WX Eit E AP #17% $£15 HERSTELR
Bull. of Yamagata Univ., Eng.. Vol. 17, No. 1, Jan. 1982

Implementation of SLISP and SREDUCE on a 32
bit Machine

Yosio TAKAHASI
Technical College, Yamagata University
(Received September 1, 1981)

Abstract

We investigate and resolve the problems which arose during the course of
implementation of symbolic manipulation language SLISP and algebraic mani-
pulation language SREDUCE on a byte machine. Some of the problems are
complicated since SLISP was originaly developed on a word machine while the
present host computer is a byte machine.

It is recognized that the clues to resolve such problems are both reprogramming
the source program with taking the differences of operating system of two
machine into account and proper transformation of the internal representations
of SLISP data so as to adapt for the new host machine. We re-examine fully
the internal representations of SLISP data and the system initialization routine
and improve them. The resultant system program gains considerable portability.
Then we explain a new built-in function of the present version of SLISP in some
details as a typical example that the recursion processing is required. The new
built~in functions are consist of the basic functions of Lisp and the functions for
pattern matching. Both of them contribute to increase the processing ability of
SLISP.

§1. Introduction

(1)~ (3), (8 and

SLISP is one of the dialects of the programming language Lisp
was designed and programed by Suzuki‘® for NEAC ACOS 700 in 1978. All of
the SLISP system program is written in ACOS—6 FORTRAN. The processing
system SLISP consists of interpreter and compiler. The compiler is designed to
adopt certain intermediate code as the object code and the system program
provides the execution routine(called ‘‘executor”) of this intermediate language.
Judging from this feature of SLISP, it looks quite easy to implement SLISP on
other computer system e.g. byte machine, eventhough ACOS 700 is a word

machine(36 bit/word). But as described in the following section, actual work

— 141 —

IR (T3 W174E B 1% WEAS74E1 A

became laborious task against such anticipation.

SREDUCE is a modified version of REDUCE 2 so as to adapt for SLISP.
REDUCE 2 is alarge Lisp based general purpose algebraic manipulation language
which was developed by Hearn and its feature has an Algol style form. It pro-
vides several algebraic and analytic operations which are neccessary in manipulating
polynomials, basic elementary functions, matrices, tensors and etc., Manipulations
of such quantities will appear in a wide variety of the fields of natural science.
The details on REDUCE 2 are given in Ref. 7.

The motive that we attempt to implement SLISP and SREDUCE on our com-
puter system(FACOM M-140 F) has its origin in the following elements. Firstly
the Lisp occupies an important position in the field of imformation science from
any stanbpoint, namely basic knowledge, application and education. Therefore it is
highly desirable that such language become to be available in our computer system.
Secondly if SLISP works, then SREDUCE will also work. SREDUCE will be
helpful to natural scientists and engineers. Thirdly the source program of SLISP
is written in Fortran.

Nowadays it is often occurs the case that one obtains some source program
which was developed on some computer system and next, one tries to implement
it on any available computer system which is different from the previous one.
In such a case, perhaps many problems come out during the implemementation
process, even though the source is coded in standardized language like Fortran.
Generally speaking, these problems will be cumbersome except for simple ones
e.g. compiler or linkage editor errors. The degree of complexity of problems
increases more in the case that the word length of the new host machine de-
creases from that of the old one compared with the reverse case. The difference
of the word length between the two host machines has a significant meaning
to the present investigation. It is somewhat interesting for us to deal with the
implementation which corresponds to the former case(e.g. from 36 bit version to
32 bit version) from the general viewpoint of portability of the program.

This paper is intended to describe the investigation and the resolution of trou-
blesome problems which arose during the implementation. Another aim of the
present paper is to explain the new built-in functions of SLISP which become to
be available in the new version. But explanation to all of them needs considerable
space and therefore, we restrict ourself to choose one typical fnnction. Instead
we give its detailed explanatior.

Since the the knowledge on both the storage allocation and the internal represen-
tation of the SLISP data in the Fortran source plays the role of vital importance,
we shall summarize it briefly in §2. The contents of Ref. 6 alone seems to be
insufficient for us to achieve the actual work. In §3, we shall present the pro-
blematic points in the implementation process and explain the resolution method

~ 142 —

TAKAHASI : Implementation of SLISP and SREDUCE on a 32 bit Machine

of these points. We shall then exhibit in §4 a part of the source program which
corresponds to the new bnilt-in function “SUBLA”. §5 will be devoted summary
and conclusion of this paper. In Appendix I, we shall state the definition of the
atom of SLISP in terms of BNF syntax.

