or not （－ ） with LPS （1µg/mL） for 30 
min. After the stimulation, the cells were fixed, permeabilized, and stained with FITC-conjugated 
anti-human CD14 mAb and Alexa647-conjugated anti-phosphorylated ERK1/2 （p-ERK1/2） mAb. （d） 
MFI and CV of phosphorylated ERK1/2 （p-ERK1/2） in gated CD14+ monocytes, determined by 
FCM （FACSCanto II）. Data were obtained from four independent experiments, and the statistical 
significance was calculated by Wilcoxon signed-ranks test, ***p < 0.001 compared to LPS （－）. （e） 
Correlation between MFI and CV. Data were obtained from four independent experiments, and the 
statistical significance was calculated by Pearson’s correlation coefficient （not significant, ns）.
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Figure 6． Analysis of regulatory and robust signaling pathways in monocytes using FCM. Human 
peripheral blood cells were stimulated （+） or not （－） with LPS （1µg/mL） for 30 min. After 
stimulation, the cells were fixed, permeabilized, and stained with PE-conjugated anti-CD14 mAb, 
Alexa488-conjugated anti-phosphorylated p38 MAPK （p-p38MAPK） mAb, V450-conjugates anti-
phosphorylated Akt （p-Akt） mAb, and Alexa647-conjugated anti-phosphorylated tyrosine （p-Y） 
mAb. MFI and CV of p-p38MAPK （a）, p-Akt （b）, or p-Y （c） in gated CD14＋ monocytes were 
determined using FCM （FACSCanto II）. Data were obtained from four independent experiments, 
and statistical significance was calculated using the Wilcoxon signed-rank test, *p < 0.05; **p < 0.01; 
***p < 0.001 compared to LPS （－）.
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appearance of several basins around the initial basin 
or a decrease in the height of the mountain （fusion 
of basins）. Many signal modules involve p-tyrosine, 
and the interaction between these modules would 
increase during the emergent response, such as 
stimulation with LPS. Therefore, we examined 
whether p-tyrosine CV increased upon interaction 
of LPS-induced signal modules in monocytes. The 
total p-tyrosine levels （p-tyrosine MFI） were not 
significantly altered when monocytes in peripheral 
blood were stimulated with LPS （Figure 6c）. This 
outcome was reasonable because p-tyrosine MFI 
represents the sum of many types of signal modules 
containing phosphorylated and dephosphorylated 
tyrosine. However, p-tyrosine CV increased 
significantly （Figure 6c）. These observations 
demonstrate that the increase in CV is adaptable to 
the increase in signal module interaction.

Simple Mathematical Modeling of Cell Behavior Using CV 
and MFI

Currently, protein expression, transcription 
factor activation, mRNA expression, molecular 
con jugat ion ,  enzyme act ivat ion ,  ox idat ion , 
intracellular calcium, pH, active oxygen production, 
cell division, and phagocytosis can be measured 

as a fluorescence change. Further, not only the 
behavior of intracellular molecules but also highly 
hierarchical cell functions, such as the ability to 
generate reactive oxygen species, cell division, 
phagocytic ability, and respiratory metabolism 
can be measured as fluorescence fluctuations. By 
measuring the fluorescence change using FCM, the 
MFI and CV values can be easily determined for 
various phenomena. Therefore, we attempted to 
apply the above MFI and CV classification to various 
phenomena by mathematical modeling, as follows.

When an event is observed, it is denoted as a 
parameter change （P）. In the case of FCM analysis, 
P can be represented by the MFI change. Therefore, 
P can be determined by subtracting the control 

（initial） value （c） from the tested value （t）. That is,

1 
 

 

 P = MFIt – MFIc.

 ψ = CVc – CVt.

 SD of P = ���������������������
���  and SD of ψ = ������������������������

��� .

 D = |���������� � �����������| � �����������.

 W = |������� � ��������| � ��������.

 Ep = ψ* W * | P | * D.

