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Chapter 1 General Introduction 

 In nature, self-assembly and self-organization are central processes to form various 
structures. Dissipative structures, one of the self-organized structures, are ubiquitous in 
regardless nature and artificial systems.[1] Most of them are generated through bottom-up 
self-organizing processes under nonequilibrium conditions.[2-3] The meaning of 
dissipative structures ranges from temporal changes, such as rhythm formation,[4-5] to 
spatial changes such as pattern formation.[6-10] In this thesis, I focused on the latter 
spontaneously pattern formation phenomena. All that is needed to form them are carefully 
programmed initial conditions, triggers to execute them, and nonequilibrium environment 
to maintain their processes. They have precise structures and/or spatiotemporal 
periodicities on a wide range of scales from microscopic to the macroscopic scales.[11-12] 
There are two main attractions to such dissipative pattern formation. (i) All processes are 
spontaneous and do not require any additional operations other than an execution. 
Therefore, the mechanism of such formation provides us with simple ways to design 
complex and precise patterns. (ii) Most of the mechanisms are universal regardless of the 
target (but some require consideration of specific interactions). Namely, mechanisms can 
be generalized, and it allows to understand an origin of pattern formation that is 
ubiquitous among many disciplines. Given the above two attractive points, understanding 
the mechanism of spontaneous pattern formation will have an impact on researchers in 
all fields, including materials chemistry and natural science. However, it is difficult to 
prove the underlying mechanism because contained elements interact intricately and 
nonlinearly. Experimental and mathematical modeling are powerful tools for studying the 
mechanisms of these pattern formations (Figure 1.1).[13-18] This is because the effects of 
interactions can be examined separately and generalized mechanisms can be proposed 
based on them. 
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Figure 1.1. One of schemes of modeling study to prove the mechanism of pattern 

formations in dissipative systems. Turing pattern is adopted as an example for 
depicting this scheme. The first step is to determine a target (e.g. body pattern 
of fish) you want to study from various patterns in nature. As next step, an 
experimental model for the target (e.g. Turing pattern reprinted with permission 
from Ref. 18. Copyright 2011 American Chemical Society.) is built and the 
influence of key factors on pattern formation is verified. Then, obtained result 
are generalized by numerical simulations (e.g. reaction-diffusion equation 
reprinted with permission from Ref. 16. Copyright 2012 Elsevier.), which 
provides a universality of the constructed model. By comparing the model 
observations with the dynamics of the target (if possible) or natures, the 
formation mechanism can be proved. 

 Liesegang phenomenon is one example of a chemical model that possesses the ability 
to describe dissipative pattern formation arising from the coupling of mass transport with 
solid-phase transitions.[19-20] However, it lacks practicality as a model because of various 
conflicting theories regarding the formation mechanisms, even after 100 years since its 
discovery in 1896 by R. E. Liesegang. Therefore, the motivation of this thesis is to 
summarize various experimental and theoretical scenarios of Liesegang phenomenon so 
far, and to obtain the key to a comprehensive explanation of the formation mechanism. 
Toward this motivation, in the following sections, the thermodynamic basis of dissipative 
structure is firstly explained to understand the basic theory of dissipative structure 
formation. Then, several classes of dissipative structures are introduced with concrete 
examples, and the results of each model study are reviewed. Finally, after providing an 
extensive review of Liesegang phenomenon and the problems for proving the mechanism 
involved, the purpose of this thesis is stated. 
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1.1 Closed system and open system[1, 21-22] 

 When dealing with thermodynamic theory, a part of a subject whose thermodynamic 
properties are investigated is conventionally called a system, and the other part is called 
an externality. A system in which no energy or matter can enter or leave is called an 
isolated system, a system in which energy can enter and leave freely but matter cannot is 
called a closed system, and a system in which both energy and matter can enter or leave 
freely is called an open system. Dissipative structures are formed in an open system due 
to the constant dissipation of entropy. Namely, we should focus on the essence of 
difference among these systems. The entropy is the primary indicator that determines how 
chemical state in a system will spontaneously change to. Therefore, in order to better 
understand formation mechanism of dissipative structures, it is necessary to turn to the 
theoretical perspective of this phenomenon based on a relationship between system and 
thermodynamics of entropy. 
 
1.1.1 Entropy[1, 21-22] 

 The direction of spontaneous change is related to the distribution of energy and matter, 
and spontaneous change always involves the dissipation or diffusion of energy and matter. 
In order to quantify this concept, it is necessary to introduce a physical quantity called 
"entropy", which is important to formulate the second law of thermodynamics, which 
defines the direction of spontaneous change of all events. Entropy (S) is a state function 
that describes the quality of energy of a system and is defined in terms of thermodynamic 
and statistical types as follows. 

Definition from thermodynamics: ∆𝑆 = ∆"
#

  (1) 

Definition from statistics: 𝑆 = 𝑘$ lnℳ  (2) 

where Δq and T in eq. (1) are the sum of all heat transfers into and out of a system and 
temperature, and kB and ℳ in eq. (2) are the Boltzmann constant and the number of 
microstates compatible distribution of energy levels (i.e. degree of order in the system). 
Eq. (2) shows that entropy increases with the number of microscopic states (i.e., the 
number of molecular energy configurations when the total energy of a system is equal). 
When two systems with different temperatures are brought into contact, the heat will 
always diffuse from the higher temperature to the lower. The cause of this spontaneous 
change can be interpreted from eq. (2). Molecules in high temperature systems can exhibit 
a large number of energy levels due to their high molecular mobility, while in low 
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temperature systems, the number of energy levels is small due to reduced molecular 
mobility. The contact between the two systems increases the temperature of the system 
with the lower temperature, which increases the distribution of energy levels in the system 
and entropy. Namely, spontaneous change in a system is always governed by an increase 
in entropy. The second law of thermodynamics quantitively states a direction in which a 
system will spontaneously change from the entropy balance between a system and an 
externality, which is denoted as by using Gibbs free energy (ΔG) and enthalpy (ΔH) 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆   (3) 

As we can see from this equation, a system prefers the state with the highest entropy, 
namely the state with the lowest free energy. The second law of thermodynamics indicates 
that a system transits spontaneously toward the direction to the state with the lowest free 
energy, the steady state that is eventually reached is called the equilibrium steady state. 
Therefore, self-assembly in a system under equilibrium conditions is dominated by this 
principal in which entropy plays a leading role. 
 
1.1.2 Thermodynamic states under equilibrium and nonequilibrium 
conditions[1, 21-22] 

 An assembling and organizing behaviors depend on final thermodynamic states in a 
system, in which there are four main types of thermodynamic steady states: the entropy 
change disappears (dS/dt = 0, the equilibrium steady state), becomes constant (dS/dt = 
constant, the nonequilibrium steady state), becomes periodic (dS/dt = periodic change), 
and becomes chaos (dS/dt = chaos). This difference between these steady states depends 
on the natures of the system. In a typical experiment conducted in a container such as a 
beaker or flask under constant temperature and constant pressure conditions, the system 
is basically considered as a closed system (Figure 1.2a).  
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Figure 1.2. (a) Illustration of examples of the closed system and (b) the open system. The 
description at the bottom of each system represents the possible final state of 
the system. Sin and Se are entropy inside and outside of the system, and Stot is 
total entropy. Also, Fin and Fout represent fluxes corresponding to the supply 
and discharge of energy and matter. 

 
Generally, a chemical process is an irreversible process that is entropy is produced. Inside 
of the system therefore generates entropy by various chemical processes such as chemical 
reactions, namely dSin always becomes positive values (dSin > 0). On the other hand, dSe 
represents the entropy change of the eternality due to the exchange of matter and energy 
between the externality and the system. Therefore, dSe can be positive or negative. In this 
case, the total entropy change of the system (dStot) is as follows: 

%&!"!
%'

= %&#$
%'

+ %&%
%'

    (4) 

When chemical processes are begun in the system, dSin/dt becomes positive (dSin/dt > 0) 
and dStot/dt changes to positive (dStot/dt > 0), namely spontaneous changes proceeds. 
Whereas dSe/dt must be positive to initiate a spontaneous change without chemical 
processes (dSin/dt = 0). In a closed system with chemical processes, dStot/dt mostly 
depends on dSi/dt since there is no external supply of energy or matter. Therefore, the 
system finally represents the equilibrium steady state when the production of entropy 
from the system finish (dSin/dt = 0) by reaching chemical processes to the equilibrium. 
On the other hand, the open system is realized by cutaneous supplying energy or matter 
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from the externality and discharging them from the system (Figure 1.2b). Namely, the 
flux of energy or matter is imposed in the open system. Since the chemical process is 
maintained by the flux from the externality, dSin/dt is always positive and will never 
converge to zero unlike the closed system. Furthermore, dSe/dt also keeps changing 
because there is a constant exchange of energy with the externality. Therefore, dStot/dt 
does not converge to zero, indicating that entropy is produced constantly in the open 
system. There are three main types of entropy production behavior, depending on the 
degree of imposed nonequilibrium. If the flux is relatively low and it is kept constant, the 
rate of entropy production in the system will be constant (dStot/dt = constant), in which 
this state is called a nonequilibrium steady state. Further enhancing the flux, chemical 
processes in the system exhibit cooperative dynamics, resulting in competitive changes 
in dSin and dSe. Thus, dStot/dt is modulated periodically (dStot/dt = periodic change), 
meaning that the system becomes a periodic state. In this state, the system exhibits the 
macroscopic coherent dynamics such as oscillation or pattern formation. If the flux is 
further enhanced from this situation, the order of entropy generation in the system is no 
longer maintained and the system becomes chaotic. 
 
1.2 Self-assembly and self-organization 

 Building blocks (e.g. molecules, particles, cells, etc.) assembles depending on the 
thermodynamic state of the system, which forms various static or dynamic structures from 
micro (as well as molecular size) to macroscale.[12] I. Prigogine, a Belgian chemist who 
was awarded the Nobel Prize in Chemistry in 1977, reported that macroscopic 
spatiotemporal periodicity far beyond the size scale of building blocks appear in far-from-
equilibrium states, such as open systems.[1] Different from equilibrium structure that 
follows the second law of thermodynamics, the building blocks work cooperatively to 
form such a macroscopic periodic structure which is called a dissipative structure. 
Therefore, the assemble process to form an equilibrium structure according to 
thermodynamic laws is called self-assembly, and the organization process under 
nonequilibrium conditions to form a dissipative structure is called self-organization. This 
distinction can be summarized in Figure 1.3.[23]  
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Figure 1.3. Difference between self-assembly and self-organization based on a perspective 
of Gibbs free energy. Characteristic structures are identified as four classes: (i) 
Equilibrium structure, and kinetic stabilization structures such as (ii) 
Metastable structures and (iii) Kinetically trapped structures, and (iv) 
Dissipative structurers that are structures specific to an open system. 

Although an equilibrium structure is eventually formed depending on the experimental 
conditions (class (i)) in a closed system through self-assembling processes, it may go 
through several kinetically stabilized pathways to reach its structure (class (ii) and (iii)). 
These kinetic pathways identified based on energy barrier: (ii) Metastable structure is 
formed when the barrier is sufficiently low (namely almost equals to kBT), whereas (iii) 
Kinetically trapped structure is formed when the barrier is high (>> kBT). In the former 
case, the system relaxes spontaneously and slowly, eventually reaching an equilibrium 
structure. However, the latter is kinetically trapped, so no spontaneous structural 
relaxation occurs. Therefore, thermal perturbations from the outside are needed to 
promote relaxation of this structure. Since both kinetically stabilized structures are steady 
states in which no entropy generation occurs and can be regarded as transient structures 
on the way to equilibrium, they will not be treated primarily in this paper. On the other 
hand, a dissipative structure is formed in only an open system through self-organization 
processes (class (iv)). During self-organization, entropy is constantly generated due to the 
constant supply and discharge of energy and material fluxes. Therefore, the structure 
formed in this state is very unstable, not located in the energy groove, and requires a 
constant flux to maintain it. Thus, self-assembled equilibrium structures and self-
organized dissipative structures are essentially different, the properties of those structures 
should be discussed separately. 
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1.3 Equilibrium and dissipative structures 

 To explain the difference of property between equilibrium and dissipative structures, we 
take Rayleigh-Bénard[24-25] convection as an example (Figure 1.4). 
 

 
Figure 1.4. Transition of convection patterns with an increase in ΔT. When ΔT = 0, there 

is no convection in the solution. When ΔT is applied, depending on its intensity, 
the structure transitions in the following order: heat conduction without 
convection, formation of convection pattern by steady flow, and formation of 
chaotic pattern by turbulence.[26] 

Water in a vessel shows a liquid state under constant temperature (0 < T < 100 ˚C) and 
pressure (1 atm), meaning that these conditions represent that this vessel is a closed 
system. In water, H2O molecules are molecular motion, but there is no change in structure 
in bulk scale, namely, water in such a solution state is the equilibrium structure. On the 
other hand, continue to heat the bottom of the vessel to impose a temperature gradient in 
the solution, and the system transition to an open system. When ΔT = low, the bulk water 
also shows the liquid state with no apparent change in appearance, however a heat 
conduction from the bottom of the vessel with high T to the top with low T occurs in water. 
At first glance, the bulk structure resembles an equilibrium structure, but this state is 
classified as a nonequilibrium steady state because it contains a constant entropy 
production mechanism due to heat conduction. When we increase ΔT further by heating 
temperature of the bottom, the uniform solution state is broken (i.e. entropy production is 
non-stationary.) and Rayleigh-Bénard convection as a steady flow occurs which promotes 
heat conduction. This convection is formed by macroscopic cooperative motion induced 
by ordered microscopic random molecular motion. Therefore, this structure deviates from 

heat conduction steady flow turbulencefree diffusion

Bénard cell Chaos

Thigh

Tlow

!"!"!
!# = 0 !"!"!

!# = &'()#*(# !"!"!
!# = +,-.'!.&	&ℎ*(1, !"!"!

!# = &ℎ*')

ΔT = 0 ΔT = low ΔT = high

Equilibrium structure Dissipative structure
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the second law of thermodynamics, and the macroscopic structure formed in such a far-
from-equilibrium state is called a dissipative structure. In addition, a pattern called a 
Bénard cell is also formed due to this convection on the surface of a solution where 
Rayleigh-Bénard convection is occurring. Also, ΔT increases higher and higher, steady 
flow is broken and turbulence appears in the solution and a chaos pattern is formed on the 
surface of solution, in which entropy production rate become chaotic change in this state. 
Thus, the thermodynamic state of the system determines whether the emerging structure 
is an equilibrium structure or a dissipative structure. In particular, dissipative structures 
form only under certain imposed nonequilibrium conditions, which are due to the 
cooperative ordering of molecules that does not obey thermodynamic laws. 
 
1.3.1 Example and property of equilibrium structures 

 In the preceding introduction of both structures, how the structural transition occurs is 
explained by the appearance of convection associated with closed and open systems. In 
following sections of 1.3.1 and 1.3.2, we focus on specific examples and details of each 
structure. Figure 1.5a-c shows examples of equilibrium structures. 

 

Figure 1.5. Examples of equilibrium structures: (a) NaCl crystal, (b) ice, and (c) living 
cell. Each enlarged illustration represents the crystal structure of NaCl, 
hydrogen-bonded network in an ice, and lipid bilayer structure at the cell 
membrane, respectively. (d) Structure property of an equilibrium structure. 

As exemplified by the crystal structure and hydrogen-bonding network (Figure 1.5a,b), 
an equilibrium structure generally has robust structures. Due to this robustness, a shape 
of equilibrium structure shows high stability to perturbations such as mechanical strength 
and thermal resistance. Cell membrane is also one of the equilibrium structures (Figure 
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1.5c). Cell membrane has softness different from the crystal structure, mechanical 
strength is not that high. However, it serves as a stable barrier between the inside and 
outside of the cell, utilizing the hydrophilic effect of lipid molecules, and the barrier does 
not collapse spontaneously. Namely, what an equilibrium structure have in common is 
that they are very stable to perturbations from changes in the surrounding environment, 
and their structure is determined based on the equilibrium steady state. In addition, 
equilibrium structures also show characteristic periodicity (Figure 1.5d). In equilibrium 
structures, a wavelength of structure periodicity (λ) is almost equivalence to the size of a 
building block (a), such as ion, atom, and molecule in Figure 1.5a-c. Indeed, NaCl crystal 
is consisted of an assembles of alternating Na+ and Cl- bonds. 
 
1.3.2 Example and property of dissipative structures 

 On the other hand, a dissipative structure has quite different property from an 
equilibrium structure. Figure 1.6a-d shows examples of them. 

 
Figure 1.6. Examples of dissipative structures: (a) microtubes network structure reprinted 

with permission from Ref. 27. Copyright 2010 Springer Nature, (b) body 
pattern of animal, and (c) Kármán vortex reprinted with permission from Ref. 
28. Copyright 2014 Springer Nature, (d) Structure property of a dissipative 
structure. 

During the cell cycle, microtubes form a characteristic microtube structure as shown 
Figure 1.6a.[27] In this structure, microtubules assemble throughout the cell and form a 
network of them with spatial scales much larger than a single microtubule. Also, body 
patterns of animal are other typical examples for dissipative structures. For example, most 
of zebra has stripe pattern with alternating black and white on a body surface (Figure 
1.6b). Each region is not composed of a single pigment cell, but of an assemble of each 
cell.[16-17] Same as the Rayleigh-Bénard convection described above, most convection 
patterns can be classified as dissipative structures, in which Kármán vortex is one of them 
(Figure 1.6c).[28] Such macroscopic convection structures are created when building 
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blocks (e.g., molecules, particles, and gases) interfere with each other and motioned 
cooperatively. Therefore, the key word in a dissipative structure is "coherence" and " 
cooperation" between building blocks. Thus, a dissipative structure shows interesting λ in 
which an assembly of building blocks with size a per a building block is distributed 
periodically (Figure 1.6d). This property leads to the bottom-up formation of dissipative 
structures at various scales from nano to micro regardless nature and artificial systems.[12] 
It is noted that dissipative structures is basically unstable to perturbations, namely 
stational structure requires maintaining an open system. 
 
1.4 Dissipative structure formation via reaction-diffusion processes 

 In the previous sections, we have explained the property of the dissipative structure. In 
this section, a reaction-diffusion process (RD), which is actually the primary process that 
drives dissipative structure formation, is described. The RD process works through the 
cooperative interaction of reaction and diffusion of substances in a system.[9, 12, 17, 29] The 
system containing the RD process is called the RD system. In this system, the change in 
concentration of a substance (X) is a conjugated state caused by both reaction and 
diffusion, and the change in concentration of X is described as the sum of the two as 
follows:[30] 

-()
('
.
'*'+,

=		 -()
('
.
-.+/'0*1

+ -()
('
.
%022340*1

  (5) 

This equation, called the reaction-diffusion equation, is the basic form for describing 
phenomena in RD systems, and by reflecting information on the specific dynamics to 
each term, we can understand various RD phenomena.[31] RD processes form various 
attractive dissipative structures with temporal and/or spatial periodicities (Figure 1.7). 
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Figure 1.7. Various dissipative structures in RD systems: (a) Rhythm formation, (b) Pattern 

formation, and (c) Propagation phenomenon and Spatiotemporal oscillation. 

Rhythm formation represents that a signal of activity modulates oscillatory with time, 
namely active and rest states repeat alternately (Figure 1.7a). Such rhythm is particularly 
ubiquitous in biological phenomena such as the heartbeat and cellular organization 
activities.[32-33] Pattern formation is another characteristic type of RD phenomenon 
(Figure 1.7b), which indicates that density or concentration of a component distributes 
discretely (in some cases, the two types of components are distributed alternately). The 
body surface pattern of animals is a typical example of this class,[15-17, 34] and pattern 
formation is also ubiquitous in other living and inanimate systems. Furthermore, the 
coupling of the above two classes forms a more complex structures, which are 
propagation phenomenon and spatiotemporal oscillation (Figure 1.7c). The characteristic 
feature of this special class is that the component concentration (density) changes with 
temporal periodicities. Also, the fascinating aspect of the study of dissipative structure 
formation in RD systems is that the pattern formation of each of the above classes can be 
modeled experimentally and mathematically. The following table lists the corresponding 
model systems and their characteristics. 
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Table 1.1 Spatiotemporal periodic dissipative phenomena in RD systems and corresponding models. 

 
 

Rhythm formation and spatiotemporal pattern formation, such as heartbeats and neuron 
networks, are modeled by the Belousov-Zhabotinsky reaction.[13, 35-37] Also, pattern 
formation such as body patterns of animal is modeled by Turing pattern.[10, 14-18, 34, 38] 
These three reaction processes have positive and negative feedbacks and need to be 
maintained in a constant state of nonequilibrium conditions (mainly flux of substances) 
to sustain their competition. On the other hand, there is a class that do not require this 
condition to maintain a pattern, which is pattern formation with solid-phase transition by 
precipitation. Since this type of patterning involves irreversible precipitation as a reaction 
process, the structure is locked. Namely, the structure of such pattern reflects the transient 
nonequilibrium conditions during the progression of precipitation. Such pattern is seen as 
rock patterns and modeled by Liesegang phenomenon.[19-20] 
 
1.5 Experiments and numerical simulation for reaction-diffusion 
patterns 

 Many of the aforementioned RD dissipative structures in nature deeply involves in 
biological phenomena and construct the hierarchical structure in nature, that is, RD 
phenomena play a crucial role in nature. Also, all processes for the formation are 
spontaneous and do not require any additional operations other than execution of pattern 
formation.[11] Nevertheless, it is possible to self-organize highly ordered structures like 
the above RD structures thorough bottom-up processes. Therefore, understanding the 
mechanism of RD dissipative structures will not only lead to an understanding of the 
fundamentals of pattern formation in nature, but also to the creation of novel ordered 
materials by applying these mechanisms. However, underlying mechanisms are so 
complex that it is difficult to understand them directly. Then, experimental and 
mathematical modeling becomes powerful tools for revealing their mechanisms because 
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it is possible to examine each of the elements necessary for pattern formation separately, 
and to propose a generalized mechanism based on this. 
 
1.5.1 Belousov-Zhabotinsky reaction 

 The Belousov-Zhabotinsky (BZ) reaction has established itself as a typical model for 
the formation of rhythms and spatiotemporal periodic patterns,[13, 35-37] which is 
discovered by B. P. Belousov and A. M. Zhabotinsky who are soviet chemist. BZ reaction 
consists of a complex chemical reaction network with a feedback mechanism as shown 
in Figure 1.8a, in which the oxidation-reduction reaction of metal ions is repeated. Thus, 
bulk BZ solution shows a temporal periodic change in color due to the redox state of 
metal ion (Figure 1.8b).[39] 

 
Figure 1.8. (a) Chemical reaction network in Belousov-Zhabotinsky (BZ) reaction. (b) 

Oscillation of color change in BZ solution reprinted with permission from Ref. 
39. Copyright 2017 Royal Society of Chemistry. (c) Spatiotemporal BZ pattern 
in 2D reprinted with permission from Ref. 13. Copyright 2003 Royal Society 
of Chemistry. (d) Example of application of BZ reaction: Hydrogel with high-
frequency swelling/deswelling following BZ oscillation reprinted with 
permission from Ref. 41. Copyright 2021 American Chemical Society. 