§2. Storage Allocation and Data Structure

Since both the storage allocation and the data structures of SLISP in the
Fortran source are very important to implement SLISP on an actual computer,

we shall give compact description about them.

2.1 Storage Allocation and System Constants

SLISP has three important system common areas; free storage area, control
stack (or simply called “‘c-stack”) area and pname area. Among them, the first

IDX KAR KDR
T o
System Register, Value Stack Area
............ - 1 «~— RTOP
+~— MRTOP
Intermediate
= Code Area
% --------- +«—— LCODE
B «— MCODE
5
g List Area
... «—— LCELL
INIL — +~— MCELL
Atom Area
i ... «—— LATOM
T +— MATOM
Negative Integer
E 5 +— JZERO
oS!
3
l Positive Integer
—_— +— MAXINT

Fig. 1: Schematic storage allocation diagram of SLISP free storage area.
IDX, KAR and KDR are system common areas.

— 143 —

WOASEEE (T3 H17% 15 TRRST4AEL A

one is of particular interest for processing system. It is divided further into-five
parts according to the roles, namely, value stack(or simply called “‘v-stack) area,
intermediate code area, list area, character atom area and integer atom area.
While the first four areas are on the memory, the last one is in virtual address.

Some of the system constants in the Fortran source such as MCELL, MATOM,
MAXINT and etc. specify the way of partitioning the free storage area(Fig.1).
Their values are given externally as the input data or calculated internally when
the processing system is initialized. Other system constants those specify the c-stack
capacity, the pname capacity and the internal data representations of the SLISP
data are given by BLOCK DATA subprogram.

2.2 Data Types and Internal Representations

i) Character Atom: Roughly speaking, a character atom is expressed by a
string of characters leading by an alphabetic letter and following any character
string except for containing delimiter(s) of Lisp. But to say more precisely, a
character string which contains delimiter(s) of Lisp is also a legitimate member
of character atoms of SLISP if it satisfies certain definite syntax and is called
“‘special atom” by its different appearance from the ordinary atoms. These two
kinds of atoms are identically the same in data structurc, and thus we do not
make any distinction between the two. In Appendix I, we give more rigorous
definition of the character atom of SLISP in terms of BNF syntax.

Internal representation of a character atom is shown in Fig. 2.la-b. One
character atom occupies 4 Fortran words as a whole in the free storage area
and each word has definite role. The first word which is named “top level value”
contains a pointer for top level value of an atom, say “X”, viz. the pointer that

points to the value part or the function body or the GOTO index of the Fortran

KAR KDR
Top level value Print name
Function information P - list

(1a). Character atom.

FIND FCOUNT SRCD LNGTH

A

t Trace flag

(Ib). Fine structure of “function information” part of a character atom.
Fig 2: Internal representation of the SLISP data.

— 144 —

TAKAHASI @ [mplementation of SLISP and SREDUCE on a 32 bit Machine

source, according to if “X” is not function or if it is one of the user-defined
functions(EXPR, CEXPR, FEXPR, LEXPR) or if it is one of the built-in
functions(SUBR, FSUBR, LSUBR), respectively.

When any atom, say “X” too, is first registered by SLISP input routine, the
system program stores the value part of “X” with the pointer which points to
“X” itself. This value is never rewritten unless some pseudo-function of SLISP
operates on it. The top level value of a compiled user-defined function(CEXPR)
“X” is zero initially. More precisely, when “X” is compiled, its top level value
is set to zero by the system program. But when “X” is called for the first time
after it has been compiled, its function body(represented by “object code’) is
transfered from a secondary storage into the intermediate code area and at the
same time the value of “X’ is replaced by the pointer for the location where
transfered codes is stored.

The second word called “print name” has the form of [x IKETA + (pointer for
pname area), where [is the number of printing symbols of “X” and IKETA is
a system constant in the Fortran source. The fourth word “p-list” contains a
pointer for property list. When “X” has no property, it points to NIL.

The third word “function information” possesses the informations about func-
tion “X”. It is partitioned further in four parts i.e. FIND, FCOUNT, SRCD and
LNGTH. The first part “FIND” holds function indicator that indicates function
type of “X” (see Table I). The second part “FCOUNT?”, the third part “"SRCD”
and the last part "LNGTH?" keeps representative information about intermediate
code of the function “X” i.e. the size of intermediate code in record unit, the
record number of secondary storage (direct access file) and the length of inter-
mediate code, respectively.