 

In the current study, based on the concepts of 
biophysics （Figure 1）, we assumed that the cell 
behavior deviates from the initial attractor and 
is captured by another attractor. When an event 
occurs, the size of the basin changes （ψ）. Therefore, 
ψ can be determined by subtracting the tested value 

（t） from the control （initial） value （c）. That is,

ψ (CVc ‐ CVt ) 
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Figure 7． Representation of cell behavior on a P – ψ graph. The increase and decrease in energy, 
and contraction and fluctuation of deviation are shown. The horizontal axis is P （P = MFIt – MFIc）, 
and the vertical axis is ψ （ψ = CVc – CVt）. The five main categories are indicated for each 
referring to a pattern type. “Type 3, Passive” range is shown as standard deviation （SD） of MFIc 
and SD of CVc （light blue area）. The six separations of type 3 are indicated by dashed arrows.
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1 
 

 

 P = MFIt – MFIc.

 ψ = CVc – CVt.

 SD of P = ���������������������
���  and SD of ψ = ������������������������

��� .

 D = |���������� � �����������| � �����������.

 W = |������� � ��������| � ��������.

 Ep = ψ* W * | P | * D.

Herein, the elements of cell behavior were classified 
as shown in Table 1. The classification can be 
visually presented as a P – ψ graph, with P on the 
horizontal axis and ψ on the vertical axis （Figure 7）.

When an event cannot stochastically deviate from 
fluctuations in the control （initial） values （MFI c  

and CV c）, it is classified as type 3 （passive）. For 
convenience, the standard deviation （SD） of the 
average value of each repeated measurement （i = 
1, 2,…, n） of MFI c or CV c, subtracted from each 
control value （ci） is represented on the P – ψ graph. 
That is,

1 
 

 

 P = MFIt – MFIc.

 ψ = CVc – CVt.

 SD of P = ���������������������
���  and SD of ψ = ������������������������

��� .

 D = |���������� � �����������| � �����������.

 W = |������� � ��������| � ��������.

 Ep = ψ* W * | P | * D.

The results of IFN-α and G-CSF stimulation of 
HL60 cells （Figure 3） can be presented as the P – ψ 
graph shown in Figure 8a. STAT3 phosphorylation 
by IFN-α stimulation is type 1 （attractive） class, 
and STAT3 phosphorylation upon G-CSF stimulation 
is type 2 （subsequent）. In addition, there is an outlier 

（zi） in the repeated measurements. It may have been 

perturbed by a different, unexpected, attractor. The 
outlier is usually ignored because it is considered an 
experimental error. However, if zi changes the P – 
ψ graph classification, this indicates the existence 
of a different attractor related to the regulatory 
perturbation from the perspective of the biophysical 
theory. 

The problem of occurrence （existence） of 
biological events is described below. The occurrence 
is problematic because of the infinite number of 
observation points. Infinite observation points exist 
not only for elapsed-time observation, but also at 
various infinite observation points, such as the 
concentration gradient and the expression level 
of various molecules. Because the experimental 
measurement system compares the observation 
points arbitrarily set from the infinite observation 
points with other arbitrary observation points, the 
event is recognized infinitely, depending on the 
observation point. Infinite existence is a limitation 
of philosophical recognition. As long as only the 
increase or decrease of P is measured, and the 
analysis becomes increasingly high-dimensional, the 
infinite existence continuously increases and cannot 
be proven.

Figure 8． Simple mathematical modeling of cell behavior using CV and MFI and the P – ψ graph. 
（a） P – ψ graph constructed using data for HL60 cells shown in Figure 3. （b, c） P – ψ graph 
constructed using the data for U937 cells shown in Figure 4. （b） Observation from the time point 
t0 （the difference compared to t0）. （c） Observation from the time point t0 or t15 （the difference 
between t0 and t15）. （d） P – ψ graph constructed using data for peripheral blood monocytes 
shown in Figures 5 and 6. The values of P and ψ in （d） were adjusted by “（d, W） ratio”, and are 
presented in （e）.
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Alternatively, the P – ψ graph classification 
can indicate the occurrence of an event. When the 
fluctuation of a cell population converges （ψ is 
increased, and ψ > 0）, it indicates an attraction. For 
example, NF-κB activation was classified as a type 2 