When this solution is confined to a thin layer in a 2D space like a Petri dish, a BZ pattern 
is obtained in which periodic redox changes propagate through space (Figure 1.8c).[13] 
Furthermore, the coupling of BZ oscillation and changes in the mechanical properties of 
gels has created application objects with various self-sustaining mechanisms.[40-41] Figure 
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1.8d shows one example of such applications: creation of a hydrogel with high-frequency 
swelling/deswelling following BZ oscillation similar to heartbeats frequency. In addition 
to the BZ reaction, many other systems that exhibit chemical oscillations have been 
reported,[42] but most of the systems that exhibit rhythms, including the BZ reaction, have 
autocatalytic processes in the elementary reaction process. Brusselator and Oregonator 
are known as preferred numerical model to describe the dynamics of autocatalytic 
reaction processes.[43-44] For numerical simulations for BZ reaction, Brusselator and 
Oregonator are coupled with RD equation.[45-47] Figure 1.9 shows one example of the 
simulation result by using these techniques.[48] 

 

Figure 1.9. Time evolution of BZ pattern in the numerical simulation based on Oregonator 
model.[48] 

These simulation results have reproduced well the self-organization dynamics and 
spatiotemporal periodicity of BZ oscillations and patterns. Thus, the experimental results 
and the mathematical model have been refined in BZ reaction. Therefore, the 
understanding of the mechanism is progressed, and many strategic approaches have been 
made for not only understanding the spatiotemporal dynamics exhibited by living 
organisms[49-51] but also the application as shown above.  
 
1.5.2 Turing pattern 

 Turing pattern (TP) is a typical model for describing static RD pattern formation, whose 
mechanism is firstly proposed by A. M. Turing.[10, 14-18, 34, 38] In TPs formation, periodic 
structures are formed spontaneously from a uniform field by uniformly mixing active and 
inhibitory species that control each other's reactions through interaction. Although 
contained reaction processes is almost same as BZ reaction, TP is formed only when the 
diffusion coefficients of the interacting chemical species are significantly different. The 
main feature of TPs is that they can form patterns with various morphologies that are 
fixed in space. Figure 1.10 shows various morphologies of TPs formed experimentally by 
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changing concentrations of reagents. 

 
Figure 1.10. Various morphologies of TPs: (a) Hexagonal pattern, (b) Labyrinth pattern, 

and (c) Coexistence of the hexagonal and labyrinth patterns, reprinted with 
permission from Ref. 18. Copyright 2011 American Chemical Society.  

The most important achievement in research on TP is the discussion of the mechanisms 
of these various pattern formations through numerical simulations based on RD equation, 
and the application of these findings to the demonstration of the mechanisms of body 
surface pattern formation of animals. This attempt was firstly made by S. Kondo et al..[14, 

16] Figure 1.11 shows summery of numerical simulation to describe TP formation.[52] 

 

Figure 1.11. (a) Turing's RD model has at least two components, an activator (A) and an 
inhibitor (I). (b) Turing's equation. The change in [A] and [I] per unit time is 
determined by the reaction (the relationship between A and I) and the diffusion 
of A and I in unit space. For a Turing wave pattern to emerge, function F is 
defined so that [I] is inversely proportional to [A], and function G is defined so 
that [I] is positively dependent on [A]. (c) Turing's model can produce striking 
two-dimensional spatial patterns by varying various parameters. Many of these 
patterns resemble the spots and stripes found in nature, such as the stripes of a 
fish or the mesh pattern of a giraffe. This figure was reprinted with permission 
from Ref. 52. Copyright 2012 Elsevier. 

It is noted that the system must be kept open conditions in order to maintain the structure 
of the BZ pattern and TP. To achieve it, continuous stirred tank reactor (CSTR) is used.[53-

54] Thus, the structure of both depends on the Fin and Fout of substances, which is 
controlled by the CSTR. As described above, the mechanisms of both BZ reaction and TP 
are very well understood from both experimental and theoretical perspectives, and both 
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have already acquired practicality as models to explain RD dissipative structures such as 
rhythms, spatiotemporal patterns, and static patterns in nature. 
 
1.6 Liesegang phenomenon 

 Liesegang phenomenon is a typical example to describe dissipative pattern formation 
with solid-phase transition, which is firstly discovered in 1896 by R. E. Liesegang.[19-20] 
This phenomenon is cause in the case of coupling of diffusion flux by directional mass 
transport into porous media (typically a hydrogel) with solid-phase transition processes. 
The obtained pattern by this phenomenon is called Liesegang pattern (LP), which shows 
an array of well-defined regular discrete precipitation bands (rings). A typical 
experimental set-up for LPs formation and property of obtained pattern is shown in Figure 
1.12. 

 

Figure 1.12. Typical experimental set-up for 1D LP formation (left) and evolution of 
pattern formation. Right image shows obtained 1D LP finally. 

Firstly, a reservoir (typically aqueous solution) contained with metal ions (A) that is so-
called outer electrolytes is poured on the top of a hydrogel made in elongated container 
(typically test tube). The gel is pre-doped with counter ions to A (B) that is so-called inner 
electrolytes (Figure 1.12 left). Subsequently, A diffuse into the gel media, where it reacts 
with pre-doped B to generate precipitates (P). Since A invades directionally into the gel 
according to Fick's diffusion law,[55] a diffusion concentration gradient is formed in the 
gel. Since P is generated with the diffusion, appearance of precipitation region propagates 
toward the bottom of the test tube, where head of the propagation is called as precipitation 
or reaction front. Near an interface between outer electrolytes solution and the inner 
electrolytes gel, diffusion flux of A (Fdiff) is higher than a position closer to the bottom 
due to the diffusion gradient. Thus, the precipitation reaction proceeds rapidly there, 
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forming a continuous precipitation region. However, a region of discrete precipitation is 
formed in the region below the continuous region where the Fdiff is somewhat lower, 
because of the exquisite competition between diffusion and reaction rates. Once a discrete 
band structure begins to form, the band formation is repeated in subsequent regions. Thus, 
the end result is a periodic precipitation pattern with several alternating bands (Figure 
1.12 right), which can be clearly numbered using band number (n).  
 
1.6.1 Empirical laws in Liesegang phenomenon 

 As an important point in Liesegang phenomenon, most of obtained LPs according to the 
above experimental set-up show well-defined spatiotemporal properties, which are 
represented as empirical laws. Information for each law is summarized in Figure 1.13. 

 

Figure 1.13. Information for empirical laws in in Liesegang phenomenon. The interface 
between the outer and inner electrolytes is defined as x = 0. The band position, 
width, and time for formation of the nth band are xn, wn, and tn, respectively. 
There are three empirical laws for concerning xn, wn, and tn are known as 
spacing, width, and time laws, respectively. 

The most famous of these is the spacing law (eq. (6)), which defines the spatial periodicity 
of each band of LP.[56]  

lim
1→6

7$&'
7$

= 1 + 𝑝   (6) 

where xn, xn+1, and p are the distance from the interface between the invading and pre-
doped electrolytes to the nth and (n+1)st bands, and the spacing coefficient, which is 
constant at large values of n, respectively. From this equation, it is found that the 
precipitation region in the typical Liesegang set-up is formed alternately following 
geometric series. Also, an inter-band spacing Δxn (= xn+1 - xn) is represented by converting 
eq. (6) as below: 
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∆𝑥1 = 𝑝𝑥1   (7) 

This equation indicates that Δxn of typical LPs increase linearly with the increase of xn. 
Since most experimental results follow eqs. (6) and (7), the spacing law has been widely 
used to study the Liesegang phenomenon. Furthermore, the effect of experimental 
conditions on the pattern geometry can be evaluated by using p as an indicator of 
evaluation.[57-60] Also, the value of p depends on concentrations of outer and inner 
electrolytes, which is known as Matalon-Packter (MP) law[61-62] denoted as 

𝑝 = 𝐹(𝑏8) + 𝐺(𝑏8)
9(
+(

  (8) 

where a0 and b0 are the initial concentration of the outer electrolytes and the pre-doped 
concentration of inner electrolytes, respectively, and F and G are monotonously 
decreasing functions of b0. Since a0 is a variable independent of the functions F and G, it 
is easy to demonstrate the relationship between a0 and p. Actually, some experimental 
studies demonstrated this dependency and showed good agreement of results with the MP 
law.[63-64] In contrast, an effect of b0 is complex because b0 is involved in F and G. Indeed, 
several studies have shown two contrast effects on the change in p relative to b0: an 
increase[65-66] and a decrease.[67] In addition, p is also depends on the some other 
experimental conditions (e.g. gel thickness,[68] pH,[69] temperature,[70] gel 
concentration,[71] and existence of electric field[66, 72-73]). Therefore, evaluation using the 
MP law is very empirical, and its application needs to be cautious. Furthermore, the 
periodicity of LPs with respect to time is also often evaluated, although not as much as 
the spacing law. 

𝑥1 ∝ :𝑡1   (9) 

Eq. (9) is so-called the time law,[74-75] where tn represents time for formation of the nth 
band. This relationship is a straightforward reflection of a diffusive nature of the pattern 
formation mechanism, as the characteristic distance in diffusion is linearly proportional 
to the square root of time. Also, the width law[76-77] is known as other empirical laws 
following as: 

𝑤1 ∝ 𝑥1:   (10) 

where wn is the width of nth band, and α is a characteristic coefficient. However, accurate 
measurement is difficult because the resolution of the bandwidth can easily change 
depending on the image acquisition settings such as exposure time and CCD sensitivity. 
Thus, this law is not used as often as other empirical laws. Also, it is known that under 
general conditions, α becomes close to 1.[77] 
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1.6.2 Various morphologies and materials for LPs formation 

 In aforementioned explanations are based on the 1-dimensional (1D) set-up, indicating 
the gel media is column shape and outer electrolytes diffuse only in one macroscopic 
direction. However, depending in gel shapes, morphologies of obtained LPs are 
controllable (Figure 1.14).  

 
Figure 1.14. Various morphologies of LPs obtained by the reaction to generate Co(OH)2 

precipitates: (a) Band pattern in the 1D gel column reprinted with permission 
from Ref. 78. Copyright 2008 American Chemical Society, (b) Ring pattern in 
the 2D gel thin film reprinted with permission from Ref. 69. Copyright 2009 
American Chemical Society, and (c) Shell pattern in the 3D gel sphere reprinted 
with permission from Ref. 85. Copyright 2011 American Physical Society. 

When using. the1D set-up, the band pattern is typically obtained (Figure 1.14a).[71, 78] By 
placing a cylindrical gel (gel stamp) soaked with outer electrolytes at the center of the gel 
thin film doped with  inner electrolytes, outer electrolytes can diffuse from the center of 
the gel thin film in the 2-dimensional plane direction (Figure 1.14b). This method is so-
called the wet-stamping method.[79-81] As a result, obtained LPs show the ring pattern.[69, 

82-84] However, note that if the gel film is too thick, the effect of diffusion in the film 
thickness direction become apparent. Also, the morphology is designable freely by tuning 
the stamp shape and way to array of multiple stamps.[79-80] When we use a gel sphere as 
the gel media for LPs formation, the 3D LP can be formed (Figure 1.14c).[85] In this 
experiment, the sphere gel doped with inner electrolytes is soaked in the bulk solution 
contained with outer electrolytes. Because the outer electrolytes invade into the gel from 
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the surround solution, the shell pattern is formed. Therefore, LP morphologies are very 
diverse, and it is needed to choose an experimental system depending on the desired 
morphology. In addition to the morphological characteristics of LPs, recent years have 
seen a lot of interest in materials that self-organize LPs (Figure 1.15). So far, sparingly 
soluble salt has been used as the conventional materials for LPs formation (e.g. copper 
chromate,[58, 63, 71, 86] silver chromate,[68, 87-89] and cobalt hydroxide[57, 66, 69, 78]). Recently, 
other functional materials are highlighted for LPs formation such as metal 
nanoparticles[59-60, 82, 90], metal-organic-frameworks (MOF)[91-93], polymers[94-96], and 
molecular crystal[97]. This is because Liesegang phenomenon has found its applicability 
in self-organizing pattern techniques and particle synthesis. LP formation is driven by a 
diffusion gradient, which imposes a gradient of supersaturation in the gel. As a result, 
different nucleation and particle growth rates are obtained depending on the distance from 
the interface with the diffusion source. This kinetic anisotropy allows various size and 
shape of nano and particles to be obtained during one pot procedure.[91, 93, 98-99] 

 
Figure 1.15. Formation of LPs from some functional materials. (a) Ring pattern made of 

oppositely charged nanoparticles: (left) gold nanoparticles and (right) silver 
nanoparticles modified by cationic and anionic alkane thiols, reprinted with 
permission from Ref. 90. Copyright 2010 American Chemical Society. One 
charged nanoparticle is pre-doped into the gel thin film, and the nanoparticle 
with the opposite charge is diffused from the center. (b) Band pattern 
engineered by poly(2-methoxyethyl acrylate) of hydrophilic polymer, which is 
obtained by diffusion of monomers under high temperature conditions into a 
gel containing a polymerization initiator. This image was reprinted with 
permission from Ref. 94. Copyright 2017 American Chemical Society. (c) Band 
pattern fomed by particles of zeolitic imidazolate frameworks. The size and 
shape are modulated depending on the position. This image was reprinted with 
permission from Ref. 91. Copyright 2019 John Wiley and Sons. 
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1.6.3 Various geometries of LPs 

 The above morphological changes are straightforward reflection of the effect of 
diffusion orientation, and although there are some differences,[85, 100] the obtained patterns 
basically satisfy the spacing law shown in eq. (6). However, LP sometimes show a special 
geometry regardless of experimental conditions (Figure 1.16).  

 
Figure 1.16. Various geometry of LPs. (a) Regular-type LPs (increasing Δxn) of CuCrO4, 

reprinted with permission from Ref. 71. Copyright 2012 American Chemical 
Society. (b) Equidistant-type (constant Δxn) of Ag2Cr2O7, reprinted with 
permission from Ref. 103. Copyright 2008 American Physical Society. (c) 
Revert-type LPs (decreasing Δxn) of PbCrO4, reprinted with permission from 
Ref. 108. Copyright 2011 American Chemical Society. (d) Helix-type LPs of 
CuCrO4, reprinted with permission from Ref. 86. Copyright 2013 American 
Physical Society. 

Figure 1.16a shows a typical obtained LP that obeying the spacing law, which is so-called 
a regular-type LP. While, Figure 1.16b,c shows exceptional examples in Liesegang 
phenomenon. Figure 1.16b shows an equidistant-type LP,[101-104] in which Δxn is constant 
regardless of position. It was reported that controlling Fdiff induced formation of this type. 
Also. Figure 1.16c represents a revert-type LP, in which Δxn decreases with the increase 
in xn. This exceptional periodical patterns were formed when AgI[105-107] and PbCrO4[108-

109] were selected as precipitation materials even though the experimental procedure was 
the same as for the regular-type experiment. The mechanism in these systems was 
discussed in terms of changes in the surface potential of colloidal particles as precursors 
of precipitates caused by the adsorption of excess ions, however the details remain to be 
elucidated. An important point in these three types of LPs mechanisms is that the factors 
determining the periodicity of the pattern are not clear. For example, the application of 
the electric field above did not form a revert-type. On the other hand, a reaction system 
that forms a revert-type will not form an equidistant-type. This inconsistency is very 
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strange, considering that both the strength of the electric field and the amount of ions 
adsorbed can be controlled to some extent by the experimental conditions. Therefore, 
whether the factors that determine these three types of LPs are unified or individual 
parameters needs to be further examined. Also, Figure 1.16d shows other special class of 
LP, that is helix-type.[64, 86] It was reported that emergence of this type was random, both 
regular-type and helix-type were formed under the same experimental conditions. 
However, factors that assist in the appearance of the helix-type have not yet been 
elucidated. 
 
1.6.4 Analogy to pattern formation in nature 

 The reason why the Liesegang phenomenon is expected to be a model is that it shows 
similar morphology and periodicity to various periodic dissipative precipitation patterns 
that are ubiquitous in nature. Figure 1.17 shows such analogy between LPs and pattens in 
nature. 

 

Figure 1.17. (a) Chemical 2D LP obtained from a reaction between Cu2
+ and CrO4

2-. 
Similar pattens in nature to LPs: (b) Ring pattern in agate rock, reprinted with 
permission from Ref. 112. Copyright 2018 American Chemical Society. (c) 
Planetary orbits in the solar system. 

In agate rock, a ring-shaped discrete pattern similar to LP is formed.[110-112] Such patterns 
are formed by periodic precipitation of mineral components such as oxides, however the 
details of the formation mechanism have been uncleared. Also, planetary orbits in the 
solar system is one of the similar patterns (Figure 1.17c). Surprisingly, it was reported 
that Titius-Bode's law for the periodicity of orbits is consistent with the spacing law in 
the Liesegang phenomenon.[113] Direct observation of such geoscientific pattern 
formation is quite difficult because many events take place over a wide range of 
spatiotemporal scales. Therefore, the Liesegang phenomenon that has much in common 
with these patterns is expected to be applied as a practical model for elucidating these 
formation mechanisms. However, it lacks practicality as a model because of some 
conflicting theoretical scenario regarding the formation mechanisms, even after 100 years 
since its discovery in 1896 by R. E. Liesegang. Furthermore, there are still unexplained 
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phenomenon such as the change in geometry described above, even with each scenario. 
Therefore, it is needed to sort out the issues in each scenario and solve them from the 
ground up. 
 
1.7 Bifurcated theoretical scenario for LP formation mechanism 

1.7.1 Thermodynamics for precipitation  

 Reaction processes in most of the LPs include following processes: 

(i) Chemical reaction: A + B → C    (11) 

(ii) Solid-phase transition (precipitation): C → P   (12) 

The first step (i) is chemical reaction between outer electrolyte (A) and inner electrolyte 
(B), and this reaction generates intermediate species (C) such as salt molecules or 
dispersible colloidal particles. Also, the second step (ii) represents a solid-phase transition 
precipitation process to form non-diffusive precipitates (P) from C. As In the phase 
transition process for such LP formation, two main pathways based on different scenarios 
have been proposed: nucleation based on classical nucleation theory[62, 114-115] and phase 
separation based on spinodal decomposition theory.[116-117] It is known that such 
bifurcation occurs depending on the thermodynamic state of the system. [116-117] Figure 
1.18 shows principle of this bifurcation and a phase diagram. 
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Figure 1.18. (a) Relationship between Landau–Ginzburg free energy (ℱ) and normalized 
concentration of precursor (m). The values of ±me are corresponding to the 
steady state with high (ch) and law (cl) concentrations. This image was reprinted 
with permission from Ref. 117. Copyright 1999 Elsevier. (b) Phase diagram of 
solid-phase transition. Phase separation based on spinodal decomposition is 
triggered under the unstable condition. Also, nucleation based on the classical 
nucleation theory is triggered under the metastable condition. (c) Bifurcated 
scenarios in LP formation mechanism. A, B, C, N, and P are outer, inner 
electrolytes, water soluble reaction inter mediate, nuclei, and precipitates. 

In considering the two different scenarios we need to consider the dynamics of the phase 
transition and separation. However, we should explain about a free energy of a system to 
understand these dynamics. This energy is known as Landau–Ginzburg free energy (ℱ) 
for description of a stability of phase in a two-phase mixture system, denoted as below.[118-

120] 

ℱ = − ;
<
𝜀𝑚< + ;

=
𝛾𝑚= + ;

<
𝜎(∇𝑚)<  (13) 
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where m = c – (cl+ch)/2 is the normalized concentration of precipitation precursor (c), and 
cl and ch are concentrations at the steady state of ℱ at -me and +me (Figure 1.18a). The 
parameters ε, γ, and σ are specific values for a system. Eq. 13 represents that a 
thermodynamics stability of a system is decided the precursor concentration. Actually, 
Figure 1.18a shows this relationship, where we can see how the initial system (ℱ8) can 
be phase-separated from c0 to cl and ch (cl is zero in Liesegang system because most 
Liesegang systems are single-phase systems). When system remains out of -me (m < -me), 
the system is stable to any perturbation and no phase transition occurs because the ℱ of 
the system after a perturbation is always higher than ℱ8. On the other hand, the system 
shows different behavior when -me< m < -ms. Although the system does not undergo a 
phase transition spontaneously, an external perturbation allows the system to cross the 
energy barrier at m = 0 and the phase transition occurs. Such a state that requires 
perturbation assistance is called a metastable state, and the phase transition that occurs in 
this case is a scenario requiring nucleation. Furthermore, the phase transition proceeds 
spontaneously without any perturbations when -ms < m, in which this state is so-called 
unstable and phase separation based on spinodal decomposition is driving force. Thus, a 
dominant scenario for precipitation is bifurcated to whether nucleation or phase 
separation depending on the state of the system. Figure 1.18b shows a phase diagram 
about this bifurcation. The binodal and spinodal lines indicates the concentration 
thresholds to decides the state of system whether the metastable or the unstable regions. 
By matching the above branching theory with the typical reaction process of the 
Liesegang system shown in eqs. (11) and (12), LP formation scenarios can be described 
as shown in Figure 1.18c. The key parameter to determine the thermodynamic stability in 
the phase diagram is the precipitation precursor concentration, namely, water soluble or 
dispersible molecules or particles, which is corresponding to C in eqs. (11) and (12). In 
the nucleation-based scenario, C translates to nuclei (N) by nucleation, which is 
corresponding to the solid-phase transition process.[121] Afterwards, N becomes P 
thorough nuclei/particle growth and aggregation. On the other hand, C directly translates 
to P without undergoing nucleation in the phase separation-based scenario, which is a 
spontaneous process that does not require perturbation unlike nucleation. 
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1.7.2 Nucleation-based scenario (pre-nucleation model) 

 To discuss the LP formation based on the nucleation-based scenario, it is needed to know 
the principal of nucleation. The classical nucleation theory is the well-known theory to 
explain this process.[121] In this theory Gibbs’s free energy (ΔG) for nucleation as a 
function of particle radius (r)  is denoted as below. 

∆𝐺 = 4𝜋𝑟<𝜎 + =
>
𝜋𝑟>∆𝐺?   (14) 

The first term represents surface energy contribution, where σ is surface energy [J/m2]. 
Also, the second term indicates contribution of chemical potential, where ΔGv is chemical 
potential difference (Δμ) between the liquid and solid phases per unit particle volume. 

∆𝐺? =
@A∆B
?

    (15) 

∆𝜇 = 𝜇C − 𝜇&    (16) 

where N, v, μL, and μS are Avogadro constant [mol-1], molar volume of particles [m3/mol], 
chemical potentials of solutes in solution, and in a particle [J/molecule]. Also, Δμ is 
related to supersaturation ratio (X/Xs) shown below: 

∆𝜇 = 𝑘$𝑇 ln -
)
))
.   (17) 

where X and Xs are concentration in solution and saturation solubility of chemical species 
X. In the case of a supersaturation condition (X/XS > 1), Δμ becomes positive, namely 
ΔGv shows negative values. While, ΔGv shows positive value because Δμ becomes 
negative under below supersaturation (X/XS < 1). Furthermore, surface energy 
contribution that is the first term in eq. (14) is always positive value. Therefore, changes 
in ΔG for nucleation that is denoted by eq. (14) represent a curve with a maximum value 
corresponding to an energy barrier (En) (Figure 1.19).  
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Figure 1.19. Relationship between Gibbs’s free energy (ΔG) and particle radius (r) on the 
nucleation process, deduced by the classical nucleation theory. The changes in 
ΔG are calculated by a sum of the surface energy term and the volume energy 
term. Ec and rc represent the energy barrier of nucleation and critical radius for 
it. 

Although molecules uninucleate below the supersaturation because a system does not 
overcome En, molecules translate into nuclei when a concentration in a system reaches 
the supersaturation, in which this step corresponds to a solid-phase transition and the 
nucleus is defined as the initial formed solid with critical radius (rc) at the maximum value 
of ΔG. Subsequently, formed nuclei growth spontaneously because ΔG decreases with 
the increase in r. The values of rc and En is calculated following below. 

𝑟/ =
<D?

