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Abstract

We give a unified proof of the global approximation theorem in the
critical case a= 2, which have been treated individually by several
authors. Our proof applies to all exponential—type operators with #(x)

of degree not exceeding 2.

1. Notations and Theorems

Let f(x) be a continuous real—valued
function on the interval D:=[A,B]N (—oo,
o), in symbols: f € C[A,B]. We use the
following notations:

Af(x)=f(x+h)—2f(x)+f(x—h)
(X € Dy) y
w2 (f;8) = sup sup |4 (x)],

0<h=Zdé X€Dn
Lipsa={f € C[A B]; w:(£;8) =0 (89),
8- O+}:

where Dn: =[A+h,B—h]N (—o0, ),
C.P.May [7] introduced the exponen-

tial— type operators
B
Ln (f;x):f W (n,x,u)f(u)du
A
(nz 1),
where W(n,x,u)= 0 is a function on D

such that

_/ABW(H,X,u)duZ 1 (1)

and

%W(H,X,U)Za%)w (n,x,u) (u—x?z)

are satisfied with a polynomial ¢(x) of
degree = 2, ¢(x)>0 on (A,B) and ¢(A)
=0, $(B)=0 if AB#%oo,
(1) and (2), La(f;x) preserves linear
functions, and we have by simple calcu-
lations (cf.[8])

In view of

n

Lal(t—x)%x)=

In [8] we have proved the following th-
eorem for those W (n,x,u)’s which satis-
fy some additional conditions. Let us
call them tame exponential—type opera-
tors for the sake of brevity.

Theorem 1., For tame Ln(f;x) and for
0 < a < 2 the following statements are

equivalent:
(I)a f € Lipza,

(I1)a [Ln(f;x)—f(x)l gM[Sé(Xn)a/z]

n=z1,xeD).

In this paper we consider the critical
case =2 for f € C[A,B] with f(x)=
O(eM*) for some N> 0.

Theorem 2. The
ments are equivalent:

following state-
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f€Lip: 2,
)

(x
n]

(nz1, xeD),

|La(f;x) —f(x)] éM[¢

Though we needed some conditions up-
on Wi{n,x,u) for Theorem 1 and had to
exclude the Post—Widder operators cor-
responding to ¢(x)=x*, we do not need
special conditions and can include the
Post — Widder operators in Theorem 2.
The proof of the direct part (1 ).=>(I )
is a standard procedure and is carried
out in the same way as Theorem 1,
so we refer the reader to the proof of
the direct part in [8]. For the proof
of the inverse part (II): => (I ). we use
two lemmas and an idea of Grundmann.
The author
particular (Bernstein) case of Lemma 2

learned from M.Becker a

as well as the reference [6].

2. Proof of Theorem 2, the

Inverse Part

We use the following two lemmas.

Lemma 1 (Voronovskaja—type relation).
If f(x)=0(e"*) for some N >0 and
feC?[Ao,Bo] (A<A,<B,<B), then

l ’”
7¢(x)f (x)

' ()

nhf?o n[La(fix)—f(x)]
(X € [AO,BO] )
Proof. We sketch only the outline of

the lengthy proof. Firstly, from Corollary
2.7 .in M.Ismail and C.P.May [5] we
have

f Win,x,u)eM!'du=0 n"*)

fu-xjz¢

(as n—o0), (5)
(k> 0, x€ [Ao,Bo])

Now we apply Taylor’s formula to

SATO

L. (f;x)—1(x), to obtain the equality
(4) from (1),(2)(3) and (5). A
concrete calculation is left to the reader.

Lemma 2. In order that f(x) is con-
vex on D, it is necessary and sufficient
that

>

Lo(f;x)2f(x) (nz1, xe€D),

Proof. The necessity is easily verified by
the same method in L.Kosmak [6] con-
Thus
we prove only the sufficiency of this lem-

cerning the Bernstein polynomials.

ma. For this purpose we use the so-cal-
led parabola technique (cf. B.BajSanski
and R.Bojanic [11]).

From the assmption of the lemma we
have

limﬁiup nlLa(f;x)—f(x)]= 0 (x€D).
(6)

Next we suppose that f(x) is not con-
vex, then there exists an interval [A:,B:]
C (A,B) with midpoint xo and a linear
function 1{(x) such that

f(AY) =1{A,), {(B:1)=1([B:)
and f(xe) >1(x0). If we take

fix)—1(x)
0

(x € [A1,B1])
(otherwise),

g(X)Z{

then we can find the parabola q(x) = ax®

+Bx+r(a<0) and x: € (A1;,B1) with the
properties:

q(x)=2g(x) (x€[A1,B:]) and
a(x:) =glx1).

Taking Q(x)=max{qg(x), 0}, we have

Q(x)zglx) (xeD) and
Q(x:1) =gxi).

Thus by Lemma 1 and L.(I;x)=1(x)
we obtain
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lim sup nl[La(f;x:) —f{(x:)]

n -

=lim sup n[La(g;x:1) —g(x1)]

n - o

slimsup n[La(Q;x1) = Q (x1)] =g (x1)< 0.

Since x; € D this contradicts to (6 ), and
the proof of Lemma 2 is complete.
Proof of Theorem 2. We show only the
inverse part by the comment in Section 1.
In view of the assumption (II); and the
relation (3 ) we have
#00)
n
=M[La((t —x)%x)]
=MI[La(t*;x) —x*].

[Lo(f;x) —f(x)|=M[

Thus we obtain for x €D
Mx?+f(x) <La(Mt*=£(t);x).

The above inequality implies, by Lemma
2, that Mx®*=*f(x) are convex functions.
Hence there follows

AMe? () ](x) =20 (xeD)

and
[4hf (x) | = M4E[t?](x) =0 (h*).

This proves f € Lip. 2.,

3, Remarks

Theorem 2 applies to the six normaliz-
ed types of operators which was deter-
mined by M.Ismail and C.P.May [5] as
the general form of exponential-type ope-
rators. Their operators include Bernste-
in polynomials and Gauss— Weierstrass,
Szasz— Mirakjan, Baskakov and other
operators. As to related results on ope-
rators which are not of exponential—type,
see for example M.Becker and R.]J.Nes-
sel[2].

The condition f(x) =0 (e™*") for some
N> 0 was introduced in C.P.May [7]

as growth—test functions. Evidently we
dispense with this condition for a finite
interval [A,B].

terval, by the example in [ 5], this con-

And for an infinite in-

dition may be best possible concerning
the existence of exponential—type opera-
tors, therefore this condition seems rea-
sonable, apart from the coincidence with
the qualification “exponential”.

The author would like to express his
gratitude to Prof. M.Becker for his help-
ful comments. And the author wishes
to record his sincere thanks to Prof. Y.
Suzuki and Prof. C.Watari for their va-

luable suggestions.

References

1) B.Bajsanski and R.Bojani¢, Bull
Amer. Math. Soc., 70, 675 (1964).

2 ) MBecker and R.J.Nessel, Math.
Z., 160, 195.(1978).

3) M.Becker, Indiana Univ. Math.
J., 27, 127 (1978).

4) H.Berens and G.G.Lorentz, Indiana
Univ. Math. J., 21, 693 (1972).

5) M.E.H.Ismail and C.P.May, J.Math.
Anal. Appl, 638, 446 (1978).

6) L.Kosmak, Mathematica, 9,(32) 71
(1967).

7) C.P.May, Canad. J.Math., 28, 1224
(1976).

8 ) K.Sato, J. Approximation Theory,
32, 32 (1981).