（subsequent） pattern at 15–30 min and 90–120 min, 
compared to 0 min. The observation point cannot 
be ruled out as an infinite event because the type 2 
pattern corresponds to a continuous increase in P 
and a continuous decrease in ψ. However, when 15 
min was used as a control point, 90 to 120 min time 
points were classified as negative arbiters, which is 
a robust phenomenon （Figure 8b, c）. In other words, 
P and ψ changed discontinuously, and ψ increased 
after 15 min. An event exists when we can find an 
observation perspective where ψ > 0.

When comparing multiple events （P1，2，…，k） by 
showing them on the same graph, it is difficult to 
compare the MFI and CV values. For instance, 
the measurement sensitivity is different for each 
antibody. Therefore, it is necessary to correct MFI 
and CV for each k type of measurement conditions. 
How can k multiple events （P  k） be compared 
simultaneously? In the current study, we propose 
the following correction method: If it is assumed that 
the same stimuli （energy） are given to Pk, and if 
MFI t and CV t are significantly different from MFI c 
and CV c, in other words, if they are not classified as 
type 3 （passive）, the following formula can be used 
to adjust the values of MFI and CV. The distance 

（D） difference between the average MFI c and the 
average MFI c is adjusted by the absolute value of P 
per average MFI c. That is,

1 
 

 

 P = MFIt – MFIc.

 ψ = CVc – CVt.

 SD of P = ���������������������
���  and SD of ψ = ������������������������

��� .

 D = |���������� � �����������| � �����������.

 W = |������� � ��������| � ��������.

 Ep = ψ* W * | P | * D.

Similarly, the wide （W） histogram difference 
between the average CV t and average CV t is 
corrected by the absolute value of ψ per average 
CV c. That is, 

1 
 

 

 P = MFIt – MFIc.

 ψ = CVc – CVt.

 SD of P = ���������������������
���  and SD of ψ = ������������������������

��� .

 D = |���������� � �����������| � �����������.

 W = |������� � ��������| � ��������.

 Ep = ψ* W * | P | * D.

This is based on the premise that the given energies 
are the same. Thus, the correction is made on the 
premise that the ratio of the fluctuation difference 

of the experimental group to the control group 
occurs to the same extent. An example of such an 
observational situation is the experiment in which 
we evaluated multiple signal transduction systems 
during LPS stimulation, as shown in Figures 5d and 6.

The drawback of this correction method is that if 
there is not statistically significantly different from 
the control group （in the case of type 3, passive, 
pattern）, the correction will be excessive and, 
therefore, cannot be applied. In the current study, 
the D value was in the range of 0.1 to 1.5, and the 
W value was in the range of 0.01 to 0.2. MFI and 
CV of p-ERK1/2, p-p38MAPK, and p-Akt during 
LPS stimulation were significantly different from 
those in the control group; thus, P and ψ were 
corrected using D and W, respectively. Figure 8d 
shows the result before the correction and Figure 8e 
shows the result after the correction. The P-value of 
p-tyrosine indicated type 3 （passive） and could not 
be corrected.

Finally, we propose an emergent property score 
（Ep） as a method for evaluating emergent cellular 
responses, rather than classifying them into two-
dimensional visual graphs. The Ep score is used as a 
guide for a cross-sectional comparison of observation 
events. Specifically, it is effective when a comparison 
of experimental systems in which stimulants are 
mixed is desired, such as when examining synergistic 
and/or additive effects. It is also useful for verifying 
the observation viewpoint, such as the oscillation 
signal. Further, it may be useful for assessing 
emergent cell responses when the antibodies used 
are the same in different experiments but the 
measuring instruments are different, although further 
study is needed to verify this. Ep is expressed as a 
continuous variable by integrating the absolute value 
of P with ψ. This has been corrected using both D 
and W. That is,

1 
 

 

 P = MFIt – MFIc.