E# FGH **)
I
   (18) 

𝐸1 =
;JKD+?,

>E#FG,H **)
I
   (19) 

In summary, the reaction processes involved in LP formation of typical salt formation 
reaction in the nucleation-based scenario can be expressed as follows: 

(i) Salt formation reaction: A + B → C when [A][B] > K1 (20) 

(ii) Nucleation: C → N  when [C] > K2   (21) 

(iii) Particle growth and aggregation: C → P    (22) 

where C and N are molecules and nuclei; K1 and K2 are a solubility product and a 
nucleation threshold equaling Xs. The LP formation mechanism expressed by eqs. (20)-
(22) is commonly called the Nucleation and Growth (NG) model.[62, 114-115] There is also 
a model called the sol-coagulation model,[62, 87, 122] which considers diffusive solid sol 
particles between C (diffusive) and P (non-diffusive). However, this model is not included 
in the nucleation-based and phase-separation-based scenarios in this paper because it may 
show complex mechanisms that span the phase-separation-based scenarios described 
below. The proposed pattern formation mechanism based on the NG model is depicted in 
Figure 1.20. 
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Figure 1.20. Proposed formation mechanism of LP based on the NG model. (a) Firstly, 
diffusion of A and homogeneously pre-doped B form a gradient (pink curve of 
the concentration product ([A][B]). The salt formation reaction in eq. (20) 
proceeds at a position where [A][B] > K1, and (b) a concentration gradient of C 
is formed (green curve). (c) Subsequently, nucleation in eq. (21) occurs at a 
position when [C] > K2, and precipitates region is formed through following 
growth and aggregation processes in eq. (22). At the same time, this process 
consumes the surrounding C, thus forming a depletion region (blue region). The 
above processes (a)-(c) are repeated to form a periodic precipitation pattern. 

When a reservoir of A and a gel pre-doped with B come into contact, A diffuses into the 
gel and forms a concentration gradient of A (black curve in Figure 1.12a). Therefore, a 
gradient of concentration product between A and B ([A][B]) is formed (pink line). At a 
region where [A][B] exceeds K1, a salt formation reaction is triggered to generates C (eq. 
(20)), and a concentration gradient is formed according to this reaction (green curve in 
Figure 1.20b). Subsequently, C transforms into N by nucleation at a region where [C] > 
K2 (eq. (21)) (green region in Figure 1.20b). Since the formed N becomes P through 
particle growth and aggregation processes (eq. (22)), the concentration of C decreases 
significantly in this region, and C flows in from the surrounding region forming a 
"reverse" concentration gradient toward the P-forming region. This phenomenon leads to 
further growth/aggregation processes in the P-forming region and depletes the 
surrounding C. Thus, there is a region where [C] > K2 is not satisfied, namely nucleation 
is not progressive in the neighborhood of the P region, and this region corresponds to the 
depletion zone of LP. Therefore, the dynamics of nucleation in space determines an 
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alternating precipitation/depletion periodicity of LP. (xn+1/xn). For this reason, the 
nucleation-based scenario is so-called a “pre-nucleation” model. The RD equation of this 
scenario for numerical simulation can typically be given as[60, 68, 82, 87] 
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where a, b, c, and p are concentrations of A, B, C, and P; Da, Db, and Dc are diffusion 
coefficients of A, B, and C; k1 and k2 are rate constants of salt formation reaction and 
nucleation. The function of θ represents the Heaviside step function, that is, 𝜃(𝑋 − 𝐾) =
1  when [X] ≧ any threshold (K), whereas 𝜃(𝑋 − 𝐾) = 0  when [X] < K. Most of 
reaction systems in Liesegang experiments introduced in Sec. 1.6.2 includes the 
nucleation step. Therefore, understanding the nucleation-based scenario is basic and 
essential for revealing the underlying mechanism of the Liesegang phenomenon. Actually, 
mathematical modeling interpretations based on this scenario have helped us to 
understand the effects of many experimental conditions.[59-60, 71, 87] Despite the versatility 
of this nucleation-based scenario, the transition of LP geometries in reaction systems 
based on this scenario remains unexplored (Sec. 1.6.3). Furthermore, although this 
scenario is consistent and can describe a very wide range of phenomena in various 
reaction systems and experimental set-ups, MP law that is one of the tools used to evaluate 
its periodicity (eq. (8)) is only focused on the perspective of the relationship between 
concentration changes of A and B, namely the classical MP law alone may not be able to 
correctly interpret the various results in this scenario. Therefore, to understand the pre-
nucleation model, it is important to discuss the extensibility of the MP law based on more 
general parameters that can take into account the effects of various experimental 
conditions and to elucidate the mechanism of the pattern transition phenomenon from the 
viewpoint of nucleation. 
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1.7.3 Phase separation-based scenario (post-nucleation model) 

 On the other hand, we should consider another thermodynamic process to understand 
the phase separation-based scenario as describing in Sec. 1.7.1. The typical reaction 
processes in this scenario are shown as 

(i) Salt formation reaction: A + B → C when [A][B] > K’ (27) 

(ii) Phase separation: C → P      (28) 

where A and B are outer and inner electrolytes; C is a diffusive inter mediate such as sol 
particles; K’ is a threshold that is sufficient to trigger salt formation reactions and 
nucleation. Most of studies for this scenario insisted that C was produced by the salt 
formation reaction and phase separation of diffusive solid colloid particles as C formed 
discrete precipitation patterns.[123-125] Therefore, this scenario is called the "post-
nucleation" model because the process that determines the periodicity of the pattern is a 
process that occurs after nucleation. In order to distinguish whether the system is unstable 
enough to go through such the phase separation-based scenario, Derjaguin–Landau–
Verwey–Overbeek (DLVO) theory is used,[126] which is one of the theories to describe an 
aggregation dynamics of colloid particles in solution. This theory is expressed by a total 
potential energy between two particles (Wtot) calculated by a sum of two potential energy 
terms: van der Waals attraction (Wvdw) and electrostatic repulsion derived from the surface 
potential of particles (We) as shown in following equations.[127] 
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where A, r, and d are the Hamaker constant, particle radius, and interparticle distance 
between two particles; ε, 1/κ, and ψ0 are the dielectric constant, Debye length (in nm unit), 
and surface potential of a particle; q is a coefficient that depends on the type of electrolyte: 
0.304 (charge of cation: anion = 1:1, e.g. NaCl), 0.176 (2:1 or 1:2, e.g. CaCl2 and Na2SO4), 
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and 0.152 (2:2, e.g. MgSO4). Based on these equations, an example of Wtot can be 
illustrated as a function of r (Figure 1.21). 

 
Figure 1.21. Interparticle interaction as a function of interparticle distance between two 

particles. Electrostatic and van der Waals interactions provide repulsive and 
attractive interactions, respectively, between particles of the same composition. 
The sum of the electrostatic and van der Waals interactions that control the 
aggregation behavior is shown by the pink curve. 

From this figure, aggregation of the particles is inhibited due to the potential energy 
barrier when the repulsion between the particles is sufficiently effective (black curve). 
However, if the electrostatic repulsion decreases for some reason (e.g., decreasing in 
Debye lengthening due to increased electrolyte concentration or loss of surface charge), 
the barrier disappears and the system allows phase separation via spontaneous 
aggregation if particles (pink curve). Namely, this process can be regarded as the 
precipitation process that arises from an unstable state in Figure 1.18b that does not 
require a perturbation, unlike nucleation. Figure 1.22 shows a proposed mechanism of LP 
formation based on the phase separation-based scenario. 

 
Figure 1.22. Proposed formation mechanism of LP based on the phase separation-based 

scenario. (a) Firstly, diffusion of A and homogeneously pre-doped B form a 
gradient (pink curve of the concentration product ([A][B]). (b) Subsequently, a 
concentration gradient of C is formed and evolved as proceeding salt formation 
reaction in eq. (27) (yellow curve). (c) Spontaneous phase separation occurs 
when the DLVO potential of the system allows for aggregation. (d) Finally, 
discrete precipitation patterns arising from repeating steps (a)-(c). 
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The starting point of the pattern formation is the formation of a gradient in the 
concentration product due to the diffusion of A, as in the nucleation-based scenario 
(Figure 1.22a). Subsequently, C is produced by the salt formation reaction and nucleation 
following eq. (27), and the formed gradient of C evolves as proceeding the reaction 
(Figure 1.22b). When DLVO potential reaches a critical value meaning the energy barrier 
is 0, phase separation via spontaneous aggregation is trigged (Figure 1.22c). Finally, LP 
is formed by repeating these processes (Figure 1.22d). In a typical LP formation set-up, 
the concentration of the outer electrolyte is excessive and may have the effect of 
decreasing the Debye length. However, it was reported that this Debye length can be 
controlled by further adding other electrolytes, thereby modulating the LP periodicity.[59, 

128] Therefore, it is unclear whether the system had reached a thermodynamically unstable 
state that induces spontaneously precipitation, and the involvement of phase separation 
in the LP formation mechanism is unclear, in previous studies based on the above 
assuming the phase separation-based scenario with salt formation reactions. More 
troubling, all of these studies involve mixed nucleation to form colloidal particles, making 
it difficult to distinguish the discussion from a completely nucleation-based scenario in 
LP formation systems involving such salt formation reactions. Therefore, understanding 
LP formation based on the phase separation-based scenario progresses much more slowly 
than discussions based on the nucleation-based scenario, and this scenario validity is 
unclear. However, it is noted that many numerical simulation studies were carried out so 
far (Figure 1.23).[116-117, 129] These studies based on coupling RD equation with Cahn-
Hilliard equation[118-119] that can explain pattern formation through phase separation. 

 
Figure 1.23. Simulation results based on the phase separation scenario. (a) evolution of 

pattern formation and (b) relationship between spacing coefficient (p) and 
electrolytes concentrations, which were reprinted with permission from Ref. 
116. Copyright 1999 American Physical Society. 

However, since there is no experimental system that can faithfully verify these results, we 
have not been able to jointly utilize experiments and mathematical models, which is an 
important research routine in RD model research (Figure 1.1). 
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1.8 Purpose in this study 

 Formation of dissipative structures is one of the characteristic phenomena for 
nonequilibrium self-organization. In particular, self-organization with RD processes 
provides various spatiotemporal pattens with complex and/or regular periodicities. In 
order to understand such complex phenomena, it is essential to conduct multifaceted 
investigations using a combination of experimental and mathematical modeling. The BZ 
reaction and TPs, which are models of RD dissipative structures, have acquired 
practicality as models because their mechanisms and controllability have been clarified 
through numerous studies in the past. However, a comprehensive understanding of the 
mechanism of Liesegang phenomenon, which is a candidate model for RD pattern 
formation with precipitation due to solid-phase transition, has not been achieved even 
though more than 100 years have passed since its first discovery. Thus, Liesegang 
phenomenon has not established a robust position as a practical model different from 
other models such as BZ reaction and TP. In order to understand the mechanism, we 
should focus on two precipitation scenarios that is bifurcated depending on the 
thermodynamic state of the system, as described in Sec. 1.7: one is the nucleation-based 
scenario (pre-nucleation model), and another is the phase separation-based scenario (post-
nucleation model). As explained in section 1.6 onwards, the former has been justified in 
its scenario in LPs formation by many previous studies. As explained in 1.6 onwards, the 
former has been justified in its scenario in LPs formation by numerous previous studies. 
On the other hand, metrics to evaluate the patterns formed based on this scenario, 
especially the MP law, remain a classical formulation. The MP law specializes in 
evaluating the periodicity of changes in the concentration of electrolytes used for LPs 
formation. However, what essentially determines the LP periodicity should be the 
diffusion flux (Fdiff) associated with a diffusion of outer electrolytes and a reaction flux 
associated with the subsequent deposition formation. As mentioned in Sec. 1.2 and 1.6, 
the flux is closely related to the dissipative structure. Indeed, although the change in 
electrolyte concentration is one factor that can change the Fdiff, other effects (such as the 
volume effect of the reservoir) cannot be taken into account. Therefore, it is needed a 
discussion that directly correlates Fdiff with LP periodicity in order to further understand 
the nucleation-based scenario. Then, chapter 2 will directly demonstrate the relationship 
between LP periodicity and Fdiff, and combine the results with the MP law, which will be 
modified into a tool to evaluate the essential factors determining periodicity. Furthermore, 
in Chapter 3, we will discuss the factor of the transition of the LP geometries described 
in Sec. 1.6.3 from the kinetic point of view of nucleation that is the dominant process in 
this scenario. This transition phenomenon has been discussed from the viewpoint of ion 
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adsorption on the particles, but the effect of nucleation has not been discussed, even 
though all the reaction systems in which the transition phenomenon was observed include 
the process of nucleation. Therefore, we demonstrate the utility of the nucleation-based 
scenario by investigating the involvement of nucleation in this phenomenon. In contrast 
to the nucleation-based scenario, the phase separation-based scenario, which is another 
bifurcated scenario in the Liesegang phenomenon, is little understood, described in Sec. 
1.7.3. This is because the mathematical model for this scenario has been studied 
extensively but there is no experimental system that faithfully reproduces this scenario. 
Therefore, the construction of an experimental system based on this scenario provides an 
opportunity not only to clarify how phase separation that is the dominant process in this 
scenario is involved in the LP formation mechanism, but also to validate this scenario. It 
has been pointed out that this scenario may be closely related to exceptional class of LPs 
such as the helix pattern introduced in Sec. 1.6.3 and the geoscientific pattern described 
in Sec. 1.6.4.[86, 130-131] Therefore, understanding this scenario is essential to improve the 
status of the Liesegang phenomenon as a model. However, as mentioned in Sec. 1.7.3, all 
experimental demonstrations of this scenario so far have been discussed only in reaction 
systems where the above nucleation-based scenario may coexist. Therefore, in Chapter 4, 
we focus on this reaction system that induces precipitation formation without nucleation, 
and we aim to construct a new experimental system that can demonstrate the phase-
separation-based scenario by using this focused system. And finally, in Chapter 5, we 
summarize the reach of each thermodynamic bifurcated scenario in the Liesegang 
phenomenon, based on the findings of Chapters 2-4 as conclusions. Furthermore, future 
issues will be mentioned in this chapter. 
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Chapter 2 Modification of Matalon-Packter Law  

Based on a Diffusion Flux 

2.1 Introduction 

 The periodicity of LPs depends on concentrations of outer and inner electrolytes (Figure 
2.1).[62, 64, 83] 

 
Figure 2.1. (a) The value of p is changed with an initial concentration of outer electrolytes 

(a0). This figure was reprinted with permission from Ref. 64. Copyright 2013 
Elsevier. (b) Difference of interband spacing (Δxn) when an initial concentration 
of inner electrolytes (b0) was changed. This picture was reprinted with 
permission from Ref. 83. Copyright 2016 American Chemical Society. (c) 
Simulation results of changes in p with κ (= b0/a0) based on the NG model. This 
data was reprinted with permission from Ref. 62. Copyright 1998 American 
Physical Society. 

Figure 2.1a,b shows a clear dependence of spacing coefficient (p) on an initial 
concentration of outer electrolytes (a0) and inner electrolytes (b0). The initial 
concentration means the value before pattern formation (t = 0). Experimentally, we can 
see p decreases with the increase in a0 (Figure 2.1a), and decreases with the increase in 
b0 (Figure 2.1b). This trend was roughly consistent with the prediction of the MP law 
expressed in eq. (8). However, it is noted that since b0 is a variable of the decreasing 
function included in the MP law, its dependence may vary from system to system. 
Simulations based on the nucleation-based scenarios also clearly showed that p depends 
on the initial concentration of each electrolyte (Figure 2.1c). Therefore, MP law is a useful 
tool for evaluating and predicting periodicity changes of obtained LPs experimentally in 
the different electrolyte concentration. As discussed in Sec. 1.7.2, the determinant of the 
periodicity in the nucleation-based scenario is nucleation triggered by the evolution of the 
diffusion gradient of the outer electrolyte. In other words, LP formation is sensitive to 
changes in diffusion flux (Fdiff) of the outer electrolyte. Therefore, the classical MP law 
(eq. (8)) is specialized to reflect the modulation of Fdiff due to electrolyte concentration 
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changes, especially changes in a0. This is useful for evaluating a typical system such as 
the one shown in Figure 1.14. However, it was recently reported that the periodicity can 
be changed even under similar electrolyte concentration conditions by using the change 
in Fdiff caused by imposing an electric field[101, 103] or gel mechanical changes of gel[132] 
during the pattern formation. In such cases, the classical MP law that considers only 
electrolyte concentration changes was not applicable. Therefore, this classical law needed 
to be modified as necessary to essentially evaluate the effect of Fdiff in the nucleation-
based scenario.  
 It is known that Fdiff also depends on the volume of the outer electrolytes-containing 
solution reservoir in addition to a0.[133] In other words, Fdiff will change for different 
reservoir volumes even if a0 is the same. However, it has been few experimental studies, 
demonstrating the dependence of Fdiff on p at different reservoir volumes. This volume 
effect is determined by the equilibrium concentration of outer electrolytes in the reservoir 
(ares) after the reservoir and gel is contact with each other (Figure 2.2).  

 
Figure 2.2. (a) Initial diffusion concentration profile of outer electrolytes at t = 0. 

Equilibrium diffusion profile when (b) ares = a0 and (c) ares < a0. Even though 
a0 is the same, Fdiff is smaller in (c) than in (b). 

This value is calculated by using the reservoir volume (Vres) and the gel volume (Vgel) as 
below. 

𝑎-.4 = 𝑎8
]3%)

]3%)P]6%7
   (34) 

If Vres ≫ Vgel, ares can be approximated to a0 and the change in reservoir concentration 
due to diffusion into the gel can be ignored. Namely, the diffusion gradient of the outer 
electrolytes evolves while the reservoir concentration remains constant (Figure 2.2b). 
However, if the above assumptions are not satisfied, since the previous approximation is 
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no longer valid, ares becomes smaller than a0 (ares < a0). Therefore, the diffusion gradient 
changes with this decreasing ares (Figure 2.2c). Depending on these two conditions, there 
are two solutions to the one-dimensional Fick's diffusion law. [133] When the condition 
other than Vres ≫ Vgel, namely the amount of outer electrolyte in the reservoir is finite, the 
solution is: 

𝑎(𝑥, 𝑡) = ,+(
<√K_'

exp	 -@7
,

=_'
.  (35) 

where l, D, x, and t are the height of reservoir, the diffusion coefficient, distance from the 
reservoir, and time, respectively. On the other hand, when the condition of Vres ≫ Vgel, 
namely, the amount of outer electrolyte in the reservoir is almost infinite, the solution is:  

𝑎(𝑥, 𝑡) = 𝑎8(1 − 𝑒𝑟𝑓
7

<√_'
)   (36) 

where the function of erf represents the error function. Actually, simulations based on eqs. 
(35) and (36) with a0 set to the same value reported that the diffusion gradient extends 
farther in the infinite reservoir, namely, the Fdiff at the same position and time increases, 
as shown in Fig. 2.2b,c. Therefore, a detailed investigation of the effect of the volume 
effect on the periodicity of LP leads to a direct verification of the effect of Fdiff on the MP 
law. Furthermore, such differences in Fdiff due to volume effects are consideration when 
comparing LP periodicity in various studies, and may simplify the consideration of other 
experimental complicated effects on Fdiff in the nucleation-based scenario. However, there 
has been no experimental study to examine the volume effect so far. Therefore, the 
purpose of this chapter is to demonstrate the relationship between a0 and p under the 
above two volume conditions by both experiment and simulation, and to clarify the 
relationship between Fdiff and p based on the results. 
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2.2 Experiments  

2.2.1 Reagents and instruments 

 Agarose (fine powder) as a gel medium (Figure 2.3), copper (II) chloride dihydrate 
(CuCl2•2H2O) as the outer electrolyte, and potassium chromate (K2CrO4) as the inner 
electrolyte were purchased from FUJIFILM Wako Pure Chemical Industry (Japan). All 
reagents were used without further purification. The formed patterns were observed using 
a stereomicroscope system (Olympus SZ-61). Image analysis was performed using 
ImageJ software.  

 
Figure 2.3. Structure of agarose. 

 
2.2.2 Sample preparation and pattern formation 

 The agarose powder was added to ultra-purified water to be the concentration at 1.0 
w/w% and heated in a microwave oven to dissolve roughly it. Then, it was immediately 
heated at 90°C for 10 min with stirring at 150 rpm to dissolve it completely. A 
concentrated aqueous solution of K2CrO4 (typically 1.0 × 10-1 M) was added to this 
agarose solution to reach a final concentration of 1.0 × 10−2 M. This hot agarose sol was 
poured into a glass test tube (Æ =1.0 cm) to a gel height (h) of 12 cm and left at 18°C for 
6 hours to complete gelation. Subsequently, the test tube was placed upside down in a 
reservoir solution containing CuCl2 (0.50-2.0 M), and the top of the gel was completely 
immersed (Figure 2.4). 

 

Figure 2.4. Experimental setup to explore the volume effect (h: gel height, Æ: inner 
diameter of test tube). 
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As soon as this was done, Cu2+ started invading into the gel by the diffusion and reacted 
with CrO42- as below. 

Cu2+ + CrO42- → CuCrO4   (37) 

According to this reaction, precipitates of CuCrO4 was generated. This precipitation 
region expanded upward from the interface as the diffusion of Cu2+ proceeded. To keep 
the Cu2+ concentration in the reservoir uniform, the solution was stirred during the 
patterning experiments (Figure 2.4). In all cases, the reaction system was kept in an 
incubator at 18°C, and the patterning period was fixed at one week. 
 
2.2.3 Observation and analysis of obtained patterns 

 After the reaction, the test tubes were withdrawn from the CuCl2 solution and the light 
transmitted through each sample was observed using a stereomicroscope equipped with 
a CCD camera. In the image analysis, the gray value change along the diffusion direction 
of Cu2+ from the interface was determined using the line profile tool. In the image analysis, 
the line profile tool was used to determine the change in gray value along the diffusion 
direction of Cu2+ from the interface, and the position of the peak of the gray value was 
defined as xn (Figure 2.5). 

 

Figure 2.5. Typical example of obtained line profile. The pink circle corresponds to the 
band position (xn). 

 
2.2.4 Determination of the reservoir volume 

 The volume of the Cu2+ reservoir for each of the finite and infinite conditions was 
determined based on eq. (34). According to the Sec 2.2.2, Vgel was calculated as 9.5 mL 
from h and Æ, and was fixed at this value in all experiments. As a small reservoir that 
corresponds the finite condition, I adopted Vres = 5.0 mL. When this condition, the 
equilibrium concentration of Cu2+ in the reservoir ([Cu2+]res) was calculated as 
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0.34×[Cu2+]0, meaning that Cu2+ concentration in the reservoir decreases by about 65% at 
equilibrium. This situation represented the same condition shown as Figure 2.2c. On the 
other hand, for Vres = 50 mL, [Cu2+]res = 0.84×[Cu2+]0, indicating that the Cu2+ 
concentration in the reservoir decreased by only about 15% at equilibrium. Therefore, 
compared to the 5 mL small reservoir, the 50 mL larger reservoir maintained a higher 
concentration after pattern formation, which corresponded the situation shown as Figure 
2.2b.  
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2.3 Results and discussion 

2.3.1 Pattern formation with a small reservoir 

 Figure 2.6 shows results of formed patterns with the small reservoir and analysis based 
on spacing law (eq. (6)) when [Cu2+]0 was changed from 0.5 to 2.0 M. From near the top 
green edge (the interface between the CuCl2 solution and the gel) of the gel in obtained 
images (Figure 2.6a-d), a dense precipitation region of CuCrO4 was formed and expanded 
with the diffusion of Cu2+ until half the length of the gel, followed by a discrete 
precipitation band below it. This was because the Fdiff near the interface was too high, and 
the fine balance required for LP formation by the RD process was further satisfied in the 
gel only when the Fdiff was sufficiently reduced. As evidence of this effect, this dense 
region expanded and the discrete band formation position was farther from the interface 
with the increase in [Cu2+]0 (Figure 2.6a to d) because Fdiff increased as [Cu2+]0. At the 
same time, as [Cu2+]0 increased, the green translucent region without precipitates 
expanded from the edge of the gel. Although the expansion of the dense region was within 
our expectation, the expansion of the green colored translucent region with the increase 
of [Cu2+]0 was unexpected. Previous studies have shown that as ionic strength increases, 
the structure of the agarose gel is disrupted by local aggregation of agarose chains.[134] In 
LPs formation, it is important that the precipitates are immobilized by the gel network.[20] 
Therefore, this disturbance of the gel structure might have interfered with this effect. 
However, it was necessary to analyze a time-course change using time-lapse observation 
and other methods in order to clarify this effect. In any case, this region did not preclude 
the analysis of periodicity based on the spacing law (eq. (6)) with multiple bands because 
the dense and translucent regions were not included in spacing law. Then, we carried out 
the spacing analysis for Figure 2.6a-d. Figure 2.6e shows the relationship between the 
xn+1/xn ratio and the number of bands (n). For [Cu2+]0 = 0.5 M (Figure 2.6e●), xn+1/xn 
increases as n increases from 1 to 4, eventually reaching a constant value as n increases. 
The reason for this initial increase could be understand that the RD process had not 
reached a steady state due to excess Fdiff in the early stages of band formation. This initial 
increase and subsequent saturation of xn+1/xn was also observed for other values of [Cu2+]0 
(Figure 2.6e▲-▼). However, the saturation value of xn+1/xn decreased with increasing 
[Cu2+]0 (corresponding to a0 in eq. (8).), which is consistent with the prediction from the 
classical MP law. 