 ψ = CVc – CVt.

 SD of P = ���������������������
���  and SD of ψ = ������������������������

��� .

 D = |���������� � �����������| � �����������.

 W = |������� � ��������| � ��������.

 Ep = ψ* W * | P | * D.

Table 2 shows the Ep scores for the results 
obtained in the current study. Accordingly, Ep > 
0 suggests that a parameter is robust （forms a 
hierarchy） and is involved in the characteristic 
events caused by the stimulant; and Ep < 0 suggests 
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that the parameters are involved in the induction 
of other events or amplifying events caused by the 
stimulant. As an example, neutrophil stimulation 
with a mixture of IL-21 and LPS induced Ep > 0, 
while stimulation with IL-21 or LPS alone led to Ep 
< 0. It can hence be inferred that Akt and STAT3 
may cooperate to induce characteristic events in 
neutrophils.

Discussion

In the current study, we proposed that cell 
response to signals might follow five patterns, 
determined by the measurement of MFI and CV 

values. A robust signaling pathway is recognized 
as a relative decrease in CV; hence, it is classed as 
“attractive” or “negative arbiter”. A regulatory 
signal, which involves a relative increase in CV, 
is classed as “subsequent” and “countering”. 
In addition, during the observation period of cell 
activation in the case of one-way signal activation 

（Figure 3）, MFI and CV show a positive or 
negative correlation. Oscillating signaling pathways 
are composed of a “subsequent” pattern, and an 
intermediate pattern between “countering” and 

“negative arbiter” （Figure 4）. A homeostatic 
signaling pathway is an oscillatory pathway between 

“passive” and “countering” patterns and is hence 

Table 2． Emergent properties (Ep) score in various measurements.

27 
 

cell  stimulants control parameter Ep score1

HL60 (ec800) 2   
IFN-α, 100 U/mL, 30 min 0 min p-STAT3 730

G-CSF, 1 nM, 30 min 0 min p-STAT3 -10,761

U937 (ec800) 2   
PMA, 100 ng/mL, 15 min 0 min p-p65NF-κB -1,549
PMA, 100 ng/mL, 120 min 15 min p-p65NF-κB 844

Monocytes in peripheral blood (FACSCanto II) 2  
LPS, 1 μg/mL, 30 min Vehicle, 30 min p-ERK1/2 -10,761

LPS, 1 μg/mL, 30 min Vehicle, 30 min p-38MAPK -11,214

LPS, 1 μg/mL, 30 min Vehicle, 30 min p-Akt 8,095

Neutrophils in peripheral blood (FACSCanto II) 2  
IL-21, 1 nM, 30 min Vehicle, 30 min p-STAT3 -4398

LPS, 1 μg/mL, 30 min Vehicle, 30 min p-STAT3 -891
IL-21 + LPS, 30 min Vehicle, 30 min p-STAT3 -675

IL-21, 1 nM, 30 min Vehicle, 30 min p-Akt -13
LPS, 1 μg/mL, 30 min Vehicle, 30 min p-Ak 1,128
IL-21 + LPS, 30 min Vehicle, 30 min p-Ak 13,961

T cells in peripheral blood (FACSCanto II) 2  
IL-21, 1 nM, 30 min Vehicle, 30 min p-STAT3 50,153

LPS, 1 μg/mL, 30 min Vehicle, 30 min p-STAT3 -71
IL-21 + LPS, 30 min Vehicle, 30 min p-STAT3 51,600

IL-21, 1 nM, 30 min Vehicle, 30 min p-Akt -46
LPS, 1 μg/mL, 30 min Vehicle, 30 min p-Ak 0
IL-21 + LPS, 30 min Vehicle, 30 min p-Ak -3

1When the event was not classified to Type 3 (Passive), Ep score were calculated using following 
formula:   

Ep = ψ * W * | Pt | * D; D = |���������� � �����������| � �����������; W = |������� � ��������| � ��������  
2The apparatus of flow cytometry for measurements are indicated in parentheses. 
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observed as “passive”, with a correlation between 
MFI and CV （Figure 5）. 