 
 

 -43- 

 
Figure 2.6. Images of obtained patterns with the small reservoir (Vres = 5.0 mL) at [Cu2+]0 

= (a) 0.5 M, (b) 1.0 M, (c) 1.5 M, and (d) 2.0 M. The pair of arrows indicates 
the 1st precipitate band (defined as n = 1) in the analysis based on spacing law. 
(e) Plot of spacing law (eq. (6)): changes in xn+1/xn with n ([Cu2+]0 = ●: 0.50 M, 
▲: 1.0 M, ■: 1.5 M, and ▼: 2.0 M).  

 
2.3.2 Pattern formation with a large reservoir 

 Since such experiments using a few mL of reagent are realistic and easy to set up, similar 
LP experiments using small reservoirs have been demonstrated in the past.[69, 108, 123] 
Indeed, the previous one with the CuCrO4 precipitates system used Vres:Vgel = 1: 3.5,[123] 
and [Cu2+]res was calculated as 0.22× [Cu2+]0 in this condition. This condition 
corresponded to a truly finite condition; however, a distinct LP was formed. Thus, it was 
difficult to see the volume effect from the clarity of the resulting pattern. Therefore, 
similar experiments with the larger reservoirs were needed to explore the difference in 
the effects of the smaller and larger reservoirs. However, to the best of our knowledge, 
few experiments have been reported using a large reservoir with a volume is sufficiently 
larger (Vres ≫ Vgel) than the typical experiment described above (Vres < Vgel). Therefore, 
we then carried out the same experiments with the large reservoir (Vres = 50 mL ≫	Vgel = 
9.5 mL) (Figure 2.7). Figure 2.7a-d shows obtained patterns in this condition with the 
same [Cu2+]0 values as the conditions for the small reservoir. These patterns were 
generally similar to the patterns obtained in the case of the small reservoir (Figure 2.6a-
d). However, both the front of the periodic banding and the dense region appear to be 
more advanced than the small condition, which is probably due to the relatively large Fdiff. 
As a possible reason for the expansion of the dense region, the aggregation dynamics of 
CuCrO4 colloidal particles is a key process, which is promoted by the increase in ionic 
strength due to high Fdiff of Cu2+. From DLVO theory (Sec. 1.7.3), the energy barrier 
determining the aggregation dynamics depends on a surrounding ion concentration (ionic 
strength) because Debye length included in the term of electric repulsion is modulated by 
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it.[127] Previous studies have investigated the effect of ionic strength on the geometrical 
changes in LPs and have shown that the width of the band increases with increasing ionic 
strength[128] and that the effect of ionic strength was related to the kinetics of particle 
growth and aggregation in the RD process based on the RD simulation.[59] Therefore, the 
large reservoir has a higher Fdiff, which promote the aggregation of colloidal particles, 
namely reduce the resolution of the bands. This is presumed to cause the bands to coalesce 
into regions of densification at positions where would have been discrete in the small 
reservoir. Furthermore, the relationship between xn+1/xn and n in the large reservoir is 
shown in Figure 2.7e. As in the small reservoir, xn+1/xn approaches constant around n = 4 
for all [Cu2+]0, and this constant value also decreases with increasing [Cu2+]0. Thus, the 
MP law can be applied to both small and large reservoirs, and the classical MP law found 
to be useful when the reservoir volumes are same. 

 
Figure 2.7. Images of obtained patterns with the large reservoir (Vres = 50 mL) at [Cu2+]0 

= (a) 0.5 M, (b) 1.0 M, (c) 1.5 M, and (d) 2.0 M. The pair of arrows indicates 
the 1st precipitate band (defined as n = 1) in the analysis based on spacing law. 
(e) Plot of changes in xn+1/xn with n ([Cu2+]0 = ●: 0.50 M, ▲: 1.0 M, ■: 1.5 M, 
and ▼: 2.0 M).  

 
2.3.3 Comparison of 1+p between small and large reservoirs 

Figure 2.8 shows the average saturation of xn+1/xn (namely 1+p) in Figures 2.6e and 2.7e 
as a function of [Cu2+]0 in the large and small reservoirs. For a small reservoir (Figure 
2.8●), 1+p gradually decreases, and changes with conditions of [Cu2+]0 are in good 
agreement with the approximate fitting curve drawn based on the classical MP law in eq. 
(8) (dashed line). Similar behavior was observed even with the large reservoir (Figure 
2.8▲). However, the value of 1+p is lower than the value under the small volume 
condition at the same [Cu2+]0 (e.g. for [Cu2+]0 = 1.0 M, 1+p = 1.030 with the small 
reservoir, while 1.026 with the large reservoir). Based on eq. (8), this result was difficult 
to interpret, because the classical MP law describes only the dependence of p on the 
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electrolyte concentration, and under such same [Cu2+]0 conditions p should be equal. This 
difference could have been caused by a change in the functions of F(b0) and G(b0) in the 
classical MP law. However, the past study denoted that these functions depended only 
reagent type and b0.[62] Therefore, the influence of these functions can be ignored. Thus, 
such lowering the p value by in the case of using the large reservoir cannot be explained 
by the classical MP law. Namely, when b0 is fixed, it is suggested that the limit of 
describing the effect of Fdiff caused by other than changes in a0. However, previous studies 
of chemical LP formation did not take into account the above volumetric effects. Thus, 
this effect can be important when comparing systems with the same reservoir 
concentration but different volumes. 
 

 
Figure 2.8. Plot of 1+p as a function of [Cu2+]0. The value of p is calculated by the average 

saturation value of xn+1/xn in Figures 2.3e and 2.4e. Black circles and red 
triangles represent the data of the small and large volume conditions, 
respectively. Dashed line is fitting curve based on eq. (8). 

 
2.3.4 Numerical simulation based on RD equation 

 In order to interpret the volume effects observed in Sec. 2.3.1-2.3.3 in direct relation to 
the Fdiff and LP formation dynamics, numerical simulations using the RD equation have 
been performed in this section. The RD equation of an LP system based on the nucleation-
based scenario usually consists of the terms of electrolyte diffusion, reactions between 
electrolytes, nucleation, particle growth, aggregation, and precipitation, as described in 
Sec. 1.7.2. In particular, LPs formation by salt formation reactions have been modeled by 
the pre-nucleation model so far.[60, 68, 82, 87] In previous studies, simulations using this 
model were in good agreement with the experimental results using salt formation 
reactions, so this study adopted this model.[60, 71, 115] The expected reactions in this study, 
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nucleation, growth, and precipitation processes are: 

Cu2+(aq) + CrO42-(aq) → CuCrO4(aq)  when [Cu2+][CrO42-] ≥ K1   (38) 

mCuCrO4(aq) → CuCrO4(s)   when [CuCrO4] ≥ K2   (39) 

where m is the number of salt molecules in a CuCrO4 colloid particle, and these 
reactions represented based on eqs. (20)-(22). Based on eqs. (38) and (39), the RD 
equations in this study can be written as follows: 

(+
('
= 𝐷+

(,+
(7,

− 𝑘;𝑅(𝑎, 𝑏)𝜃(𝑎𝑏 − 𝐾;)     (40) 

(9
('
= 𝐷9

(,9
(7,

− 𝑘;𝑅(𝑎, 𝑏)𝜃(𝑎𝑏 − 𝐾;)     (41) 

(/
('
= 𝐷/

(,/
(7,

+ 𝑘;𝑅(𝑎, 𝑏)𝜃(𝑎𝑏 − 𝐾;) − 𝑘<𝑐𝜃(𝑐 − 𝐾<) − 𝑘>𝑐𝑁(𝑐, 𝑝)  (42) 

(L
('
= 𝑘<𝑐𝜃(𝑐 − 𝐾<) + 𝑘>𝑐𝑁(𝑐, 𝑝)      (43) 

where a, b, c, and p are the concentrations of A (Cu2+), B (CrO42-), C (CuCrO4(aq)), and 
P (CuCrO4 precipitates); DA, DB, and DC are the diffusion coefficients of these species; 
and k1, k2, and k3 are the rate constants for salt formation reaction, nucleation, and growth, 
respectively. We used no-flux boundary conditions at the end of the calculation space (1 
cm×14.5 cm). Also, the function R is the reaction function given by  

𝑅 = 𝛿(𝑎, 𝑏)[𝑐- + (1 − 𝑐-)𝑟]      (44) 

where cr is the coefficient determining the degree of stochasticity of the reaction (0 ≤ cr 
≤1), and r is a random number uniformly distributed within [0, 1]. The value of 𝛿 
depends on the electrolyte concentrations: 𝛿 = a if a < b, and 𝛿 = b if a > b. Functions 
of 𝜃(𝑎𝑏 − 𝐾;) and 𝜃(𝑐 − 𝐾<) are step functions: 𝜃(𝑎𝑏 − 𝐾;) = 1 and 0 when ab – K1 
≥ 0 and < 0, and 𝜃(𝑐 − 𝐾<) = 1 and 0 when c – K2 ≥ 0 and < 0, respectively. In addition, 
the function N(c, p) represents the growth and precipitation pathway at a banding position 
xp with pre-formed precipitates: N(c, p) = 1 when either (i) p(xp) > 0 or (ii) when p(xp) = 
0 but p(xp+1) > 0 and c(xp) > growth threshold (K3), otherwise N(c, p) = 0. This function 
implies that the growth-precipitation process occurs only at and/or near pre-existing 
precipitates. Furthermore, the initial parameters used in our simulation are as follows: a0 
= 0.50–2.0 M, b0 = 1.0 × 10-2 M, Da = Db = Dc = 1.0 × 10-5 cm-2 s-1, k1 = 1.0 M-1 s-1, k2 = 
k3 = 1.0 s-1, K1 = 1.0 × 10-12 M2, K2 = 3.0 × 10-3 M, K3 = 2.0 × 10-3 M, and total time t = 
604800 s. The five-point formula with the space grid Δx = 0.01 cm was employed on a 1 
cm × 14.5 cm grid (in which an area of 1 cm × 12.0 cm is the reaction space corresponding 
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to the gel in experiments, and another one of 1 cm × 2.5 cm is the reservoir of A), and the 
fourth-order Runge-Kutta method with time step Δt = 1 s was used to integrate the semi-
discretized ordinary differential equations. This simulation used K1 = 1.0 × 10-12 M2, 
however the correct K1 value for CuCrO4 is much higher (~10-6 M2).[135] However, 
previous study’s RD simulations were performed without considering the correct K1.[71] 
Since the experimental results were faithfully reproduced in such condition, it is unlikely 
that this difference will affect the simulation results. Also, the value of DA-C was chosen 
close to an actual value of Cu2+ diffusion in water and a hydrogel.[136-137] Therefore, the 
simulated values, especially the diffusion concentration profile of A, were close to the 
actual results of Cu2+ diffusion. Furthermore, the most important issue of parameters 
setting in this simulation is how to incorporate the effects of reservoir volume. 
Experimentally, we only changed the volume of the reservoir with constant stirring to 
maintain a constant uniform concentration of the reservoir solution, however it was 
difficult to incorporate such a stirring effect. If this uniformity cannot be guaranteed 
diffusion in the reservoir cannot be ignored in simulations with large reservoirs and the 
concentration gradient in the reservoir must be considered. Instead, we made the reservoir 
concentration (ares) a function of elapsed time (expressed as ares(t)). In the condition 
corresponding to the small reservoir, this concentration decreases over time as A diffuses 
into the reaction space according to the Fick’s law, namely the concentration in the 
reaction space and the concentration in the reservoir approaches equilibrium. Therefore, 
ares(t) decrease with the amount of diffusion over time in this condition, which is called 
the "decreased ares(t) condition" in this study. This corresponds to the behavior described 
in Figure 2.2c. In contrast, in a sufficiently large reservoir, the concentration should 
remain fairly constant during pattern formation. Therefore, in this study, ares(t) is fixed at 
a constant value, which was achieved by applying the Dirichlet boundary condition at the 
boundary between the A reservoir and the reaction space. Thus, this condition is called a 
"fixed ares(t) condition" and must correspond to the behavior described in Figure 2.2b. 
  Figure 2.9 shows simulation results of concentration profile of P with different a0 both 
the decreased ares(t) and the fixed ares(t). A clear discrete precipitation profile was formed 
in all conditions and there is no significant visual difference. From this figure, xn then was 
read as a position of each peak. Figure 2.10 shows simulation results of xn+1/xn under 
decreased and fixed ares(t) conditions. When the decreased ares(t) condition, xn+1/xn is 
almost constant for all n, and this constant value increases as a0 decreases, then becomes 
maximal at a0 = 0.5 M for all given a0 values (Figure 2.10a). However, the experimentally 
observed increase in xn+1/xn when n was small was not reproduced in the simulation. 
Based on mentioned earlier in the discussion for Figure 2.6, this discrepancy might be 
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due to the exclusion of unsteady states from the simulation. Such unsteady states 
corresponded to excessive aggregation or precipitation, which produces the dense 
precipitation region (without discrete bands) in the experiment, but not in the simulation. 
In other words, the simulation reproduced only the band structure in experiments, where 
the ratio of xn+1/xn converges to a constant. This is because our simulation model considers 
only the pure RD process, which consists of a combination of diffusion, nonlinear 
chemical reactions and precipitation, and excludes other related experimental factors such 
as variation in nucleation probability due to gel structure heterogeneity. However, such 
simplifications are very important to demonstrate the effect of experimentally controlled 
factors (e.g, the condition of reservoir in this study) on the pattern formation mechanism. 
Similar to the decreased ares(t) condition in Figure 2.10a, the constant value also becomes 
maximal at a0 = 0.5 M in the case of the fixed ares(t) condition (Figure 2.10b). To compare 
the results of the two conditions in terms of the MP law, the value of 1+p is estimated 
using the same procedure shown in Figure 2.8 and plotted against a0 in Figure 2.10c. As 
a result, it was found that 1+p gradually decreases with increasing a0 under both ares(t) 
conditions. And these data shows good agreement with the fitted curves form the classical 
MP law. Furthermore, in the condition where ares(t) is decreasing (Figure 2.10c●), the 
value of 1+p shows a maximum value at a0 = 0.5 M and finally decreases to 1.12 at a0 = 
2.0 M. Similarly, in the condition where ares(t) is fixed (Figure 2.10c▲), the value of 1+p 
shows a maximum value at a0 = 0.5 M and gradually decreases as a0 increases. For the 
same a0, 1+p is smaller in the condition with fixed ares(t) than in the condition with 
decreased ares(t), which is also good agreement with the experimental results in Figure 
2.8. The difference between the two ares(t) gives rise to a difference in the evolution of 
the concentration gradient (shown as Figure 2.2), namely, in the change in Fdiff as 
expressed in equations (35) and (36). Therefore, the experimentally observed difference 
in 1+p when changing the volume of the CuCl2 reservoir was caused by the difference in 
diffusion behavior expressed by the eqs. (35) and (36). 
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Figure 2.9. Simulation results of concentration profiles of P under different a0. (a) 

deceased ares(t) and (b) fixed ares(t) conditions. The xn value is a position where 
existence of a peak for p. 

 
Figure 2.10. Variation of xn+1/xn with any a0 values under two reservoir conditions: (a) 

decreased ares(t) and (b) fixed ares(t) (a0 = ●: 0.5 M, ▲: 1.0 M, ■: 1.5 M, and 
▼: 2.0). (c) Dependency of 1+p to a0. The black circles and green triangles 
represent the data under decreased ares(t) and fixed ares(t). The dashed line 
shows the curve approximated based on eq. (8). 
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 In order to discuss the difference in the 1+p due to the reservoir condition even at the 
same a0 from the perspective of evolution of the diffusion gradient, the time-course 
changing of the diffusion profile under the two conditions is shown in Figure 2.11. This 
simulation was performed by deleting terms for all reaction substrates except A, namely, 
applying Fick's diffusion equation using only the diffusion term in eq. (40) to obtain the 
time course of the diffusion gradient under each reservoir condition. The time variation 
of the concentration of A was simulated based on Fick's law for the diffusion behavior 
with decreasing and fixed ares(t) corresponding to equations (35) and (36). Figure 2.11a 
and b show the time evolution of the diffusion profiles every 21 hours when ares(t) was 
decreased from a0 = 0.5 M (the small reservoir) and ares(t) was fixed with a0=0.5 M (the 
large reservoir). Under the decreased ares(t) condition, electrolyte in the reservoir was 
gradually decreased with time, as the diffusion profile evolved toward the edge of reaction 
space (Figure 2.11a) due to the diffusion of A. On the other hand, electrolyte concentration 
in the reservoir under the fixed ares(t) condition remained constant with time (Figure 
2.11b). According to Fick's law, Fdiff is proportional to the concentration gradient,[55] and 
so a steeper diffusion gradient should promote diffusion. Namely, the concentration 
gradient in the case of decreased ares(t) condition becomes gentler as A is depleted, while 
for the fixed ares(t) condition the concentration gradient remains steep. Indeed, Fdiff for 
the case of fixed ares(t) is relatively high with time. This fact becomes clear when 
comparing the area under the final diffusion profile at x > 0 cm after 168 hours (Figure 
2.11c). For the same a0 = 0.5 M, the area under the fixed ares(t) condition (dashed line) is 
larger than the area under the decreases ares(t) condition (solid line). 
 

 
Figure 2.11. Diffusion concentration profile of A every 21 h under (a) decreased and (b) 

fixed ares(t) conditions, both with a0 = 0.5 M. (c) Final diffusion profiles after 
168 h for different a0 values. The solid and dashed line represent the decreased 
and fixed reservoir conditions, respectively. The pale gray area at x < 0 cm 
represents the reservoir region. In addition, the interface between the reservoir 
and the reaction space is defined as x = 0 cm, which is needed as a reference to 
find xn. 
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Furthermore, the fact that the gradient was still maintained in all profiles after 168 h 
indicates that a system has not reached equilibrium state. Therefore, the actual [Cu2+]res 
in the large reservoir after 168 h was higher than the corresponding the calculated [Cu2+]res 
equilibrium value of 0.84×[Cu2+]0 in the experimental section. On the other hand, the 
actual [Cu2+]res after 168 h could be calculated by comparing the amount of diffusing Cu2+ 
(ndiff) with the initial amount in the reservoir (nres). ndiff is calculated using the following 
equation:  

𝑛%022 = (∫ [𝐶𝑢<P]%022𝑑𝑥)
U
8 × 𝑆 × 10@>  (45) 

where [Cu2+]diff is the concentration of Cu2+ at each position (x > 0) in Figure 2.11c, and 
its integral value corresponds to the area under each profile at x > 0 in Figure 2.11c. S is 
the cross-sectional area of the gel (cm2) calculated from Æ and h. Also, nres is calculated 
by multiplying [Cu2+]0 and Vres. The calculation of eq. (45) allows us to check whether 
the large reservoir condition used in this study (Vres = 50 mL) corresponded the infinite 
condition represented by eq. (36). As a result, [Cu2+]0 = 2.0 M had nres = 1.0×10-1 mol for 
the large reservoir (Vres = 50mL). The value of ndiff after 168 h was calculated from eq. 
(45) to be 8.3×10-3mol. Thus, ndiff/nres ≈ 1/10, i.e. the actual [Cu2+]res was 0.92×[Cu2+]0. 
Therefore, since the Cu2+ concentration in the reservoir hardly changed, it was appropriate 
to use a fixed ares(t) condition to simulate the large reservoir conditions used in the 
experiment. 
 
2.3.5 Expression of periodicity as a function of Fdiff 

 As we mentioned above, Fdiff was the key factor determining the periodicity of LPs.[101, 

103, 132] Recently, it has been reported that when Fdiff of OH- (as an outer electrolyte) was 
controlled using a polymer hydrogel containing carboxylic acid residues as the reaction 
medium, the morphology of the obtained pattern was changed between band (ring) and 
spot structures.[125] The common denominator in all the above studies is that Fdiff is 
strongly involved in the LP formation mechanism, irrespective of the intrinsic or extrinsic 
control techniques used in the system. However, the classical MP law did not take into 
account factors other than the initial concentrations of outer and inner electrolytes, in 
particular the variation of Fdiff. Therefore, by expressing the MP law directly in terms of 
Fdiff, it is possible to describe the periodicity modulation of LP by reservoir and other 
conditions in a unified way. Then, we attempted to estimate the Fdiff for each reservoir 
condition using the following procedure. Firstly, Fdiff was defined as the amount of Cu2+ 
diffusion per unit time and unit area (mol cm-2s-1). Although it actually changed with time 
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because diffusion is proportional to the diffusion gradient, we assumed it to be a constant 
during the pattern formation as: 

𝐹%022 = 𝑛%022/2𝑆𝑡   (46) 

where t = 604800 s (corresponding to 168 h). This estimated Fdiff represents the average 
diffusion flux during pattern formation according to the above approximation. To estimate 
the Fdiff, we first calculated ndiff under each reservoir condition and [Cu2+]0 using equation 
(45) and Figure 2.11c. The obtained values of ndiff are shown in Tables 2.1 and 2.2.  
 
 Table 2.1 Values of ndiff and Fdiff for all [Cu2+]0, calculated using eqs. (45) and (46) in the 

  small reservoir (decreased ares(t)) condition. 

 

 
 Table 2.2 Values of ndiff and Fdiff for all [Cu2+]0, calculated using eqs. (45) and (46) in the 

  large reservoir (fixed ares(t)) condition. 

 

We then converted the calculated ndiff into Fdiff using eq. (46) and the results of the 
conversion to Fdiff are also shown in Tables 2.1 and 2.2. The above procedure converted 
the [Cu2+]0 for each reservoir condition into the corresponding Fdiff via ndiff and 
transformed the plot of the classical MP law as a function of [Cu2+]0 into a modified one 
as a function of Fdiff (Figure 2.12). While Figures 2.8 and 2.10c showed that the small and 
large reservoirs had different values of 1+p regardless the same [Cu2+]0, the 
experimentally obtained value (1+pexp) gradually decreases with increasing Fdiff (Figure 
2.12a) in the case of re-plotted by using Fdiff and finally settles at about 1.02. 
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Figure 2.12. Variation of obtained 1+p as a function of estimated Fdiff from (a) experiments 
and (b) simulation. The closed circle and triangle indicate data for the small 
(decreased ares(t)) and large (fixed ares(t)) reservoir conditions. The dashed lines 
show the fitted curves based on the equation replacing a0 with Fdiff in eq. (8). 

Furthermore, the plot agrees well with the fitted curve based on the modified equation (8) 
where a0 was replaced by Fdiff (dashed line). Similarly, the simulated value (1+psim) 
gradually decreases and converges to a constant value (Figure 2.12b), and in good 
agreement with the fitted curve and the experimental results. It is therefore clear that the 
change in periodicity due to reservoir conditions is correctly described by Fdiff, which is 
estimated by the time evolution of the diffusion gradient profile, instead of pre-defined 
[Cu2+]0 as used in the classical MP law. This practical expression using Fdiff can also be 
applied to previous work where Fdiff was controlled without changing the electrolyte 
concentration (as discussed in the Introduction). As Fdiff increases, the local 
supersaturation near the reservoir increases. This results in the formation of a band of 
precipitates is closer to the interface and a decrease in 1+p. This explains how 1+p can 
vary with reservoir conditions for the same [Cu2+]0. From the above consistent results, 
when discussing the spatial periodicity in various LP systems, it is necessary to modify 
the MP law by using Fdiff instead of a0 to describe the dependence of diffusion behavior 
caused by other than changes in electrolyte concentration (e.g. the volume effect). This 
will increase the versatility of the MP law. 
  



 
 

 -54- 

2.4 Conclusions 

 The effect of the volume of the reservoir on the periodicity of the formed LP was 
experimentally investigated in this study. Good agreement with the classical MP law was 
obtained for both large and small volumes, however different values of 1+p were obtained 
for the same [Cu2+]0. This result was inconsistent with the classical MP law, which 
describes 1+p as a function of the initial electrolyte concentrations only. The reason for 
this discrepancy was investigated on the basis of RD simulations, after introducing 
reservoir conditions suitable for temporal concentration changes in the reservoir. As 
expected, Fdiff was higher when a larger reservoir was used instead of a smaller one for 
the same [Cu2+]0. We then determined the value of 1+p for the two reservoir conditions 
as a function of the Fdiff estimated by the final diffusion gradient from both experiment 
and simulation. The results showed that 1+p was almost identical for these reservoir 
volume conditions when plotted as a function of Fdiff instead of a0 as used in the classical 
MP method. Furthermore, this behavior was not only observed experimentally, but was 
also reproduced in simulations incorporating Fdiff. Thus, the classical MP method can be 
modified to be a function of Fdiff instead of a0, to accurately describe systems with the 
same a0 but different diffusion gradients. This modification leads to a scaling of the MP 
law for a more tool to evaluate LP formation under the nucleation-based scenario. 
However, this modification of the MP law only applies to the outer electrolyte and the 
influence of the inner electrolyte on the formation mechanism is unknown. Further 
systematic investigations are needed to clarify the relationship between the inner 
electrolyte and the MP law, in order to build a more robust tool. To the best of our 
knowledge, this is the first quantitative example of the relationship between LP 
periodicity and the diffusion flux, a key parameter characterizing the dissipative structure. 
This work will allow us to read the periodicity of the analogous LPs formed by the 
nucleation-based scenario in nature, and to understand the nonequilibrium environment 
to form of them, namely the conditions of the fluxes. 
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Chapter 3 Revealing the Factor of Geometrical Transition 

Based on a Spatial Modulation of Nucleation 

3.1 Introduction 

 Most of LPs formed in experiments show the regular-type introduced in Sec. 1.6.3, 
where an interband spacing (Δxn) increases linearly with increasing xn (Figure 3.1 black 
line). This relationship is shown in eq. (7), which is derived from the spatial law. However, 
it has been reported that the equidistant-type (Figure 3.1 green line) and the revert-type 
(Figure 3.1 yellow line) was rarely formed in some salt formation systems (e.g. silver 
halides[105-107, 138] and PbCrO4[108-109, 139]).  

 

Figure 3.1. Variation of Δxn as a function of xn in cases of three types of LPs. 

These exceptional patterns are characterized by the spontaneous formation of structures, 
even though they involve a reaction system similar to that of the regular-type of pattern 
formation. As we mentioned Sec. 1.7.2, the periodicity in the nucleation-based scenario 
is defined by the nucleation process. Actually, my previous study revealed that 
modulating a nucleation threshold (K2) that is a controlling parameter of nucleation rate 
in Liesegang reaction processes controlled the regular-type LP periodicity.[60] Thus, 
although the kinetics of nucleation is an important parameter for understanding the self-
organization process in the nucleation-based scenario, few studies have discussed the 
transition of geometries to the above-mentioned exceptional LPs in terms based on it. In 
nature, especially in geological analogue patterns such as agate rocks, complex 
periodicities consisting of single or combined patterns of such transitions are found.[140] 
Therefore, understanding exceptional LP formation in terms of nucleation is an essential 
process in modelling the formation of these similar patterns.  

 In this context, the previous simulation study based on the nucleation-based scenario 
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showed that a spatiotemporal K2 modulation controls such transition phenomena (Figure 
3.2).[102]  

 

Figure 3.2. Pattern formation by numerical simulation based on the nucleation-based 
scenario in (a) fixed K2 and (b) spatial decreased K2. In the former condition a 
regular-type was formed, while in the latter an equidistant-type of LP was 
formed. These figures were reprinted with permission from Ref. 102. Copyright 
2008 Royal Society of Chemistry. (c) Scenario of pattern transition based on 
the spatial distribution of K2. 

When K2 was distributed spatially, which is a condition typically expected in LP 
formation (Figure 1.20), the regular-type was formed (Figure 3.2a). On the other hand, 
the equidistant- or revert-type were formed when K2 was decreased further away from the 
interface of the gel (Figure 3.2b). Therefore, this simulation indicated that the spatial 
distribution of K2 determines the pattern periodicity whether the regular-type or 
exceptional types (Figure 3.2c). Since K2 is an equilibrium constant, the simplest way to 
spatially modulate it is to make the temperature of the system non-uniform. However, it 
was reported that such temperature changes not only modulated the balance of the 
elementary processes of LP formation, but also induced unexpected morphological 
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changes (e.g. helix formation).[123] Therefore, this seemingly simple technique highlights 
the factors other than nucleation kinetics, making it difficult to focus on the importance 
of nucleation. While, it has been found that the concentration of the gel modulates only 
K2 and thus controls the periodicity of the pattern (Figure 3.3).[71]  

 
Figure 3.3. (a) Difference of nucleation rate between in a solution and a gel. (b)  Variation 

of Δxn with the change in an agarose concentration, which was reprinted with 
permission from Ref. 71. Copyright 2008 American Chemical Society. 

The hydrogel is consisted of network structure of hydrophilic polymers in water, which 
is acting as a nucleation cite.[70, 141] In other words, it shows homogeneous nucleation in 
clean solutions, whereas heterogeneous nucleation occurs preferentially in gels (Figure 
3.3). Therefore, gels promote nucleation more than solutions, and this promotion is 
proportional to the density of the gel, namely the concentration, because the gel network 
is denser in proportion to the concentration.[134] The above previous studies have found 
that increasing gel concentration actually promotes nucleation, namely decreases K2, and 
that the pattern becomes finer with increasing gel concentration (Figure 3.3). However, 
all previous studies of LPs formation have used mono-layered gels with spatially uniform 
K2, so that the variation of K2 remains within a constant spatial change (Figure 3.4a). 
Therefore, this study focused on modulating the spatial distribution of the gel 
concentration by making multi-layered gels with different gel concentrations as the most 
optimal method to modulate the spatial distribution of K2 (Figure 3.4b). The aim of this 
chapter is to discuss the transition of LP's geometries based on such a spatial modulation 
of K2. 
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Figure 3.4. Illustration of gel preparation based on (a) a conventional study and (b) this 
study. The K2 distribution is correlated with the gel concentration distribution.  
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3.2 Experiments 

3.2.1 Reagents and instruments 

 Agarose (fine powder), CuCl2•2H2O, and K2CrO4 the same as those used in chapter 2. 
Also, observation and analysis of obtained patterns were carried out using the same 
equipment and software as in Chapter 2.  
 
3.2.2 Sample preparation for mono-layered gel systems 

 The agarose sol doped with K2CrO4 was preparade following the same procedure 
described in Sec. 2.2.2, where the agarose concentration ([agarose]) was adjusted range 
from 0.25 to 4.0 w/w%. Then, prepared this hot sol was poured into a glass tube (Æ =1.0 
mm) to a height of 90 mm (Figure 3.5a). The sample was allowed to gelation completely 
by standing at 18°C for 6 h. After gelation, an aqueous solution of CuCl2 (0.50 M, 5.0 
mL) was poured on the gel. Immediately after that, Cu2+ started to diffuse into the gel, 
and CuCrO4 precipitates appeared from the interface by salt formation reaction denoted 
as eq. (37). The duration of pattern formation was fixed at 1 week in all cases with 
different agarose concentrations, and all reactions were carried out in an incubator at 18°C. 
After pattern formation, the CuCl2 solution was removed and the light transmitted through 
each sample was observed under a stereomicroscope with a CCD camera. 
 
3.2.3 Sample preparation for bi-layered gel systems 

 The agarose sol prepared as described above was poured into a glass tube to a height of 
30 mm (Figure 3.5b). This part of the gel was the lower part, and the agarose 
concentration, expressed as [agarose]lower, was adjusted range from 1.0 to 4.0 w/w%. After 
the gelation of this part, another hot agarose sol was poured on the top of this part up to a 
height of 60 mm. This upper gel part was called as the upper gel and its agarose 
concentration ([agarose]upper) was fixed at 0.25 w/w% for all samples. Pattern formation 
and image analysis were then carried out using the procedure described in the previous 
section. 
 
3.2.4 Sample preparation for multi-layered gel systems 

 Pattern formation in multi-layered gels was carried out under following two conditions: 
(i) a stepwise decrease in agarose concentration (Figure 3.5c), and (ii) repetition of high 
and low agarose concentrations (Figure 3.5d). The detail procedure for the preparation of 
each gel was as follows. 
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Condition (i): Stepwise decrease in agarose concentration (Figure 3.5c) 
Firstly, a 9th (the lowest) agarose gel layer ([agarose] = 4.0 w/w%) was prepared at a 
height of 15 mm from the bottom of the glass tube. The next gel layer (8th layer) was 
prepared at a height of 5 mm. This procedure was repeated six times to obtain a total of 
seven thin gel layers. The final agarose concentrations were fixed at 3.5 (8th layer), 3.0 
(7th layer), 2.5 (6th layer), 2.0 (5th layer), 1.5 (4th layer), 1.0 (3rd layer) and 0.50 w/w% (2nd 
layer). After gelation of the 2nd layer, 0.25 w/w% agarose sol was poured up to a height 
of 40 mm from the 2nd layer to form the 1st gel layer (the topmost layer). As a micropipette 
(Eppendorf, Eppendorf Reference® 2, 100-1000 µL) was used to inject each sol, the error 
in the height of these layers was 0.18 mm, estimated by the systematic error (±0.6%) of 
this micropipette. Thus, a stepwise decrease in agarose concentration was obtained from 
the end of the 1st gel layer to the beginning of the 9th gel layer.  
 
Condition (ii): Repeated high and low agarose concentrations (Figure 3.5d) 
A 4th agarose gel layer (3.0 w/w%) was prepared at a height of 20 mm from the bottom 
of the glass tube. Then, a 3rd gel layer (0.25w/w%) was prepared at a height of 10 mm, a 
2nd gel layer (3.0w/w%) at a height of 10 mm, and finally a 1st gel layer (0.25w/w%) at a 
height of 50 mm. In this way, regions of progressively higher and lower agarose 
concentration were repeatedly formed from the edge of the 1st gel layer to the edge of the 
4th gel layer.  

 

Figure 3.5. Illustration of the experimental set-up. (a) mono-layered gel, (b) bi-layered gel, 
(c) multi-layered gel with stepwise decrease in agarose concentration, (d) 
multilayer gel with stepwise increasing and decreasing agarose concentration. 
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3.3 Results and discussion 

3.3.1 Pattern formation in mono-layered gels 

 Figure 3.6 shows the pattern formation in multi-layered gels when the concentration of 
agarose is varied from 0.25 to 4.0 w/w%. 

 

Figure 3.6. Pattern formation in in mono-layered agarose gels. (a) [agarose] = 0.25 w/w%, 
(b) 1.0 w/w% (c) 2.0 w/w%, (d) 3.0 w/w%, (e) 4.0 w/w%. (f) Relationship 
between Δxn and xn (●: [agarose] = 0.25w/w%, ▲: 1.0w/w%, ■: 2.0w/w%, ▼: 
3.0w/w%, ◆: 4.0w/w%). 

In all cases, discrete precipitates of CuCrO4 were formed below the dense precipitate 
regions (Figure 3.6a-e), whose character was similar to the experiments in Chapter 2. 
Furthermore, the dense precipitates region appears to expand with increasing agarose 
concentration. This was because the increase in [agarose] reduced K2 and promoted 
nucleation, Δxn decreased and the bands were combined. We then calculated Δxn from 
Figure 3.6a-e and plotted it in Figure 3.6f as a function of xn. As a result, for [agarose] = 
0.25 w/w%, Δxn increases from 1.5 mm to 4.5 mm with increasing xn (Figure 3.6f●). This 
positive linear proportional relationship indicates that a regular type of LP is formed (eq. 
(7)). Consistent with this result, Δxn also increases at other agarose concentrations (Figure 
3.6f▲-◆), indicating that regular-type LPs were formed at all agarose concentrations 
when the mono-layered gels were used. However, a comparison of the maximum values 
of Δxn, it decreased from approximately 4.5 mm (0.25 w/w%) to 2.0 mm (4.0 w/w%) with 
increasing [agarose]. These results were good agreement with the previous study 
demonstrating the effect of gel concentrations in mono-layered gels.[71] 
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3.3.2 Numerical simulation under fixed K2 

 In order to discuss changes in agarose concentration in mono-layered gels in relation to 
the kinetics of the nucleation process in the nucleation-based scenario, numerical 
simulations based on the RD equation were then performed. For the RD equations I have 
used eqs. (40)-(43) as described in Sec. 2.3.4 because the chemical reaction to form 
CuCrO4 precipitates was same as the used system in Chapter 2. Also, we used same no-
flux boundary conditions at the end of the calculation space (10 mm×120 mm), and the 
fixed ares(t) condition was used at the interface between the reservoir and the reaction 
space. Detail of simulation parameters were showed in Table 3.1. 
 
Table 3.1 Parameters of the RD simulations 

 
 
The key point in this simulation is the K2 modulation, which controls the kinetics of 
nucleation in a nucleation-based scenario. Since we used the mono-layered gels in above 
experiments, K2 was set to a fixed and spatial constant value in the calculation space. 
Figure 3.7a-d shows simulation results with different fixed K2 ranged from 2.2×10-3 M to 
3.7×10-3 M. Obtained patterns showed the Δxn of each band pair decreases with 
decreasing K2. In order to evaluate this trend more quantitatively, a Δxn-xn plot similar to 
that of Figure 3.6f was created (Figure 3.7e). As a consequence, as K2 decreases, the 
system shows the decrease in a slope of Δxn-xn plot while retaining the regular-type 
features, which is very consistent with the results of the experiments in mono-layered gels 
described above. Therefore, it was clear that the increasing gel concentration induced the 
decreasing K2, and by controlling the spatial distribution of this concentration it became 
possible to impose a spatial modulation of K2. 
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Figure 3.7. Output images of P distribution obtained from simulations with fixed K2, where 

the solid horizontal black line in the column represents the boundary of the 
reservoir. (a) K2 = 3.7 × 10−3 M, (b) 3.2 × 10−3 M, (c) 2.7 × 10−3 M, and (d) 2.2 
× 10−3 M, respectively. (e) Variation of Δxn as a function of xn (●: K2 = 3.7 × 
10−3 M, ▲: 3.2 × 10−3 M, ■: 2.7 × 10−3 M, ▼: 2.2 × 10−3 M). 

 
3.3.3 Pattern formation in bi-layered gels 

 Before demonstrating the effect of spatial changes in gel concentrations, we needed to 
investigate physical effects of the interface between two or more gel layers. To investigate 
it, pattern formation was carried out in the bi-layered gel with equal concentrations of the 
upper and lower gels ([agarose] = 1.0 w/w%) as a preliminary experiment (Figure 3.8). 

 

Figure 3.8. (a) Pattern formation in the bi-layered agarose gel constructed by 1.0 w/w% 
upper and lower agarose gels. (b) The relationship between Δxn and xn (●: 1.0 
w/w% mono-layered gel, ▲: 1.0–1.0 w/w% bi-layered gel). The dotted line 
shows the gel–gel interface. 
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In this experiment, the interface was positioned at half of the gel (height of 45 mm). The 
results showed that the physical effect of the presence of the gel-gel interface on the 
pattern periodicity is negligible, as the pattern appearance and the change in Δxn agree 
well with the 1.0 w/w% mono-layered gel. 
 Since these preliminary experiments made it clear that only the effect of spatial 
modulation of concentration could be considered in experiments with gels consisting of 
some layers, we then carried out pattern formation in bi-layered gels with different 
agarose concentrations in order to simply extract the intrinsic effect of modulation of gel 
concentration. Such bi-layered gels were made according to the procedures described in 
experimental section. Figures 3.9a-d show the typical LPs formed in bi-layered agarose 
gels with an upper layer with a fixed concentration ([agarose]upper = 0.25 w/w%) and a 
lower layer with different concentrations ([agarose]lower = 1.0-4.0 w/w%). In order to 
compare Δxn variation between in mono-layered and bi-layered agarose gels, Δxn-xn plots 
obtained from both gel conditions were shown in Figure 3.9e,f. In the 0.25 w/w% mono-
layered gel, Δxn increases monotonically (Figure 3.9f●), which has already been found at 
the early results used the mono-layered gels, and indicated that only the regular-type LP 
were formed in the mono-layered gels. On the other hand, in the bi-layered gel, a complex 
Δxn change as a function of xn was observed near the interface between the upper and 
lower agarose gels (xn = 60 mm, black dotted line). When [agarose]lower = 1.0 w/w% 
(Figure 3.9f▲), Δxn increases monotonically, and this change was observed until a point 
behind the interface (xn = 55 mm). On the other hand, Δxn approaches a constant value 
from xn = 55 mm to 65 mm, showing a different trend from that of the result of mono-
layered agarose gel. The linear increase of Δxn behind the interface suggested that the 
nucleation kinetics was already modulated even within the region of [agarose] = 
[agarose]upper. A similar behavior was observed in the other conditions, [agarose]lower = 
2.0-4.0 w/w% (Figure 3.9f■-◆). Furthermore, when the plots near the gel-gel interface 
in Figure 3.9f was enlarged in Figure 3.9g, the slope decreases and transitions from 
positive to negative as the magnitude of the gel concentration gap Δ[agarose] (= 
|[agarose]lower – [agarose]upper|) increases, where the zero and negative value of the slope 
indicates that obtained periodicity is equidistant- and revert-types. Thus, it is clear that 
both equidistant- and revert-type LPs are locally formed only near the gel interface in the 
bi-layered agarose gel, and that the type of LP can be transited following the pre-adjusted 
magnitude of Δ[agarose]. 
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Figure 3.9. Pattern formation in bi-layered agarose gels constructed with a 0.25 w/w% 

upper agarose gel and (a) 1.0 w/w%, (b) 2.0 w/w%, (c) 3.0 w/w%, or (d) 4.0 
w/w% lower agarose gel. (e) Relationship Δxn and xn (●: fixed [agarose] = 0.25 
w/w% (mono-layered gel), [agarose]lower = ▲: 1.0 w/w%, ■: 2.0 w/w%, ▼: 3.0 
w/w%, and ◆: 4.0 w/w%), and (f) magnified view at 50 < xn < 65 mm 
corresponding to the region enclosed in a black dashed square in (e). Dotted 
horizontal line in (a)-(d) and dotted vertical lines in (e) and (f) indicate the 
interface between the upper and lower gel layers. 

 
3.3.4 Numerical simulation under spatially modulated K2 

 To gain insight of the reason for the formation of above locally exceptional LPs in the 
bi-layered gels, I performed RD simulation based on the same method using in Sec. 3.3.2, 
but K2 was spatially modulated at 40 mm from the reservoir boundary to reproduce the 
K2 condition in the bi-layered gel. Figure 3.10a-c shows the output images of P 
distribution when K2 was modulated at x = 40 mm between fixed K2upper = 3.7 × 10−3 M 
and K2lower = 3.2 × 10−3 M, 2.7 × 10−3 M, and 2.2 × 10−3 M, respectively. Based on the 
image analysis for them, the variation of Δxn for each modulated condition is shown in 
Figure 3.10d and e. As mentioned above, under the condition of spatially fixed K2 (Figure 
3.10d●), Δxn increases monotonically because this condition corresponds to the condition 
of mono-layered gel as discussion in Sec. 3.3.2. On the other hand, under the condition 
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of spatially modulated K2, Δxn changes dramatically after crossing the K2 boundary 
(Figure 3.10d▲-▼). To discuss these changes in more detail, a magnified view around 
the K2 boundary is shown in Figure 3.10e. For K2lower = 3.2×10-3 M, Δxn approaches a 
constant value after crossing (Figure 3.10e▲), whereas for K2lower =2.2×10-3 M, Δxn 
decreases dramatically (Figure 3.10e▼). These results showed that as the gap of K2 
modulation ΔK2 (= |K2upper-K2lower|) increases, the regular-type LP transitions to 
equidistant and revert type LP around the boundary. Therefore, the trend in the Δxn-xn 
plots for spatial modulation of K2 was consistent with that observed in the experimental 
Δxn-xn plots for bi-layered gels. 

 
Figure 3.10. Output images of P distribution obtained from simulations with spatially 

modulated K2, where the solid horizontal black line in the column represents 
the boundary of the reservoir, and the dotted line indicates the boundary of K2 
modulation. K2 was modulated at x = 40 mm between K2

upper = 3.7 × 10−3 M 
(fixed) and (a) K2

lower = 3.2 × 10−3 M, 2.7 × 10−3 M, and 2.2 × 10−3 M. (d) 
Changes in Δxn as a function of xn (●: fixed K2 = 3.7 × 10−3 M, modulated K2 
between K2

upper = 3.7 × 10−3 M and K2
lower = ▲: 3.2 × 10−3 M, ■: 2.7 × 10−3 M, 

and ▼: 2.2 × 10−3 M), and (e) magnified view at 30 < xn < 45 mm, 
corresponding to the region marked by a dashed rectangle in (d). The dotted 
vertical lines in (d) and (e) represent the boundary of K2 modulation. 
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However, there was a slight difference between the experiment and the simulation in 
terms of responsiveness to such modulation. Although the earlier change in Δxn depending 
on the K2 modulation was observed from a point behind the gel interface in the experiment, 
the simulation results showed the change only after crossing the K2 boundary. This 
discrepancy can be attributed to following two main factors. (i) The first is the melting 
and elution of the lower gel layer due to the pouring of hot sol (ca. 90 °C) on the top of 
the solidified lower gel (melting temperature of agarose = ca. 85 °C[142-143]). In this 
experiment, [agarose]lower > [agarose]upper, suggesting that a local gradient of gel 
concentration might have formed from the gel-gel interface towards the newly stacked 
upper gel (Figure 3.11a). Namely, it was possible that K2 started to change behind the 
boundary (on the upper gel side), rather than rapidly changing at just the boundary (Figure 
3.11b). (ii) The second factor is the change in diffusion rate of Cu2+ due to the change in 
gel concentration. In this study, an agarose gel was used as the reaction medium. Agarose 
reagents are composed mainly of non-ionic monosaccharides and contain small amounts 
of ionic agaropectin.[144] The agarose used in this experiment also contained small 
amounts of agaropectin, whether purified or not. The structure of agaropectin is similar 
to agarose, but it contains sulphate, methoxy, pyruvate and carboxyl groups. Therefore, 
these anionic functional groups were expected to affect the diffusion of Cu2+ through 
electrostatic interactions. Indeed, it was reported that the diffusion rate of Cu2+ is 
decelerated by agaropectin due to decreasing the diffusion coefficient (D).[145] Therefore, 
in this study, D was assumed to be uniform in space, independent of the number of gel 
layers, however, in fact it may have changed in conjunction with the modulation of the 
gel concentration. It is noted that the size of the 3D network of the gel structure, estimated 
to be 200-500 nm in the concentration range of the agarose used in this study,[134] is 
considerably larger than the size of the ions, the gel structure is unlikely to affect the 
diffusion rate. Therefore, we then performed some experiments and simulations 
considering the above factors as below.  