The theoretical hypothesis in this study needs to 
be verified. We are looking for a suitable verification 
method. As one of the verifications, we measured 
STAT1 and NF-κB in T cell differentiation. It is 
known that STAT1 is important a signal for inducing 
differentiation of T cells into Th1 （T-bet positive 
cells）24）. Therefore, we compared the MFI and CV of 
pSTAT1 and p-p65NF-κB in cells differentiated into 
Th1 （supplemental Figure S5）. As a result, pSTAT1 

was Type 1 and p-p5NF-κB was Type 3. And the 
Ep of STAT1 was as high as 40,930. This result is 
one of the verifications for the theoretical hypothesis. 
I would like to repeat this kind of verification in the 
future. 

In addition, if we can compare data in this study 
with some kind of “Gold Standard”, the theoretical 
hypothesis will be validated. However, we have 
not been able to find a database of algorithms and 
ontology analysis that focuses on the fluctuation of 
phosphorylation signals. In the future, we would like 

Figure S5. Analysis of STAT1 and NF-κB signaling pathways in Th0 and Th1 cells. 
Splenocytes were stimulated with ovalbumin (OVA) for 7 days. After the stimulations (random and 
spontaneous T cell differentiation), the cells were fixed/permeabilized and stained with mAbs (V450-
conjugated anti-mouse CD3 mAb, PE-Cy7-conjugated anti-mouse CD4 mAb, Alexa488-conjugated 
pSTAT1 mAb, Alexa647-conjugated p-p65 NF-κB mAb, and PE-conjugated anti-T-bet mAb or a mixture 
of PE-conjugated anti-T-bet mAb, anti-GATA3 mAb, anti-RORγt mAb, and anti-Bcl-6 mAb). The cells 
were analyzed by FCM (FACSCanto II). Th0 cell subset was gated as T-bet− GATA3− RORγt− Bcl-6− in 
CD3+CD4+ cells (open circle), and Th1 cell subset was gated as T-bet+ in CD3+CD4+ cells (closed circle). 
MFI and CV of pSTAT1 (a) and p-p65 NF-κB (b) are presented. Data were obtained from three 
independent experiments, and the statistical significance were calculated by paired Student’s t-test, *p < 
0.05. 
 
 
[Procedures] 
  OT-II transgenic mice (OT-II mice), which express T cell receptor (TCR) α and β chains that recognize 
the MHC class II Ib-restricted ovalbumin (OVA) peptide (residues 323–339) in a C57BL/6J background, 
were kindly provided by Dr. W. Heath (WEHI, Melbourne, Australia). The mice were bred at the animal 
facilities of Yamagata University, Faculty of Medicine, under specific-pathogen-free conditions and were 
used for experiments at 6–12 weeks of age. The animal experiments were approved by the Animal 
Experiment Committee of Yamagata University, Faculty of Medicine (approval number, 31006). Spleens 
from OT-II mice were minced and homogenized, and the cell suspensions were suspended in RPMI1640 
medium containing L-glutamine and 25 mM HEPES and supplemented with 10% (v/v) fetal calf serum 
(FCS), 50 μM 2-mercaptoethanol, 100 units/mL of penicillin, and 100 μg/mL of streptomycin. The cells (4 
× 106 cells/mL) were incubated with OVA (0.2 mg/mL) for 7 days. After incubation, the cells (1 mL) were 
fixed with the addition of x5 Lyse/Fix buffer (0.2 mL) for 10 min at 37°C. The fixed cells were packed by 
centrifugation at 800 ×g for 1 min and then stocked in 90% methanol (0.3 mL/tube) at −20°C until 
staining with antibodies: PE/Cy7-conjugated anti-mouse CD4 mAb (GK1.5), PE-conjugated anti-T-bet 
mAb (4B10), PE-conjugated anti-Bcl-6 mAb (7D1), and from BioLegend (San Diego, CA); V450-
conjugated anti-mouse CD3 mAb (17A2), PE-conjugated anti-GATA3 mAb (L50-823), PE-conjugated 
anti-RORγt mAb (Q31-378), from BD Biosciences (Franklin Lakes, NJ). The cell samples were stained 
with mixture of anti-T-bet mAb, anti-Bcl-6 mAb, anti-GATA3 mAb, anti-RORγt mAb, anti-CD3 mAb 
and anti-CD4 mAb. The negative cells of T-bet, Bcl-6, GATA3, and RORγt in CD3+CD4+ cell population 
were considered as Th0 cells (undifferentiated T cells). For detection of Th1 cells, the cell samples were 
stained with anti-T-bet mAb, anti-CD3 mAb and anti-CD4 mAb. The T-bet positive cells in CD3+CD4+ 
cell population were gated as Th1 cells. During the cell staining, Alexa488-conjugated anti-pY701-STAT1 
mAb (4a) and Alexa647-conjugated anti-pS536-NF-κBp65 rabbit mAb (93H1) were mixed with these 
antibodies. 
 