 

Figure 3.11. Difference between expected (dotted line) and actual (solid line) conditions 
for (a) agarose concentration, (b) nucleation threshold, and (c) diffusion 
coefficient. 
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3.3.5 Elution of a lower agarose gel layer 

 To investigate the elution of the gel from the lower layer, the profile of the gel 
concentration in the prepared multi-layered gel was measured. The prepared gel is shown 
as Figure 3.12a, which was made following the procedures described in Sec. 3.2.4. The 
concentration of agarose was 0.25 w/w% from the top of the gel up to 20 mm, after which 
the concentration was increased at 10 mm intervals to 1.0, 2.0, 3.0, and 4.0 w/w%. After 
the topmost gel layer had completely gelled, the gels were cut out at 2 mm intervals (0.35 
mL/piece) from the top and the weight of each gel piece obtained was measured. 
Subsequently, these pieces were freeze-dried until they are completely dry. Then, I 
measured the weight of obtained dried pieces, where this weight corresponds to the 
weight of agarose polymer contained in a fixed volume of hydrogel fragments. Thus, the 
concentration of agarose in the gel pieces obtained was calculated from the weights before 
and after freeze-drying. From this calculation, the concentration profile was obtained 
shown in Figure 3.12b. As a result, a gradual local gradient of gel concentration over 2-3 
mm was formed behind each gel-gel interface, indicating that a lower gel layer (higher 
concentration) was melted and eluted toward an upper layer by pouring the hot sol on a 
lower one. Therefore, when the gels were stacked using the above method, it was found 
that the K2 change did not occur just at the interface as in the simulation, but in fact was 
induced from behind the interface (Figure 3.11b, green line) due to the gradual change in 
gel concentration shown by the pink line in Figure 3.11a. 

 

Figure 3.12. (a) Prepared multi-layered agarose gel without K2CrO4 for demonstrating the 
elution of lower agarose gels. The gel was made with reference to Sec. 3.2.4. 
(b) Concentration profile of agarose measured by weight difference before and 
after freeze-drying. The dotted lines show the gel-gel interfaces. 
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Furthermore, I investigated a dependence of this elution on Δ[agarose] (Figure 3.13). 
Experiment was carried out using the bi-layered gel under fixed [agarose]upper = 0.25 
w/w% and variable [agarose]lower from 1.0 to 4.0 w/w%. With increasing [agarose]lower, 
i.e. Δ[agarose], the change in gel concentration became more rapid, however the elution 
position remained within a range of about 3-4 mm from the gel-gel- interface independent 
of concentration. Therefore, the modulation of K2 by the elution of agarose was found to 
be limited in extent regardless of [agarose]lower. 

 

Figure 3.13. Effect of dissolution on the increase of Δ[agarose] with increasing 
[agarose]lower. The concentration of upper gel was fixed at 0.25 w/w%. The 
position “0” means the gel-gel interface. 

 
3.3.6 Effect of modulating diffusion rate 

 Then, I investigated the effect of another factor, diffusion rate, based on RD simulation. 
The previous study reported that the value of D was reduced to 60% as in previous results 
when the concentration of agarose was varied from 0.25 to 4.0 w/w%.[145] Therefore, I 
performed the RD simulations under two conditions: modulation of K2 only (Figure 5a●) 
and modulation of K2 with changes in DA-C (Figure 5a▲). In both cases, although there is 
perfect agreement of Δxn-xn plots behind the modulation boundary, Δxn show an earlier 
decrease just before the boundary only when both K2 and DA-C were modulated (green ▲ 
at approximately xn = 37 mm n Figure 3.14a). This result was clearly in agreement with 
the experimental results of the bi-layered gels, showing earlier Δxn change behind of the 
gel-gel interface (Figure 3.9). Thus, the change of D with the modulation of gel 
concentration was found to be one of the reasonable parameters to explain the 
experimental results. Why the modulation of the diffusion rate is responsible for the 
change in the periodicity of the pattern is discussed by using the results of the evolution 
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of the diffusion front of A (Cu2+) and the reaction front of C (CuCrO4 molecules) (Figure 
3.14b and c). The evolution of the diffusion front (solid line) slows down after crossing 
the modulation boundary (x = 40 mm) and the evolution of the reaction front slows down 
behind the boundary when DA-C is varied, where the position of the difference with and 
without consideration of D change is indicated by a black arrow.  

 

Figure 3.14. (a) Relationship between Δxn and xn in simulations under K2 modulation with 
and without varying DA-C (●: only K2 modulation, ▲: K2 modulation with 
varying DA-C). In both simulations, at x = 40 mm, K2 was varied from K2

upper = 
3.7×10-3 to K2

lower = 2.2×10-3 M and DA-C from 1.0×10-5 to 0.6×10-5 cm2s-1. 
The dotted line indicates the boundary of the K2 and DA-C modulations. (b) The 
position of the diffusion front of A (solid line) and the reaction front of C (dotted 
line) as a function of time (green line: only K2 modulation, black line: K2 
modulation and DA-C change). (c) Magnified view of (b) from the black dashed 
rectangle in (a). The pale red area shows the K2

lower region. 

These results can be attributed to the fact that the deceleration of the diffusion front after 
crossing the modulation boundary propagates to the dynamics of the reaction front behind 
the boundary. Namely, the modulation of the diffusion rate induces a modulation of the 
dynamics of the backward reaction process, which may have resulted in the early Δxn 
transition. Thus, the early transitions observed in the bi-layered gel experiments were 
caused by a combination of factors (i) changes in K2 due to gel elution and (ii) changes 
in diffusion rate. As one demonstration to support this consideration, we have investigated 
the Δxn transition behavior with respect to the position of the gel-gel interface. In a typical 
bi-layered gel experiment, the gel-gel interface was fixed at x = 60 mm. As a result, the 
earlier Δxn transition before the gel-gel interface occurred at approximately the same 
position for all conditions (Figure 3.9). However, this position starting the earlier change 
recedes towards the interface between the aqueous solution and the upper gel as the gel-
gel interface approaches the solution-gel interface (Figure 3.15). Furthermore, at a 
position much closer to the gel interface, the coexistence of periodicity due to the overlap 
of the initial transitions disappears in the bi-layered gel. Therefore, it is important to 
consider the position of the gel interface (especially the "first gel-gel interface"). However, 
it is noted that these factors do not inherently affect the geometrical transition behavior 
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from the regular- to revert-types of LPs. 
 

 
Figure 3.15. Partial images of pattern formation in bi-layered gels constructed using 

agarose gels (0.25 w/w% upper and 2.0 w/w% lower) with different gel-gel 
interface positions: (a) x = 55 mm, (b) x = 50 mm, and (c) x = 45 mm. (d) 
Relationships between Δxn and xn (●: (a), ▲: (b), and ■: (c)). The dotted lines 
in the pictures and the plot indicate the gel-gel interface, and each horizontal 
pale arrow indicates the gap to the starting position of the Δxn transition. 

 
3.3.7 Pattern formation in bi-layered gels with increasing K2 

 Since the focus of this work has been on the mechanism for the transition from regular-
type to revert-type, namely the decrease in Δxn, the spatial decrease in K2 has been 
discussed in detail so far. In order to prove the universality of the effect of K2 modulation 
on the pattern, in this section we have experimented with deceasing agarose concentration 
(increasing K2) rather than decreasing agarose concentration in a bi-layered gel system as 
shown in Figure 3.9 (Figure 3.16). In this case, it was predicted that different from the 
decreasing K2 situation, the value of Δxn increased dramatically close to and after crossing 
the gel-gel interface. Actually, Δxn increases dramatically compared with the 4.0 w/w% 
mono-layered gel for all bi-layered gels (Figure 3.16e). Furthermore, the rate of increase 
in Δxn enhanced as Δ[agarose] increased. Thus, the effect of increasing K2 is in contrast 
to that of decreasing K2, suggesting that the coexistence of these two effects results in the 
complex rock pattern periodicities introduced in Sec. 3.1. 
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Figure 3.16. Pattern formation in bi-layered agarose gels constructed with a 4.0 w/w% 

upper agarose gel and (a) 0.25 w/w%, (b) 1.0 w/w%, (c) 2.0 w/w%, or (d) 3.0 
w/w% lower agarose gel. (e) Relationship Δxn and xn (●: fixed [agarose] = 4.0 
w/w% (mono-layered gel), [agarose]lower = ▲: 0.25 w/w%, ■: 1.0 w/w%, ▼: 
2.0 w/w%, and ◆: 3.0 w/w%). Dotted horizontal line in (a)-(d) and dotted 
vertical lines in (e) indicate the gel-gel interface. 

 

3.3.8 Pattern formation in multi-layered gels 

 From the previous results and discussion, it was found that Δ[agarose] is the important 
factor controlling the periodicity of the LP. However, in the bi-layered gel experiments, 
the modulation of the agarose concentration was only within a local area, so that such 
periodicity transitions were only observed in a limited area. On the other hand, the 
exceptional LPs observed in other reaction systems, such as those described in Sec. 3.1, 
show a characteristic periodicity throughout the system. Therefore, to reproduce such 
complete exceptional LPs, it was necessary to modulate the agarose concentration 
throughout the system. To demonstrate it, I preparade two types of multi-layered gels with 
different distribution of agarose concentrations: (i) multi-layered gels with stepwise 
decreasing [agarose] at whole region of reaction medium (Figure 3.17a), and (ii) with 
repeated high and low agarose concentrations (Figure 3.17b). In type (i), Δxn was almost 
constant at 1.5 mm throughout the whole formed pattern, indicating that the complete 
equidistant-type LP was successfully formed (Figure 3.17a). This result was consistent 
with the previous simulation study that proposed decreasing K2 led to form exceptional 
LPs.[102] Therefore, I provide the first experimental evidence that LP geometrical 
transition phenomena are governed by the control parameters of the nucleation rate in the 
nucleation-based scenario. Furthermore, in type (ii), a complex change in Δxn was 
observed (Figure 3.17b). At the early bands from near the solution-gel interface, Δxn 
increases rapidly and reaches a maximum value at xn = 44mm. Then it decreases and 
approaches a minimum constant value until xn = 57mm. This is because the agarose 
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concentration increased with respect to x = 50 mm from 0.25 to 4.0 w/w%. Thereafter, 
Δxn increases again and reaches a maximum value at xn = 71 mm due to the decrease in 
agarose concentration. Finally, Δxn decreases dramatically after entering the region of 4.0 
w/w% agarose concentration. Such oscillation of Δxn is due to repeating stepwise increase 
and decrease in agarose concentration. Thus, the two periodicities coexist with the 
regular- and revert-types in type (ii) multi-layered gel. Although this is not the case in 
previously reported LPs with monotonic periodicity, analogical patterns in nature 
frequent shows such complex periodicities. Therefore, it is clear that tuning of spatial K2 
distribution due to such modulation of gel concentration decide the destiny of transition 
behavior and complexity of LP periodicities. 

 

Figure 3.17. Pattern formation in multi-layered agarose gels (left) and the relationship 
between Δxn and xn (right). (a) Type (i) with stepwise decreasing agarose 
concentration ([agarose] changed from 0.25 to 4.0 w/w% from x = 40 mm to 
75 mm). (b) Type (ii) with repeated increasing and decreasing agarose 
concentrations ([agarose] changed to 0.25 or 4.0 w/w% repeatedly at x = 50, 60, 
and 70 mm). Dotted lines indicate the interfaces of the agarose gels. The pale 
green and yellow regions in (b) represent the regions with increased and 
decreased Δxn,. 
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3.4 Conclusions 

 The nucleation-based scenario has been widely used to understand the mechanisms of 
LP formation, and considerations based on this scenario provide us with fundamental 
insights into the question of Liesegang phenomena. However, the geometrical transition 
of LP was one of the unresolved issues in the nucleation-based scenario. In this study, we 
focused on nucleation, the most important process determining the periodicity in this 
scenario, and found that the control of the spatial distribution of K2, the control parameter 
of the nucleation kinetics, controls the transition behavior of the LP. This control was 
demonstrated by using bi-layered or multi-layered gels made by layering gels of different 
concentrations. From the bi-layered gel experiments, only in the region where there was 
a local modulation of K2 due to the concentration gradient of the gel show characteristic 
changes in Δxn, and the intensity of this change depends on ΔK2. Furthermore, the 
complete exceptional type of LP was formed over the whole reaction space in the case of 
multi-layered gels where the K2 modulation region can be extended over the whole area. 
In addition, in contrast to the simple increase or decrease of K2, complex changes in the 
spatial distribution of K2 led to the formation of the complex periodicity that followed 
this K2 changes. Therefore, it is suggested that the spatial modulation of the nucleation 
rate needs to be incorporated into the mathematical model when discussing pattern 
transitions using the nucleation-based scenario, which would make this scenario the most 
practical model for understanding LP formation mechanisms arising from thermodynamic 
metastable states. 
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Chapter 4 Phase Separation Mechanism Driven by the  

pH-Induced Aggregation of Gold Nanoparticles 

4.1 Introduction 

 As introduced in Sec. 1.7.3, most of experimental reaction systems for studying 
Liesegang phenomenon so far (such as salt formation reactions[57-58, 63, 66, 68-69, 71, 78, 86-89] 
and nanoparticle formation by chemical reduction reactions[59-60, 82, 100]) included the 
nucleation process while solid-phase transition processes. In such systems, the nucleation 
dominates the pattern formation mechanism. The nucleation-based scenario is therefore 
universal and practical for discussing the obtained results of such classical Liesegang 
systems such as those described above. However, it has not yet achieved a reasonable 
explanation for the formation mechanisms of helix formation, tree-like structures, and 
spot structures, which are known to be specific morphological changes in the Liesegang 
phenomenon introduced in Sec. 1.6.2, by using this scenario. Furthermore, one of the 
main targets of modelling via the Liesegang phenomenon, geoscientific patterns (e.g. 
stripe formation in agate rocks,[110-111] oscillatory zoning on magma crystallization,[146-147] 
and the orbits in the solar system[113]), has traditionally been suggested to be driven by 
phase separation-like mechanism rather than nucleation.[130-131, 148] It is therefore essential 
to validate the phase separation-based scenario by experimental and mathematical 
modelling in order to consider their practicality for these special classes of Liesegang 
phenomena. As mentioned in Sec. 1.7.3, various studies on mathematical modelling have 
been carried out using a combination of the Cahn-Hilliard (CH) equation and RD 
equation.[116-117, 129] Common to all these studies is that patterns are formed by phase 
separation due to spinodal decomposition, which occurs when the concentration of 
precipitating precursors increases due to salt formation reactions or external chemical or 
physical perturbations and reaches a thermodynamically unstable state. (Fig.1.1.8b and 
1.22 ). Actually, these simulation results showed LP can be formed and indicates good 
agreement with LP characters such as the spacing law (Figure 1.2.3). Therefore, there is 
some progress in the understanding of the phase separation-based scenario at the 
numerical simulation study. On the other hand, most of the experimental systems in 
previous studies to test the consistency of this mathematical model were based on salt 
formation reactions.[86, 124-125] In these reports, phase separation was assumed to occur 
when C is formed by the salt formation reaction reached a certain threshold. However, 
the consistency of this assumption is very ambiguous, because such a reaction system 
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should be dominated by nucleation under some conditions as discussed in chapters 2 and 
3 so far. Therefore, experimental validation using this system is not suitable for 
understanding the essence of the phase separation-based scenario, because such systems 
potentially involve the effects of nucleation. 
 Therefore, it is important to select an aggregation/precipitation system that exhibits 
aggregation and phase separation behavior with zero interparticle energy based on DLVO 
theory, as one indicator to search for an experimental system that faithfully reproduces 
the phase separation-based scenario (Sec. 1.7.2 Figure 1.21). As a candidate for such a 
reaction system, we have focused on the pH-induced aggregation of nanoparticles 
(NPs),[149-152] which has been frequently reported and occurred when surface modified 
metal NPs with a weakly acidic functional group (e.g. carboxylic acid) are exposed to an 
environment with below pKa that derived from the functional group (Figure 4.1). 

 

Figure 4.1. (a) Color variations of different types of surface modified NPs and UV-vis 
spectra corresponding to the below and above pKa. (b) Color changes of MUA-
Au NPs dispersion and oscllation of LSPR absorbance with periodc pH changes, 
and changes in absorvance for aggregation as a function of pH with different 
particle sizes, adopted from Ref. 152. (c) Caluculated DLVO potential for the 
surface modified NPs below and above pKa. (a) and (c) were reprinted with 
permission from Ref. 151. Copyright 2010 John Wiley and Sons. 

Since such surface-modified NPs have negative charged on itself surface under basic 
condition of a solution (higher pH) due to deprotonation of the acidic functional ligands, 
the electrostatic repulsion between particles is bigger and the DLVO energy barrier 
appears, thus NPs disperse in the solution. Therefore, this dispersed solution exhibits a 
color corresponding to the localized surface plasmon resonance (LSPR) of NPs (e.g. a 
bright red color in the case of typical Au NPs) (Figure 4.1a). On the other hand, when the 
solution becomes more acidic than the pKa (lower pH), the surface ligands are protonated 
and the electrostatic repulsion that stabilizes the dispersion state is lost and the barrier 
disappears, resulting in aggregation of the particles and a corresponding color change in 
the solution (e.g. a dark purple in the case of typical Au NPs). Such 
dispersion/aggregation behavior is independent of the metal type and is determined by 
the pKa of the surface ligand and the pH change of the solution (Figure 4.1a). As a 
candidate of ligand, we focused on 11-mercaptoundecanoic acid (MUA), which is a 
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typical carboxylic acid surface modifier for gold NPs (Au NPs).[153-155] Figure 4.1b shows 
a typical color changes of a solution and optical properties of synthesized surface 
modified Au NPs with MUA molecules (MUA-Au NPs) between a dispersion and an 
aggregation states depending on pH values.[152] In addition to the above experimental 
insights, such pH-induced aggregation has also been well discussed by calculations using 
DLVO theory.[151] Indeed, Figure 4.1c shows, the aggregation state results from the loss 
of the energy barrier for pH < pKa (Figure 4.1b left), whereas for pH > pKa, the dispersion 
state is stabilized (Figure 4.1b right), which is providing theoretical support for the above 
experimental considerations. Hence, the pH-induced aggregation can give rise to 
spontaneous precipitation predicted by the DLVO theory as introduced in Sec. 1.7.3, 
excluding nucleation. Namely pattern formation in the phase separation-based scenario 
can be caused by this principle, which is another scenario different from the nucleation-
based scenario bifurcated by the thermodynamic stability of the system. Thus, the pH-
induced aggregation is completely different from conventional salt formation reaction 
systems and is one of the most suitable reaction systems to experimentally explore the 
intrinsic influence of processes other than nucleation. 
 In this chapter, instead of the salt formation reaction system to demonstrate the 
nucleation-based scenario, we aimed to construct an experimental system that faithfully 
reproduces the phase separation-based scenario by combining the pH-induced 
aggregation of MUA-Au NPs with the experimental setup of the Liesegang phenomenon, 
where hydrochloric acid and MUA-Au NPs were used as the invading (outer) and pre-
doped (inner) electrolytes, respectively. Furthermore, the practicality of the phase 
separation-based scenario, which has not been achieved so far, is experimentally verified 
by investigating the concentration dependence of the invading and pre-doped electrolytes 
and the pattern formation dynamics in detail using the constructed experimental system. 
In addition, the validity of the experimental results through a mathematical approach was 
verified by operating the RD equation incorporating the CH equation for the obtained 
experimental results. 
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4.2 Experiments 

4.2.1 Reagents and instruments 

 Hydrogen tetrachloroaurate (III) tetrahydrate (HAuCl4•4H2O, 99.0%), trisodium citrate 
dihydrate (C6H5Na3O7•3H2O, Cit), 0.01 M sodium hydroxide solution (NaOH, factor 
(20 °C) = 1.0), agarose (fine powder) as a gel medium, and bromo thymol blue solution 
(BTB, 0.04 w/v%) were purchased from FUJIFILM Wako Pure Chemical Industry 
(Japan). 11-Mercaptoundecanoic acid (MUA, 95%) was purchased from Sigma-Aldrich 
(USA). Hydrochloric acid (HCl, 35%) was purchased from Nacalai Tesque Industry 
(Japan). All reagents were used without further purification. Ultraviolet-visible (UV-vis) 
and Fourier transform-infrared spectrometer (FT-IR), Transmission electron microscopy 
(TEM), and Dynamic light scattering (DLS) measurements were performed using a 
JASCO V630, a Thermo Fisher Scientific Nicolet 6700, a JEOL JEM-2100F at 200 kV, 
and an Otsuka electronics ELS-Z2M. The pH measurement was performed by using a pH 
meter (HORIBA F-51) with a pH electrode (HORIBA 9618S-10D). Optical microscopy 
and microspectrophotometry (MSP) measurements are carried out using an OLYMPUS 
BX-51 and a HAMAMATSU PMA-12. All pattern formation experiments were 
performed in glass test tubes (Æ = 10 mm). The formed patterns were observed using the 
same microscope as the above. Image analysis such as a line profiling and making 
grayscale images was performed using Image J software. 
 
4.2.2 Synthesis of MUA-Au NPs[156] 

 HAuCl4 aq. soln. (250 mM, 400 μL) was added to ultra-purified water (99.6 mL) that is 
beforehand boiled by heating at 250 °C with stirring at 600 rpm. Immediately after it, Cit 
aq. soln, (38.8 mM, 10 mL) was added to the above HAuCl4 solution and kept heating 
and stirring for 5 min. Subsequently, heating was stopped, and only stirring was kept for 
60 min at room temperature. This mixture was then centrifugated at 15000 rpm for 30 
min and redispersed by ultra-purified water. In the previous processes, dispersion of Au 
NPs stable by Cit (Cit-Au NPs) was prepared. Also, we prepared a NaOH aq. soln. (0.20 
M, 10 mL) with dissolving MUA (moral ratio; added HAuCl4:MUA = 1:5) by heating at 
40 °C with stirring at 600 rpm for 30 min, where MUA was neutralized (deprotonated) at 
this basic condition. Subsequently, this basic MUA solution was added to the Cit-Au NPs 
dispersion with stirring at 300 rpm and keeping stirring at 25 °C at least 12 h to modify 
the surface of Cit-Au NPs with MUA molecules (Figure 4.2). After the modification, this 
mixture was centrifugated at 15000 rpm for 30 min and redispersed by ultra-purified water. 
The centrifugation was then repeated with the same condition and redispersed by ultra-
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purified water (1-2 mL). This obtained MUA-Au NPs dispersion was stored at 5 °C. Also, 
we used up this dispersion within a week to keep it fresh. 

 

Figure 4.2. Scheme of synthesis of MUA-Au NPs. 

 
4.2.3 UV-vis and FT-IR measurements  

 To evaluate the synthesis and modification of Cit- and MUA-Au NPs, I performed UV-
vis measurement. I used Cit-Au NPs after purification by the centrifugation processes. 
Also, MUA-Au NPs after the set of centrifugations and redispersion process was used. 
The concentration of dispersion was decided by an extinction intensity of LSPR peak 
around 520-530 nm of MUA-Au NPs.[157] In briefly, the concentration was calculated by 
the following relationships: 

𝑙𝑛𝜀 = 𝑘𝑙𝑛𝐷 + 𝛼    (47)	
𝐸𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛	𝑖𝑛𝑡𝑒𝑛𝑖𝑠𝑡𝑦 = 	𝜀𝑙𝐶  (48) 

where ε, D, l, and C are the extinction coefficient in M−1cm−1, the core diameter of the 
nanoparticles in nm the optical path length in cm, and the concentration in M. Also, k and 
α is the coefficient obtained by the fitting to eq. (47). In this study, we used the value set 
obtained in the previous study.[157] Furthermore, I also performed FT-IR measurement to 
evaluate the modification by MUA molecules and deprotonated in the basic condition. 
The purified Cit-Au NPs and MUA-Au NPs were used, in which the former one was 
vacuum dried, while the letter one was reprecipitated by EtOH and then vacuum dried. 
After the characterization of the synthesized particles is complete, we investigated the 
behavior of pH-induced aggregation of MUA-Au NPs in an agarose gel (0.20 w/v%) by 
UV-vis measurement. At first, an agarose powder was roughly dissolved in ultra-purified 
water by heating in a microwave oven, and then it was heated on a hot stirrer at 90 °C 
with stirring at 150 rpm to complete dissolving. After that, the concentrated MUA-Au 
NPs dispersion was added to this hot sol to be the final concentration of MUA-Au NPs 
2.0 nM. This mixture was cooled at room temperature and the crude heat was removed. 
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Just before gelation, this mixture was poured into the measurement cell (10×10 mm) and 
mixed with a prescribed concentration of HCl to prepare MUA-Au NPs-doped gels under 
different pH conditions. These samples were gelation at 18 °C for 30 min. Then, we 
performed UV-vis measurement. 
 