Figure S5． Analysis of STAT1 and NF-κB signaling pathways in Th0 and Th1 cells.
Splenocytes were stimulated with ovalbumin （OVA） for 7 days. After the stimulations （random and 
spontaneous T cell differentiation）, the cells were fixed/permeabilized and stained with mAbs （V450-conjugated 
anti-mouse CD3 mAb, PE-Cy7-conjugated anti-mouse CD4 mAb, Alexa488-conjugated pSTAT1 mAb, Alexa647-
conjugated p-p65 NF-κB mAb, and PE-conjugated anti-T-bet mAb or a mixture of PE-conjugated anti-T-bet 
mAb, anti-GATA3 mAb, anti-RORγt mAb, and anti-Bcl-6 mAb）. The cells were analyzed by FCM （FACSCanto 
II）. Th0 cell subset was gated as T-bet－ GATA3－ RORγt－ Bcl-6－ in CD3＋CD4＋ cells （open circle）, and 
Th1 cell subset was gated as T-bet＋ in CD3＋CD4＋ cells （closed circle）. MFI and CV of pSTAT1 （a） and 
p-p65 NF-κB （b） are presented. Data were obtained from three independent experiments, and the statistical 
significance were calculated by paired Student’s t-test, *p < 0.05.

［Procedures］
OT-II transgenic mice （OT-II mice）, which express T cell receptor （TCR） α and β chains that recognize 

the MHC class II Ib-restricted ovalbumin （OVA） peptide （residues 323–339） in a C57BL/6J background, 
were kindly provided by Dr. W. Heath （WEHI, Melbourne, Australia）. The mice were bred at the animal 
facilities of Yamagata University, Faculty of Medicine, under specific-pathogen-free conditions and were used 
for experiments at 6–12 weeks of age. The animal experiments were approved by the Animal Experiment 
Committee of Yamagata University, Faculty of Medicine （approval number, 31006）. Spleens from OT-
II mice were minced and homogenized, and the cell suspensions were suspended in RPMI1640 medium 
containing L-glutamine and 25 mM HEPES and supplemented with 10% （v/v） fetal calf serum （FCS）, 50 µM 
2-mercaptoethanol, 100 units/mL of penicillin, and 100 µg/mL of streptomycin. The cells （4 × 10６ cells/mL） 
were incubated with OVA （0.2 mg/mL） for 7 days. After incubation, the cells （1 mL） were fixed with the 
addition of x5 Lyse/Fix buffer （0.2 mL） for 10 min at 37℃. The fixed cells were packed by centrifugation at 
800 ×g for 1 min and then stocked in 90% methanol （0.3 mL/tube） at －20℃ until staining with antibodies: 
PE/Cy7-conjugated anti-mouse CD4 mAb （GK1.5）, PE-conjugated anti-T-bet mAb （4B10）, PE-conjugated anti-
Bcl-6 mAb （7D1）, and from BioLegend （San Diego, CA）; V450-conjugated anti-mouse CD3 mAb （17A2）, PE-
conjugated anti-GATA3 mAb （L50-823）, PE-conjugated anti-RORγt mAb （Q31-378）, from BD Biosciences 

（Franklin Lakes, NJ）. The cell samples were stained with mixture of anti-T-bet mAb, anti-Bcl-6 mAb, anti-
GATA3 mAb, anti-RORγt mAb, anti-CD3 mAb and anti-CD4 mAb. The negative cells of T-bet, Bcl-6, 
GATA3, and RORγt in CD3＋CD4＋ cell population were considered as Th0 cells （undifferentiated T cells）. 
For detection of Th1 cells, the cell samples were stained with anti-T-bet mAb, anti-CD3 mAb and anti-CD4 
mAb. The T-bet positive cells in CD3＋CD4＋ cell population were gated as Th1 cells. During the cell staining, 
Alexa488-conjugated anti-pY701-STAT1 mAb （4a） and Alexa647-conjugated anti-pS536-NF-κBp65 rabbit mAb 

（93H1） were mixed with these antibodies.
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to examine a comprehensive analysis method that 
fits the theoretical hypothesis shown in this study.

Many researchers may wonder what a bimodal 
or distorted histogram may mean. In the current 
study, the shape of the histogram was topologically 
transformed into a simple shape, depending on 
the change in MFI and CV, as shown in Table 1. 
A bimodal or distorted histogram is considered to 
indicate an increase in CV. These histograms suggest 
that the cell population consists of several cell 
subsets, which differ with respect to the response to 
the stimulant.

The existence of a type 3 pattern with a negative 
correlation between MFI and CV （the homeostatic 
ERK pathway） allowed us to speculate that there is 
a mirror image of type 3 with a positive correlation 
between MFI and CV. Observation of an increase 
in CV with no change in MFI （the p-tyrosine 
experiment） also allowed us to speculate that there 
is a mirror image, i.e., a scenario with a decrease 
in CV without a change in MFI. Furthermore, 
observation of a decrease in MFI with no change 
in CV （p-p65NF-κB, late phase observations） 
prompted the speculation of the possibility of an 
increase in MFI without a change in CV. These 
patterns suggest that type 3 （passive） consists of six 
variations （Supplementary Table S1, Figure 6）. It 
can be inferred that the six variations of type 3 are 
also elements of signal transduction pathways.

Whether this classif ication method can be 
applied to various measurement systems must be 
examined in the future. To discuss the advantages 
and problems of this method, the characteristics 
of the FCM measurement should be considered. 
For instance, FCM does not measure the absolute 
number of photons of fluorescence, and the detection 
sensitivity of the photomultiplier tube is adjusted 
so that all data fall within the measurement range 
before the measurement （in the case of a microscope, 
the magnification is adjusted for observation）. To 
use simple imagery, let’s image boxes arranged side 
by side, numbered in order. The numbers are the 
values on the horizontal axis of the histogram. The 
height of the histogram depends on the number of 
cells stored in the allocated box. When the number 
of photons released by one cell is relatively large, it 
is distributed to the box with a large number, and 
when the number of photons is small, it is distributed 
to the box with a small number. The number of 
boxes is limited and does not change during the 
measurement. Consequently, the difference in 
the number of photons released from one cell is 
measured as a relative value to the overall variation. 
The relative value is expressed as the MFI of the 
sample. When the detection sensitivity conditions 
of the photomultiplier tube are the same, stable 
MFI readings are obtained. If MFI is converted 
to an absolute quantity instead of a relative value, 

Supplementary Table S1． Type 3 （passive） can be separated from the other six 
types of cells transition using change in MFI or CV and correlation between MFI 
and CV.
NS, not significant.