4.2.4 TEM observation  

 We used the purified Cit-Au NPs and MUA-Au NPs for TEM measurement. To prepare 
the samples for TEM measurement, 10 μL of dispersion was doped on a grid (Okenshoji, 
ELS-C-10) and dried at room temperature. 
 
4.2.5 pH titration[158] 

 The pH titration was performed to investigate pKa of the synthesized MUA-Au NPs. 
Before, the titration, I prepared the mixture of MUA-Au NPs and NaOH with a total 
volume of 10 mL, in which the final concentrations of MUA-Au NPs and NaOH were 
1.0 nM and 1.0×10−2 M. For the titration, HCl aq. soln. (10 mM) was used. The titration 
was performed at room temperature with an in-situ pH measurement. The pH value was 
read after stirring for 5 min for each drop of HCl solution to allow sufficient time for each 
chemical process to reach the equilibrium state. 
 
4.2.6 DLS measurement 

 To investigate the aggregation kinetics of MUA-Au NPs, I carried out DLS 
measurement. There were two ways to measure it. At first, to obtain simple information 
on aggregation responsiveness to pH, I prepared a mixture of MUA-Au NPs (fixed 2.0 
nM) with HCl (prescribed concertation) and measured a hydrodynamic radius against 
different pH values by DLS measurement 180 min after mixing of MUA-Au NPs and 
HCl. On the other hand, to obtain detailed information on aggregation kinetics, I 
performed DLS and pH measurements of change over time. The mixed solutions ([MUA-
Au NPs] = 1.0 nM and [HCl] = 1.0×10−4, 2.0×10−4, and 1.0×10−3 M) were used for this 
measurement. All procedure in this section was performed at room temperature. 
 
4.2.7 Patten formation by pH-induced aggregation of MUA-Au NPs 

 The NaOH solution (1.0×10−4 M) was mixed with MUA-Au NPs dispersion to be total 
volume 10 mL and the concentration of MUA-Au NPs became desired values. 
Subsequently, the agarose powder was added to this mixed solution at 0.20 w/v% and 
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heated in a microwave oven to dissolve it. The solution was then immediately heated at 
90 °C for 3 min with stirring at 150 rpm. Finally, heating with microwave oven again to 
dissolve agarose completely. This hot agarose sol was poured into a glass test tube to a 
height of 120 mm, and stood at 18 ± 0.5 °C for 3 h for complete gelation. Afterward, an 
HCl aq. soln. with prescribed concentration (1.0 – 1.75×10−4 M) was poured on the top 
of the gel (Figure 4.3). The H+ invading into the gel with diffusion began immediately, 
and a pH gradient with a diffusion gradient of H+ was formed. In all conditions of pattern 
formation, the system was kept in a thermostat at 18 ± 0.5 °C, and the duration of pattern 
formation was fixed at 2 weeks. After the pattern formation, the HCl solution was 
removed from the top of the gel. Then, the obtained sample was observed using 
microscopy measurement. 

 

Figure 4.3. Illustration of experimental procedure of pattern formation in MUA-Au NPs 
aggregation system. (a) Preparation of agarose sol doped with MUA-Au NPs. 
(b) Making the agarose gel in a test tube. (c) Initiation of pattern formation by 
pouring HCl aq. soln. on the top of the gel. 

 
4.2.8 Image analysis of obtained patterns 

 I carried out the line profile analysis of the obtained images of pattern formation. Before 
the profiling, original images were converted to grayscale images using the Image J 
software. Then, the line profile was carried out from an interface between the HCl 
reservoir and the gel. The result was output as a gray value for spatial coordinates toward 
the bottom of the gel. For our setting, the gray value was represented with a range from 0 
to 255, where 0 and 255 corresponded to black (dark color in original images) and white 
(light color in original images). Then, I obtained the inverted gray value (IGV) by 
reversing this relationship using the following method. 

𝐼𝐺𝑉 = 255 − 𝑔𝑟𝑎𝑦	𝑣𝑎𝑙𝑢𝑒  (49) 

The higher value, the color of the analyzed area is close to black in IGV. 
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4.2.9 Visualization of H+ diffusion front with BTB 

 Basically, the procedures of the gel preparation and the pattern formation were 
according to the description in Sec. 4.2.7. However, I added BTB solution instead of 
MUA-Au NPs solution to be the concentration 8.0×10−4 w/v%. 
 
4.2.10 pH-induced aggregation of MUA-Au NPs in rectangular agarose 
gel 

 I made the rectangular mold by sandwiched a silicone rubber sheet that hollow out inside 
as rectangular-shaped with two glass plates. Based on the same procedure as described in 
Sec. 4.2.7, the gel pre-doped MUA-Au NPs was prepared in this mold. After the gelation, 
the pattern formation was carried out with the HCl diffusion. The obtained pattern was 
observed using the optical microscope equipped with a microspectrophotometer. 
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4.3 Results and discussion: Characterization of synthesized MUA-Au 
NPs 

4.3.1 Evaluation of synthesis of MUA-Au NPs by UV-vis and FT-IR 
measurements  

 Figure 4.4a shows the result of UV-vis measurement for a pre-modification (Cit-Au 
NPs) and a post-modification (MUA-Au NPs) by deprotonated MUA molecules. The 
LSPR peak shifted from 518 nm to 528 nm after the modification. Since such red-shift 
was also observed in the previous study for the synthesis of MUA-Au NPs,[156] therefore, 
it was suggested that the modification was succeeded. Also, the FT-IR spectrum showed 
stronger evidence for the modification (Figure 4.4b). The blue region (i) and (ii) 
corresponds to the absorbance of S-H stretching and COOH stretching. Since the broad 
peak of absorbance disappeared in the region (i) through the modification, we found that 
the S-H bond was replaced by the Au-S bond. Furthermore, the strong sharp peak in 
region (ii) also disappeared after the modification, indicating that the COOH was 
deprotonated and formed COO-. Therefore, it found that the synthesis of deprotonated 
MUA-Au NPs was succeeded from above the results of UV-vis and FT-IR measurements. 

 

Figure 4.4. (a) UV-vis and (b) FT-IR spectra for the pre-modification NPs (synthesized 
Cit-Au NPs) and the post-modification MUA sodium. 

 
4.3.2 Average size of synthesized NPs calculated by TEM observation 

 TEM observation was performed for Cit-Au NPs (Figure 4.5a) and MUA-Au NPs 
(Figure 4.5b). While the average size of Cit-Au NPs was 13 ± 3.6 nm, MUA-Au NPs was 
15 ± 3.5 nm, where the average size was calculated from at least the particle number of 
100. The size was almost unchanged before and after the modification. 
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Figure 4.5. TEM micrographs of (a) Cit-Au NPs and (b) MUA-Au NPs. The average 
particle sizes of each NPs are 13 ± 3.6 nm (Cit-Au NPs) and 15 ± 3.5 nm (MUA-
Au NPs). 

 
4.3.3 Determining pKa of MUA-Au NPs by pH titration 

 Figure 4.6a shows a titration curve of the full range of titration HCl volume. We can see 
the first plateau until around the Vtitration = 7500 μL, corresponding to the titration of 
excess hydroxide ions. Then, the second plateau appears between two broken lines in 
Figure 4.6b, resulting from the titration of carboxylates on the MUA-Au NPs surface and 
buffering by them. According to the previous study,[158] the pKa of MUA molecules on 
the Au NPs surface was estimated from the pH halfway through the second plateau. To 
calculate this value quantitatively, Figure 4.6b was differentiated to obtain the exact area 
of the second plateau (Figure 4.6c). Thus, the pKa of our synthesized MUA-Au NPs was 
6.5. This value is close to the other study of synthesizing MUA-Au NPs.[159] 

 
Figure 4.6. Experimental titration curve of the basic MUA-Au NPs solution ([MUA-Au 

NPs] = 1.0 nM, 10 mL) with the HCl solution ([HCl] = 1.0×10-2 M).  (a) The 
range of all titration volume and (b) magnification of blue region in (a). (c) 
Differentiation result of (b) 



 
 

 -85- 

4.3.4 Calculation of Wtot between synthesized MUA-Au NPs based on 
DLVO theory 

 Based on our previous results, we have successfully synthesized MUA-Au NPs and 
estimated their average particle size and pKa. By applying these experimentally obtained 
values to equations (29)-(33), we have calculated the Wtot acting between the two MUA-
Au NPs. The resulting value of the energy barrier allows us to estimate whether the 
synthesized NPs exhibit aggregation from a thermodynamically unstable state or not. In 
this calculation, the Hamaker constant (A) was 3.0×10-19 J that is the typical value of 
metal (Au, Ag, Cu);[127] [NaOH] (= [electrolyte] in eq. (33)) was 0.10 M. Assuming that 
the effect of pH on protonation/deprotonation was such that the surface potential is 
proportional to a present ratio of deprotonated MUA to protonated MUA molecules, the 
relationship is expressed by the following equation. 

𝜓L` = 𝜓8 ×
a89:&
a89:

   (50) 

where ψpH and fraction about Γ represent the pH-dependent surface potential of MUA and 
the present ratio of deprotonated to protonated MUA. Also, this fraction was estimated 
referring previous studies.[151, 160]  

a89:&
a89:

= ;
;P;8;<=>;?

   (51) 

Figure 4.7a shows the ratio of deprotonated MUA dramatically decreases around pKa with 
increasing pH. Furthermore, Figure 4.7b shows that the energy barrier presenting at pH = 
8 and 10 is reduced to zero below pH 7 (≒ pKa). Namely, the synthesized MUA-Au NPs 
were found to exhibit pH-induced aggregation from an unstable thermodynamic state 
without nucleation, as in the previous study presented in Sec. 4.1. 
 

 
Figure 4.7. (a) Estimation of ΓMUA+/ΓMUA by eq. (51) and pKa = 6.5. (b) Calculation of Wtot 

from eqs. (29)-(33) and (50) (A = 3.0×10-19 J, d = 1.5×10-8 m, ε = 6.9×10-10, ψ0 
= -200 mV). 
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4.3.5 Evaluation of pH-induced aggregation dynamics by DLS 
measurements 

 Various early measurements and calculations have been carried out to characterize the 
synthesized MUA-Au NPs and to estimate their aggregation ability. Then, I tried to 
evaluation an aggregation dynamics of them by DLS measurements. Figure 4.8 shows a 
relationship between hydrodynamic radius and pH values 180 min after mixing MUA-
Au NPs and HCl. The radius began increasing slightly below pKa 6.5 but increased 
dramatically below pH 4. Therefore, it was found that a fast pH-induced aggregation 
occurred around pH 4. 

 

Figure 4.8. Variation of hydrodynamic radius of MUA-Au NPs as the function of pH, 
which was measured by DLS ([MUA-Au NPs] = 2.0 nM). The purple region 
indicates the pH range of aggregating MUA-Au NPs. Measurements were 
carried out 180 minutes after mixing with HCl. 

 Furthermore, the time course of pH and the mean particle size estimated by DLS 
measurements were shown in Figure 4.9. When the concentration of HCl is 1.0×10−4, the 
pH value is almost constant around 7 from 0 h to 24 h (Figure 4.9a▲). On the other hand, 
the particle size increases slightly (Figure 4.9a●), namely, MUA-au NPs aggregated 
slowly in this HCl concentration. Although the pH value is also constant around 4 in the 
case of [HCl] = 2.0×10−4, the particle size increases linearly from about 50 nm to 450 nm 
(Figure 4.9b). The rate of increase is greater for [HCl] = 2.0×10−4 than for [HCl] = 
1.0×10−4. When the concentration of HCl is further increased ([HCl] = 1.0×10−3), the 
particle size increases dramatically until 5 h and becomes plateau, while the pH value was 
fixed at around 3 (Figure 4.9c). Therefore, it was found that the case of [HCl] = 2.0×10−4 
behaved medium speed aggregation, and the [HCl] = 1.0×10−3 showed fast speed 
aggregation. In this study, the range of H+ reservoir concentrations were from 1.0 to 
2.0×10−4 M. Therefore, it is suggested that the pH-induced aggregation of this 
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experimental system was a relatively slow rate of aggregation dynamics, corresponding 
to Figure 4.9a and b 

 

Figure 4.9. Changes in particle size (left black axis) and pH (right red axis) in MUA-Au 
NPs aq. soln. (1.0 nM) as a function of time and dependence on the 
concentration of adding HCl aq. soln.: (a) [HCl] = 1.0×10−4 M, (b) 2.0×10−4 M, 
and (c) 1.0×10−3 M. Particle size was measured by DLS. 
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4.3.6 UV-vis measurement with different pH in agarose gel 

 Figure 4.10a shows the color changes of agarose gels contained with MUA-Au NPs with 
different pH values from 2 to 7, which was adjusted by mixed with HCl. Until pH was 3, 
the color remained red, however it was changed to purple at pH 7. To discuss this pH 
responsibility, we performed UV-vis measurement (Figure 4.10b). As a result, LSPR peak 
intensity around 530 nm increases when pH decreases until 3. Also, this peak is red-
shifted and broadening in the case of pH 2. The previous study reported that the LSPR 
peak just increased if nanoparticles aggregated weakly, then the peak was red-shifted if 
they aggregated strongly.[161] Therefore, it was suggested that MUA-Au NPs were 
aggregated weakly between pH 3 to 7. This pH range corresponded to the condition of 
pattern formation. Therefore, it was found that the pattern was formed via the weak pH-
induced aggregation and following medium speed aggregation to form aggregates of 
MUA-Au NPs. 

 

Figure 4.10. (a) Color changes of agarose gels doped with MUA-Au NPs 30 min after the 
pH is adjusted from 2 to 7 by HCl aq. soln. ([agarose] = 2.0 w/v% and [MUA-
Au NPs] = 2.0 nM). (b) UV-vis spectra in (a). 
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4.4. Results and discussion: Pattern formation based on the pH-induced 
aggregation 

4.4.1 Visualization of H+ diffusion front with BTB 

 Before performing the pattern formation, a propagation behavior of the pH front due to 
the diffusion of H+ was observed. Figure 4.11a-b shows the color changes of BTB 
indicator with the diffusion of H+, where the color of BTB changes from blue to yellow 
when pH values change from 7.6 to 6.0. The pH of the region showing yellow means 
below 6.0, in which this value is the trigger of the aggregation (Figure 4.8). After 48h, the 
yellow front reached x = 60 mm (Figure 4.11d).  
 

 

Figure 4.11. Visualization of H+ diffusion front by BTB ([agarose] = 0.20 w/v%, [HCl]0 = 
1.0×10−4 M, and [BTB]0 = 8.0×10−4 w/v%): (a) 0 h, (b) 24 h, and (c) 48 h. (d) 
Ratio of color intensity between yellow and blue as a function of position 
measured from the interface between the HCl reservoir and the gel. 

 

4.4.2 pH-induced aggregation in the rectangular gel by directional H+ 
diffusion 

 As shown in Figure 4.10, the pH-induced aggregation can be analyzed by spectroscopy. 
Therefore, I combined pattern formation in rectangular gels with MSP measurements to 
investigate the color change of pH-induced aggregation due to the directional diffusion 
of H+ before pattern formation in test tubes (Figure 4.12a). When [HCl]0 was 2.0×10−4 M, 
the MUA-Au NPs was strongly aggregated because the gel color changed to purple near 
the gel top (position 1). However, the concentrated red color appeared below the region 
1 (position 2). Further below, the original red color was observed (position 3), meaning 
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MUA-Au NPs were dispersed. For each region, I performed MSP measurement (Figure 
4.12b). Similar to the results of early UV-vis measurements, the LSPR peak intensity 
increased from position 3 to position 2. Previous study reported that such increase in peak 
value without red-shift indicates that Au NPs are weakly aggregated (transition (i)).[161] 
Furthermore, the peak became broadening and red-shifted at position 1 (transition (ii)), 
where such a red-shift in LSPR wavelength indicates that the nanoparticles are strongly 
aggregated. Thus, even in a test tube system, the contribution of aggregation can be 
clearly assessed by measuring the MSP at each position of the resulting pattern. 
 

 

Figure 4.12. (a) Aggregation of MUA-Au NPs in the rectangular agarose gel by directional 
diffusion of HCl ([agarose] = 0.20 w/v%, [HCl]0 = 2.0×10−4 M, and [MUA-Au 
NPs]0 = 4.0 nM). (b) UV-vis spectra measured by MSP at the position from 1 
to 3 in (a). 
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4.4.3 Pattern formation and observation 

 As mentioned in experimental section, NaOH was added in the gel (almost pH 10), thus 
MUA-Au NPs in the gel was deprotonated. After HCl solution was poured on the gel, H+ 
diffused into the gel (decreasing pH), and MUA-Au NPs were gradually protonated. Thus, 
aggregation of MUa-Au NPs was induced from the top of the gel. Figure 4.13a shows the 
obtained pattern in a test tube by pH-induced aggregation of MUA-Au NPs when the 
initial reservoir concentrations of HCl ([HCl]0) and MUA-Au NPs ([MUA-Au NPs]0) 
were 1.5×10-4 M and 4.0 nM, respectively. The boundary between the narrow black and 
bright red regions indicates the interface between the HCl reservoir and the gel, where 
this red color corresponds to the LSPR of MUA-Au NPs (Figure 4.4a). Also, the red color 
near the top of the gel became pale. To investigate the reason for it, I obtained the UV-vis 
spectra of different HCl concentrations in the HCl reservoir removed after pattern 
formation (Figure 4.14). Thus, the LSPR peak of MUA-Au NPs was observed at around 
530 nm, indicating that MUA-Au NPs were eluted from the gel to the reservoir during 
the pattern formation and the color change was due to the elution. Therefore, such region 
with pale red color is represented as the elution ("E") region in Figure 4.13a. Below E, a 
relatively dark red region was continuously formed at approximately 5 mm. In this region, 
the peak value of LSPR increases without red-shift comparing with the brighter red 
regions (Figure 4.15). Therefore, it was indicated that MUA-Au NPs were weakly 
aggregated in this region. Thus, this region represents a region of continuous aggregation 
(“CA”). Below CA, the contrast between the dark and bright red regions appeared to form 
alternately. To make this contrast of alternative changes clearer, I transformed the original 
image (Figure 4.13a) into a grayscale image (Figure 4.13b) and conducted a line profile 
analysis (Figure 4.13c), where higher IGV values indicate that image colors at analyzed 
positions have darker gray color. In other words, IGV increases in the dark red region 
where the concentration of MUA-Au NPs is weakly aggregated. Near the interface (x = 
0), the IGV is 0, corresponding to E, and then monotonically increases up to 
approximately x = 7 mm, namely, this region represents CA. The IGV after CA shows 
periodic oscillations, indicating that aggregation regions of MUA-Au NPs are formed 
discretely. Each IGV band corresponding to the peak position in oscillation is denoted by 
“B”. The IGV gradually decreases farther from the interface as the H+ concentration 
decreases because of reduced diffusion and aggregation force. Such a banding structure 
is in good agreement with characteristic LP morphologies.[20] While inorganic precipitates 
are distributed discretely in the classical LPs, the aggregation regions of MUA-Au NPs 
are distributed into bands, where each band contains many microscale aggregates (Figure 
1d). As shown in Figure 4.11d, this B region is a well-diffused region of H+ to induce the 



 
 

 -92- 

aggregation. Therefore, this structure can be regarded as a novel LP structure based on 
the pH-induced aggregation. It is noted that the strong aggregation seen in Figure 4.12 
does not occur in the test tube system because the change in the LSPR peak is not 
accompanied by a red-shift at B (Figure 4.15). Therefore, these aggregates might be 
formed through the only weak aggregation of NPs.  

 
Figure 4.13. (a) Original image and (b) gray scale image of pattern formation by 

aggregation of MUA-NPs, where E, CA, and B represent the elution region, 
continuous aggregation region and aggregation band of MUA-Au NPs, 
respectively, and the number (B-n) associated with B is the band number. (c) 
Result of line profiling with inverted grey values in (b), the positions are 
measured from the interface between the HCl reservoir and the agarose gel. (d) 
Aggregates of MUA-Au NPs in B-4. 
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Figure 4.14. UV-vis spectra of HCl reservoir after pattern formation (2 weeks) with the 
different concentrations of HCl reservoir: [HCl]0 = 1.0×10−4 M (red) and 
2.0×10−4 M (black). 

 

Figure 4.15. UV-vis spectra measured by MSP at the position of the dark red (purple) and 
bright red regions (red) in gel sample such as Figure 4.13a. The black spectrum 
is obtained out of the H+ diffusion region. 

 
4.4.4 Pattern formation dynamics 

 Then, I examined the dynamic process of pattern formation, which is crucial for 
establishing a model of the system. Figure 4.16a shows the time course of pattern 
formation until the formation of the first band region (B-1). Also, I defined the inter-band 
region with the decrease in IGV as the depletion region (“D”) because significantly less 
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aggregates were formed in this region. As a result, CA appears by 12 h, and D and B-1 
appear almost simultaneously after about 24 h. These dynamics were more clearly 
illustrated in the line profile (Fig. 4.16b), where the IGV of the CA (around x = 4 mm) 
increases with time, indicating progressive aggregation with time. The synthesized MUA-
Au NPs were found to aggregate gradually in aqueous solutions with similar pH values 
(Figure 4.9). It was reported that the interaction between the polymer network and the 
nanoparticles reduces the diffusion coefficient of NPs in gels.[162-163] Therefore, the 
kinetics of aggregation slowed down in gels, resulting in prolonged aggregation. 
Furthermore, an interesting change was observed in the profiles of D and B-1: whereas 
there was no gap in IGV at the positions that would become D and B-1 (red and purple 
areas in Fig. 4.16b) after 12 h, there was a gap in IGV after 24 h, with negative and 
positive changes in IGV at each position. This indicates that the formation of D and B-1 
occurs almost simultaneously and that the band domain of B-1 grows with time. These 
dynamics are consistent with the general properties of liquid-liquid and polymer-colloid 
phase separation systems.[164-165] Therefore, this pattern formation should be based on the 
phase separation mechanism of MUA-Au NPs. However, it is difficult to determine 
whether aggregation and phase separation are acting in concert or separately. 

 
Figure 4.16. Successive images during the formation of the first band (B-1), in which D 

indicates the area where the aggregates are depleted. The experimental 
conditions are the same as in Figure 4.13. (b) Time course of the line profile in 
(a). The length of the arrows indicates the amount of change in each peak 
corresponding to the D (red) and B-1 (purple) regions. 
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4.4.5 Effect of the initial concentration of MUA-Au NPs and HCl 

 Having discussed the principles of pattern formation by the pH-induced aggregation, it 
is now necessary to evaluate the spatial periodic properties of the resulting patterns in 
comparison with conventional classical LPs. Then, I explored the effects of HCl and 
MUA-Au NPs concentrations on the spatial periodicity of the obtained LPs, using the 
spacing law (eq. (6)) and the MP law (eq. (8)). Firstly, the effect of [MUA-Au NPs]0 was 
investigated (Figure 4.17).  