 
Supplementary Table S1. Type 3 (passive) can be separated from the other six 
types of cells transition using change in MFI or CV and correlation between MFI 
and CV. 
NS, not significant.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Categories 
Statistical 
change in 

MFI 

Statistical 
change in 

CV 

Correlation 
between MFI 

and CV 
Speculative cells transition 

Type 1/2 Increase NS NS Intermediate between type 1 and 2 
(mirror image of NF-κB in later phase) 

Type 2/4 NS Increase NS Perturbation by another basin 
(p-tyrosine) 

Type 2/5 NS NS Positive 
correlation 

Shuttling between type 2 and 5 
(mirror image of homeostatic ERK1/2) 

Type 3 NS NS NS “Passive” as shown in Table 1 

Type 1/4 NS NS Negative 
correlation 

Shuttling between type 1 and 4 
(Homeostatic ERK1/2) 

Type 1/5 NS Decrease NS 
Disappearance of perturbation by 

another basin 
(mirror image of p-tyrosine) 

Type 4/5 Decrease NS NS Intermediate between type 4 and 5 
(NF-κB in later phase) 
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it is necessary to use a standard product for each 
parameter. This is similar to other color-reaction 
measurement systems.

As another problem of FCM, the noise/signal 
（N/S） ratio differs depending on the fluorescent 
substance involved. In other words, the MFI value 
differs depending on the fluorescent substance. The 
N/S ratio of the fluorescent substance also affects 
determining the positive rate using the negative 
control staining. On the other hand, P obtained in 
the current study was not the positive rate using 
the threshold. Negative staining was not used as 
a control. The control value （MFI c） was set as a 
condition similar to the tested condition （MFI t）, 
and the difference between MFI t and MFI c was 
calculated. As mentioned above, since MFI is 
a measured value whose relativity is already 
maintained at the time of measurement, the relative 
change in MFI can be stably estimated.

In the current study, P and ψ could be adjusted 
by using the correction values D and W, even if 
the labeled fluorescence and the measuring device 
were different. Furthermore, although the CV differs 
depending on the measuring device, the difference 
ψ （CV c – CV t） shows good reproducibility, as 
does the difference P （MFI t – MFI c）. Since not 
many types of antibodies were examined herein, 
and the types of devices used were also limited, it 
remains unclear whether P and ψ can be applied 
in all scenarios. This study is not sufficient for 
mathematical generalization. Further experiments 
are needed to confirm the utility of the P – ψ graph 
and Ep score. The graph and the score may be 
useful for comparing the attractivity of the observed 
parameters between different parameters.

It is difficult to study cell signaling in tissues 
using flow cytometry. This is because it takes 
several hours to process the enzymes that separates 
the cells from tissues. Artificial changes in the 
signal occur during the enzymatic treatment. The 
phosphorylation of signal transducers can not be 
used as a measurement parameter for applying the 
five types of cells transition in situ. Instead of the 
phosphorylation, cell membrane surface antigens or 
nuclear proteins may be suitable for a measurement 
parameter to apply the cells transition. Previously, 

we examined the variation of cell surface antigens 
and intracellular antigens using clinical blood samples 
after several hours from blood collections25），26）. 
We would like to carry out such verification in the 
future.

The cells transition, such as type 1 or type 5, is 
considered to be a robust signal response, so that 
the transition may be useful as an index for drug 
discovery. In addition, CV increases when the 
same cell population contains cell populations that 
respond differently. Previously, we reported that 
CV can be used to predict the prognosis of cancer25）. 
In addition, if immune cells are evaluated by the 
classification proposed in this study, they may be 
used for re-classification of syndromes or disease 
progression related to immune diseases.

To conclude, we here proposed a novel method 
for classifying signaling pathways using FCM. 
The contraction and fluctuation of cell clusters are 
useful for categorizing the signal characteristics. 
Previously, we reported that CV could be used for 
phosphorylated molecules and also for cell surface 
molecules25），26）. In addition, this method does not 
require a Bayesian approach or a diffusion map to 
supplement the missing values or cell fluctuations. 
Furthermore, it is possible to infer the elements of 
cell behavior without using ontological classification 
or module analysis based on known facts. This 
method is therefore highly effective for detecting 
event hierarchies based on the emergent properties 
of cells in various measurement systems.
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