 
Figure 4.17. (a) Pattern formation with the different initial MUA-Au NPs concentrations 

([agarose] = 0.20 w/v% and [HCl]0 = 1.5×10−4 M). Left and right images in 
each set are original color and grayscale. Line profile in different [MUA-Au 
NPs]0:  (b) 3.5 nM, (c) 4.0 nM, (d) 4.5 nM, and (e) 5.0 nM. These profiles were 
obtained from grayscale images. 
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When [MUA-Au NPs]0 = 3.0 nM, alternative regions between B and D were not formed. 
However, by increasing this concentration to 4.0 nM, up to four B regions could be 
obtained. On the other hand, the number of bands decreased again when this concentration 
increased further. To analyze the detail for the periodicity, the relationship between xn and 
n were deduced from results of line profiles with different [MUA-Au NPS]0 in this figure 
(Figure 4.18). At all concentrations ([MUA-Au NPs]0 = 3.5, 4.0, 4.5 nM), xn increases 
with n (Figure 4.18a), which is consistent with the characteristic properties of regular-
type LPs. Therefore, this result clarifies that the patterns obtained by the pH-induced 
aggregation in this study are LPs. Furthermore, we plotted 1+p as a function of [MUA-
Au NPs]0 to compare the periodicities (Figure 4.18b). Originally, it was desirable to 
calculate 1+p by averaging the constant values obtained from xn+1/xn vs. n plots at large n 
for each concentration. However, because the number of bands is small in each sample in 
this system, 1+p is deduced by the ratio between xlast and xlast-1. The value of 1+p increases 
exponentially with [MUA-Au NPs]0, which is good agreement with the prediction based 
on the classical MP law as shown in Figure 2.1. 

 
Figure 4.18. (a) The change in xn as a function of n depending on [MUA-Au NPs]0 (●: 3.5 

nM, ▲: 4.0 nM, ■: 4.5 nM). (b) Relationship between 1+p and [MUA-Au 
NPs]0.  

 I also demonstrated the effect of [HCl]0 (Figure 4.19). Compared to the dependence for 
MUA-Au NPs, the conditions which a pattern consisting of multiple bands (n ≥ 3) could 
be formed were limited (Figure 4.19a). In fact, only under conditions of 1.5×10−4 ≤ 
[HCl]0 ≤ 1.75×10−4 can a pattern consisting of several bands be formed (Figure 4.19b,c). 
Also, obtained patterns under this limited condition shows well-defined periodicities as 
the regular-type (Figure 4.19d). Therefore, the patterns formed are all of the regular-type 
regardless of the change in the concentrations of MUA-Au NPs and HCl. Furthermore, 
the p value is smaller in the case of [HCl]0 = 1.75×10−4 M than the case of 1.5×10−4 M 
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(Figure 4.19e). This trend is consistent with the MP law prediction. 

 
Figure 4.19. (a) Pattern formation with the different initial HCl concentrations ([agarose] 

= 0.20 w/v% and [MUA-Au NPs]0 = 4.0 nM). Left and right images in each set 
are original color and grayscale. Line profile in different [HCl]0: (b) 1.5×10−4 
M and (c) 1.75×10−4 M. (d) Variation of band position (xn) with band number 
(n) in different [HCl]0 (●: 1.5×10−4 M and ▲: 1.75×10−4 M). (e) Relationship 
between 1+p and [HCl]0.  

Therefore, the variation of p depending on the concentrations of invading (HCl) and pre-
doped (MUA-Au NPs) species are good agreement with the well-known prediction of MP 
law for the nucleation-based scenario, despite the LP formation due to the pH-induced 
aggregation is based on the phase separation-based scenario. This result suggests that it 
may be possible to describe the LP formation mechanism comprehensively, regardless of 
the nucleation or the phase separation-based scenarios. 



 
 

 -98- 

4.4.6 Numerical RD simulations with CH equation 

 Finally, to gain deeper insight into the pattern formation mechanism of this system, we 
performed numerical simulations based on the RD equation coupled with the CH 
equation.[116-120, 129] The following chemical processes were included in the pH-induced 
aggregation scheme in this study: 

Protonation: 

nH+ + Au NP-(COO-)n → Au NP-(COOH)n    (52) 

Phase transition and separation: 

mAu NP-(COOH)n → (Au NP)m     (53) 

where -(COO-)n and (Au NP)m are the MUA molecules on the Au NP surface and 
aggregates of MUA-Au NPs, respectively. Subsequently, we express the above processes 
for the simulation as 
Protonation: 
A + Z → Z*       (54) 
Phase transition and separation: 
Z* → Z**       (55) 
Each species in Eqs. (54) and (55) corresponds to the chemical species in Eqs. (52) and 
(53), respectively. Based on these assumed processes, we constructed the following RD 
equations, referring to past numerical studies for the post-nucleation models:[116-117, 129] 

(+
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= 𝐷+

(,+
(7,

− 10𝑘𝑧𝑃𝑟𝑡(𝑥, 𝑡),  (56) 

(b
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= 𝐷b

(,b
(7,

− 𝑘𝑧𝑃𝑟𝑡(𝑥, 𝑡),  (57) 

where a and z are concentrations of A and Z, Da and Dz are the diffusion coefficients of A 
and Z, respectively, and k is the rate constant of the protonation reaction. To consider the 
chemical amphipathic relationship between the number of MUA molecules per one 
MUA-Au NP surface and protons, we added the correction coefficient number (10) before 
𝑘𝑧𝑃𝑟𝑡(𝑥, 𝑡) in eq. (56). The protonation progresses dramatically with pH changes as 
shown in Figure 4.6. Therefore, the term for the protonation should be denoted using the 
sigmoid function. Then, the protonation function  𝑃𝑟𝑡(𝑥, 𝑡) was represented by the 
following sigmoid-type function: 

𝑃𝑟𝑡(𝑥, 𝑡) = 𝑧 - ;
;P.>@(=(A,!)><=)

.,  (58) 
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where α and Ka are a coefficient that determines the degree of change and acidity constant. 
The eq. (58) represents that the Z* is accumulated at the position where A was diffused 
and increased. Also, α controlled the responsibility of the Z* production (meaning 
protonation) to the increase in A. In this study, we fixed α and Ka at 1.0 and 12. When the 
system becomes unstable by the increase in Z*, a phase separation of Z* into regions of 
high (zh) and low concentrations (zl) takes place, where the region with zh means existence 
of Z** (aggregation). This process is denoted by the following CH equation with 
protonation source (𝑘𝑧𝑃𝑟𝑡(𝑥, 𝑡)) and noise (𝜂c) terms: 

()
('
= −𝜆 (,

(7,
-𝜀𝑋 − 𝛾𝑋> + 𝜎 (,)

(7,
. + 𝑘𝑧𝑃𝑟𝑡(𝑥, 𝑡) + 𝜂c. (60) 

Here X is the concentration of Z* shifted by 𝑧∗z = (𝑧U + 𝑧,)/2  and scaled by 𝑧∗{ =
(𝑧U − 𝑧,)/2, such that 𝑋 = (𝑧∗ − 𝑧∗z )/𝑧∗{  is 1 for 𝑧∗ = 𝑧U and X is −1 for 𝑧∗ = 𝑧,.The 
parameters λ and σ are the kinetic constant of the phase separation and surface energy, ε 
and γ are the characteristic constants. The ratio between λ and σ defines a characteristic 
timescale of the unstable region growing. Also, σ guarantees stability for perturbation, it 
is typically set positive value (σ > 0). In this study, we used 0.5 and 0.8 for λ and σ. The 
values of ε and γ define a binodal boundary and a spinodal boundary. Also, we set ε was 
positive, namely, the phase separation was driven by the spinodal decomposition. Values 
of ε and γ were 1.0. The above parameters were fixed in all simulations. Since fluctuations 
are inherent in various chemical phenomena, we have taken their effects into account with 
a noise term (𝜂c ) that is defined by 𝜂c = 	𝑟:𝑘𝑧𝑃𝑟𝑡(𝑥, 𝑡)   where 𝑟  is uniformly 
distributed in [−𝜂,+𝜂]. We used 0.02 as this parameter. Also, the space grid-step Δx = 1 
is employed on a 100×400 grid, and the time step Δt = 0.001 and total time steps t = 
500000 are used. Furthermore, the initial conditions were set as represented below: 
𝑎(𝑥 = 0, 𝑡 = 0) = 𝑎8, 𝑎(𝑥 > 0, 𝑡 = 0) = 0, and 𝑧(𝑥, 𝑡 = 0) = 𝑧8, where a0 and z0 are 
initial concentrations of A and Z. Also, we used no-flux boundary conditions at the end 
of the calculation space (100×400 grid) and Dirichlet boundary conditions at the boundary 
between the A reservoir and the area pre-doped with Z, namely 𝑎(𝑥 = 0, 𝑡) = 𝑎8. All 
parameters were treated as dimensionless. 
 Figures 4.20a and 4.20b show a typical output image and the corresponding 
concentration profile of X. Under the vertical position = 0, corresponding to the boundary 
where the Dirichlet condition of A was set, a periodic banding pattern was obtained 
(Figure 4.20a). In addition, a clear oscillation is formed in the concentration profile 
(Figure 4.20b), which is consistent with the oscillation obtained experimentally (Figure 
4.13c). Furthermore, I show the time course in the simulation until B-1 (Figure 4.20c) and 
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further B formation (Figure 4.20d). At t = 15000, the concentration gradient of Z* is 
formed by the diffusion of A and protonation of Z, however there is no gap in X at 
positions that will become D (red region) and B-1 (purple region). However, at 𝑡 = 22000, 
X shows negative and positive changes at D and B-1 and a gap is created, indicating the 
beginning of phase separation. Finally, this gap increases until t = 40000, where phase 
separation is completed. A further band (B-2) was formed by repeating the same 
protonation and phase separation processes (Figure 4.20d). These behaviours were 
consistent with the experimental results, indicating that the LP formation based on the 
pH-induced aggregation progressed via a phase separation mechanism. 
 

 
Figure 4.20. (a) Concentration distribution of X from the RD simulation (a0 = 60, z0 = 1.0). 

(b) Concentration profile of X in (a). The position “0“ indicates the Dirichlet 
boundary for A (𝑎(𝑥 = 0, 𝑡) = 𝑎!). Time course of the concentration profile of 
X (c) during the 1st band (B-1) formation and (d) for longer periods of time 
under the same simulation condition in (a). The blue-, red-, and purple-colored 
regions in (c) correspond to the CA, D, and B-1 bands, respectively. 

Furthermore, similarly to the experiments showing the dependence of [MUA-Au NPs]0 
shown in Figures 4.17 and 4.18, the influence of the initial concentration of the pre-doped 
species (z0) was also observed in the simulation results (Figure 4.21 and Figure 4.22). In 
Fig. 4.21a, no banding pattern was obtained at z0 = 0.4, whereas increasing until z0 = 1.0 
resulted in the formation of clear discrete bands and an increase in the total number of 
bands. Any further increase in z0 caused a thickening of the bands and a decrease in their 
number. This trend is consistent with the trend seen in Figure 4.17, where the appearance 
of the pattern changes in response to changes in the concentration of MUA-Au NPs. 
Furthermore, I explored xn changes as a function of n, analyzed from Figure 4.21b-e 
(Figure 4.22a). As a result, the xn values increased with increasing n for all conditions of 
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z0. Furthermore, the 1+p values increased exponentially with an increase in 𝑧8, which 
corresponds to the above experimental results (Figure 4.18a) and the classical MP law. 
To investigate the reason why the resulting pattern obtained from both experiment and 
simulation followed this classical rule, I carefully observed the changes in the simulation 
over time (Figure 4.22c,d). These figure show the time course of the profile of X for 
different z0. For a low value of z0 = 1.0 (Figure 4.22c), X only increases with time, 
indicating the growth of the B region (purple arrow (i)). At the same time, the valley of 
the profile corresponding to the next D deepens and moves away slightly (red arrow (i)). 
On the other hand, at the high value of z0=1.2 (Figure 4.22d), the X in the B region 
becomes larger (purple arrow (i)) and the region spreads towards the distance (purple 
arrow (ii)). Furthermore, the valley in the D region moves clearly at first (red arrow (i)) 
and then becomes deeper (red arrow (ii)). This enlargement of the previous band (Bn) and 
the movement of the D region due to the increase of z0 increase the central distance 
between Bn and the next band (Bn+1) and increases 1+p. In the previous experimental result 
based on the nucleation-based scenario shown in Figure 2.1b, increasing b0 caused such 
enlargement of each band, thus 1+p increased due to the greater distance between the 
bands and the centre of the bands. The consistency between the two scenarios is suggested 
to be since solid-phase transition processes such as nucleation and phase separation are 
driven under the limit of the diffusion flux of invading species. In other words, although 
the mechanisms of the various pattern formations in the Liesegang phenomenon is 
bifurcated depending on the thermodynamic state of the system, obtained patterns may 
be discussed in a unified mechanism. 
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Figure 4.21. (a) Concentration distribution of X from RD simulation with different z0 (t = 

500000, a0 = 60, Da = 10, Dz = 1.0, α = 1.0, k = 1.0, Ka = 12, λ = 0.5, ε = γ = 
1.0, σ = 0.8, 𝜂 = 0.02). Line profile in different z0: (b) 0.6, (c) 0.8, (d) 1.0, and 
(e) 1.2. 
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Figure 4.22. (a) Variation xn as the function of the band number and dependence on z0 (●: 

0.6, ▲: 0.8, ■: 1.0, and ▼: 1.2). (b) Relationship between 1+p and z0. (c) 
Dependence of z0 on the time course of the concentration profile of X: (c) z0 = 
1.0 and (d) z0 = 1.2. Numbers beside the arrows with gradation color represent 
steps of concentration changes.  

 
In support of this expectation, the simulation with different a0 showed a very good 
agreement with the experimental results (Figure 4.19) in terms of the a0 dependence 
(Figure 4.23). Indeed, as a0 was increased, 1+p was decreased (Figure 4.23d), which is 
similar trend to Figure 4. 19. As we can see, the spatial periodicity obtained in the phase 
separation-based scenario are in perfect agreement with those obtained in the nucleation-
based scenario, and it is clear that the results obtained can be interpreted in a 
comprehensive way, even though the dynamics of pattern formation are different between 
the two. 
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Figure 4.23. (a) Concentration distribution of X from RD simulation with different initial 

concentrations of A (𝑎!) (t = 500000, z0= 1.0, Da = 10, Dz = 1.0,  α = 1.0, k = 
1.0, Ka = 12, λ = 0.5, ε = γ = 1.0, 𝜎 = 0.8, 𝜂 = 0.02). Line profile in different 
𝑎!:  (b) 40, (c) 60, and (d) 80. (e) Variation of xn with n in different a0 (●: 60 
and ▲: 80). (e) Relationship between p and a0. 
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4.4.7 Pattern formation mechanism based on the pH-induced 
aggregation 

 The results of both experiments and simulations suggest that the pattern is formed via 
the following phase separation process. The first trigger for the whole process is the 
formation of a H+ diffusion gradient in the gel pre-doped with MUA-Au NPs due to the 
directional diffusion of H+ (Figure 4.24 (i)). Subsequently, the protonation of the MUA-
Au NPs proceeds according to the gradient and the protonated MUA-Au NPs accumulate 
in the gel and their concentration gradient evolves (Figure 4.24 (ii)). When the protonation 
gradient has grown to a certain extent, phase separation by spinodal decomposition 
proceeds, resulting in the simultaneous formation of banding and depletion regions 
(Figure 4.24 (iii)). These processes are repeated farther and farther by propagation of the 
phase separation front due to further H+ diffusion, resulting in the formation of the LP 
with discrete regions of particle aggregation (Figure 4.24 (iv)). 

 
Figure 4.24. Illustration of formation mechanism for the phase separation-based scenario 

induced by the pH induced aggregation of MUA-Au NPs.  
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4.5 Conclusions 

 In this study, we successfully developed a novel experimental to be able to demonstrate 
the phase separation-based scenario by focusing on the pH-induced aggregation of MUA-
Au NPs and the corresponding numerical RD simulation model. Furthermore, we 
demonstrated the effect of experimental conditions, such as the invading and pre-doped 
species concentrations, on the spatial periodicity of the obtained LP. As a result, we found 
that the periodicity in this system was modulated in a similar manner as LP formed 
thorough the nucleation-based scenario, with trends consistent with the classical MP law. 
So far, there have been studies that have examined for the phase separation effect  
separately from experimental[86, 124-125] and mathematical[116-117, 129] perspectives, however 
only a few studies have combined both perspectives. Also, to the best of our knowledge, 
there is no study that compares the features obtained in the phase separation-based and 
nucleation-based scenarios from both experimental and simulation points of view, as in 
this study. Hence, our experimental system can be regarded as a novel platform for 
describing the mechanism based on the phase separation-based scenario. Importantly, we 
found that Liesegang phenomenon provides similar spatial periodic properties 
irrespective of the bifurcated scenario. Therefore, it is suggested that both scenarios can 
be described in a unified way by using physical variables that represent thermodynamic 
states in mathematical model. Thus, the phase separation-based scenario is very practical 
as one of the mechanisms driving LP formation. From these perspectives, we can use LP 
as the chemical model to discuss LP-like patterns in nature[110-111, 113, 146-147] as well as 
other conventional RD studies.[13, 16-17]  
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Chapter 5 Conclusions and future perspectives 

 Spontaneous order formation under nonequilibrium conditions, namely self-
organization, is ubiquitous in both natural and artificial environments. Dissipative 
structures are one of the most typical examples of such self-organized structures. To 
understand the mechanisms of their structure formation, experimental and mathematical 
scientific approaches are essential, and most of previous research to date has followed 
this process of thought. Dissipative structures can be classified into several classes 
according to the type of nonlinear reaction in the source of formation, among which 
systems in which directional diffusion and associated solid-phase transition processes act 
competitively can be modelled by the Liesegang phenomenon. However, more than a 
century after its initial discovery, the phenomenon remains fundamentally poorly 
understood and lacks practicality as a model. To address this issue, this thesis focused on 
the fact that the Liesegang phenomenon manifests itself via different bifurcated 
thermodynamic scenario, and aimed to understand the specific unresolved issues in each 
scenario by taking both experimental and mathematical approaches. 
 In Chapter 1, after an introduction to the thermodynamics of nonequilibrium and self-
organization, examples of different classes of dissipative structure formation are 
presented and the history of model studies for each is described. Furthermore, the basic 
knowledge about the Liesegang phenomenon was explained from various points of view 
(e.g. spatiotemporal periodicity, material diversity, morphological features of the patterns, 
etc.). After that, considering that the formation mechanism of the Liesegang phenomenon 
can be bifurcated into two scenarios depending on the thermodynamic state of the system: 
the nucleation-based scenario and the phase separation-based scenario, the unresolved 
issues in each scenario are introduced, and the purposes of this study are described based 
on them. 
 In Chapter 2, I focus on the fact that the methods used to evaluate LPs periodicities 
formed by the nucleation-based scenario do not consider Fdiff, which is important for the 
formation of LPs. To clear this effect, I used the volume effect of the reservoir. When the 
small reservoir (Vgel > Vres), which is the typical condition in most previous studies, the 
periodicity of obtained LP depended on decreasing ares with the progress of diffusion. On 
the other hand, when the reservoir was relatively large, the approximation ares = a0 was 
valid and ares was always kept constant. This means that even if we set the same a0 

between both reservoir conditions, the periodicity is decided by a different Fdiff from the 
previous condition. Such a change in LP periodicity due to factors other than electrolyte 
concentration could not be considered in the existing classical MP law. Then, I modified 
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this law to use Fdiff as a variable instead of a0. Thus, it is now possible to describe the 
periodicity changes of the different reservoirs described above in a single unified 
relationship. This effect of Fdiff is supported by both experiments and numerical 
simulations, which show that the Liesegang phenomenon exhibits periodicity in response 
to imposed Fdiff. 
 In Chapter 3, I focused on the fact that, although the nucleation process is the most 
important determinant of the nucleation-based scenario, there is no experimentally 
validated explanation of the geometrical transitions that LPs show under specific 
conditions. By using gels involved in the kinetic control of nucleation in LP formation, I 
then preparade the spatial K2 modulation by changing their spatial concentration. As a 
result, simulations of spatially fixed K2 and experiment of mono-layered gels with 
spatially fixed gel concentrations showed that only regular-type periodicities were formed 
in both cases. On the other hand, the periodicity transited depending on Δ[agarose] when 
I used bi-layered gels made by stacking of two gels with different agarose concentrations. 
Furthermore, in order to understand the results of the experiment, a simulation was 
performed under the condition that K2 was modulated only once at an arbitrary position, 
and as in the experiment, the periodicity transition depending on ΔK2 was observed at the 
modulation point. Thus, I found that the spatial modulation of the nucleation rate is the 
main key parameter dominating the transitions in the Liesegang phenomenon. To show 
that this consideration is more robust, I finally formed patterns in the multi-layered gels. 
Thus, this system showed that the periodicity was modulated throughout the whole of the 
system, unlike the local transitions that appear in the bi-layered gels system described 
above. Therefore, both experiments and supporting simulations showed that almost all 
the geometrical changes exhibited by the Liesegang phenomenon in the nucleation-based 
scenario can be explained in terms of the kinetics of nucleation. 
 In Chapter 4, I focused on the fact that there has been little experimental validation of 
the phase separation-based scenario. To make this possible, I combined the pH-induce 
aggregation of MUA-au NPs with the typical 1D Liesegang system, and the aim of the 
project was to construct an experimental system that could faithfully reproduce the above 
scenario. As the pH in the gel pre-doped with MUA-Au NPs decreased with H+ diffusion, 
alternating regions with the presence or little presence of nanoparticle aggregates were 
gradually formed from the H+ reservoir. In contrast to the nucleation-based scenario, these 
opposing regions formed simultaneously in this system. Therefore, it was suggested that 
the obtained LP was formed due to the phase separation mechanism. To support of this 
view, I have performed numerical simulations using the CH equation and RD equation, 
which can simulate the formation of periodic structures based on a phase separation 
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mechanism. As the pattern formation proceeded in exactly the same manner as the 
experimental results, this system provides a useful experimental model for demonstrating 
the phase separation-based scenario. Furthermore, it was that the spatial periodicity 
obtained from both experiment and simulation showed good agreement with the empirical 
law constructed on the basis of the nucleation-based scenario. These results not only show 
that the phase-separation-based model is a practical part of a bifurcated model of the 
Liesegang phenomenon, but also that it may provide a unified description of the 
mechanism by which periodic structures are formed in bifurcated scenarios with and 
without nucleation. 
 Based on the above discussion, the main highlight of this thesis is the achievement of 
a fundamental understanding of the Liesegang phenomenon through a comprehensive 
approach combining experimental and mathematical modelling of the unresolved issues 
in each of the thermodynamically bifurcated scenarios that have not been fully explored 
in previous studies. These results enable a rational interpretation of almost all the 
phenomena inherent in the Liesegang phenomenon, and can be applied to elucidate the 
formation mechanisms of similar patterns ubiquitous in nature, such as practical 
dissipative structure formation models of BZ reactions and Turing patterns. Therefore, it 
is hoped that the results of this thesis will lead to significant breakthroughs for researchers 
in a variety of fields targeting the Liesegang phenomenon. 
 However, even with this basic understanding, the detailed causes of the morphological 
changes, in particular, helix and spot structures formation described in Sec. 1.6.3 remain 
an open question. Since thermodynamic fluctuations probably underlie this problem, a 
systematic investigation of the effects of various physicochemical parameters (e.g., 
temperature, concentration, etc.) on the fluctuations is necessary to understand it. 
Furthermore, most of the previous studies on LPs have focused on the macroscopic view 
of the periodicity of formation, however recently attempts have been focusing on the 
morphology of individual particles in each precipitation band and to apply this to particle 
synthesis approaches (e.g. Figure 1.15c). However, these controls are empirical and there 
is no theoretical blueprint to predict them reasonably well. Therefore, the discussion of 
such particle morphological changes linked to the description of reaction-diffusion 
dynamics in the Liesegang phenomenon allows a comprehensive understanding of all 
macroscopic and microscopic phenomena in the Liesegang phenomenon.  
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