The system constants K1, K2 and K3 in the Fortran source determine the way
of partitioning “function information” and therefore have great importance to
both the design and the implementation SLISP. Their values are fixed by taking

into account of many factors such as for example, the word length of host

Function Type | Undefined SUBRO SUBR1 SUBR2 EXPR CEXPR FSUBR FEXPR LSUBR LEXPR

FIND 0 1 2 3 4 5 6 7 8 9

Table 1: Function type and Function indicator (FIND).

The symbol SUBRn denotes “SUBR with n arguments”. When these functions
are turned on the trace flag, then the new values of FIND are obtained by adding
10 to the old values.

~ 145 —

WPREEITE (I8 $17% 1% RMSTHELA

machine, number of function types, the capacity of secondary storage and etc,

ii) Integer Atom: The data structure of an integer atom is quite simple since
it is in the virtual address (see Fig. 1). Its location is obtained by adding its
numerical value to the system constant [ZERO in the Fortran source.

iii) Other kinds of Data: SLISP pfovides four other data types, namely list,
intermediate code, bound variable information and control information. Their
structures are shown schematically in Fig. 2.2—2.4. More detailed descriptions
of them are found in Ref. 6.

In this reference, Suzuki discussed several methods to represent variable envi-
ronment of Lisp and explained the reason why he chose to adopt the method to

use c-stack and v-stack in designing his SLISP.

KAR KDR

CAR part CDR part

1
garbage collection flag

Fig. 2.2 List(cell). “CAR” and “CDR” represents car- and cdr- part of list form,
respectively. The garbage collection flag occupies one bit of KDR. It is utilized

by the system as a mark to represent whether given list is garbage or not.

KAR KDR

Operator part Operant part

Fig. 2.3 Intermediate code.

IDX KAR KDR

Access link Value part pointer for constant

A

|
read/write permission flag

Fig. 2.4 Value stack information.

Function name Execute address

Fig. 2.5 Control stack information.

— 146 —

TAKAHASI : Implementation of SLISP and SREDUCE on a 32 bit Machine

§3. Problems in the Implementation of SLISP and SREDUCE

There arose cumbersome problems as the work of implementation of SLISP on
our computer proceeds. Acoording to our investigation, the cause of such problems
can be classified into almost two groups. One of them concerns with the functional
differences of the operating system between ACOS-6 (NEAC ACOS 700) and
OSV /X8 (FACOM M-140 F), where ACOS-6 is the operating system under
which the original version of SLISP has been implemented and OSV /X8 is the
operating system of our computer. The other cause is the difference of the word
length between the two machines, namely 36 bit/word(ACOS-6) and 32 bit/word
(OSV /X8). Even though the source program of SLISP is written in Fortran,
it lacks of portability in certain parts where the system program utilizes explicitly
or implicitly various characteristic features of ACOS-6 FORTRAN.

First let us describe the major difference of the two operating systems. At the
earlier stage of implementation process, even the system initialization routine of
SLISP did not work at all. Among many questions, the question about pointer
setting mechanism for NIL(one of the most important Lisp constants) seemed to
be quite puzzling and considerable effort was required to find the cause. Under
OSV /X8 the user program area is not zero cleared initially and maintains frag-
mentary records of previous jobs, while it is essential for SLISP program to work
correctly that certain variables and array elements of the Fortran source should
be zero cleared at the begining of execution. If the program without necessary
modifications to cope with such points is executed under OSV /X8, these variables
and array elements are initially set wrong values which are determined by job
environment at that time. Such job should be aborted or terminated with curious
result because memory protection exception will certainly occur.

Our computer system does not provide the zero clear function while all of the
present (big) machines do provide such function as one of the loader’s options
from the standpoint of job security protection. Unfortunately it is considerably
hard to know which variable or array element should be zero cleared initially by
the inspection of source program alone. After many trial and error, the system
initialization subprogram has been reprogrammed in a satisfactory form. In the
present version of SLISP system program, such variables and array elements
decrease and only the arrays KAR and KDR which is declared by COMMON
statement is set to zero in the BLOCK DATA subprogram,

Next we discuss the word length difference. One of the important conditions
for system design of SLISP is that the value of important system constant such
as IZERO, IKETA, K1, K2 and K8 are so chosen that the internal represen-
tation of SLISP data is adapted for the word length of host computer, These
system constants determine the way how a given SLISP datum is represented in
the Fortran system program. KZ, K2 and K38 play the roles of key to utilize

— 147 —

WIPRAEEE (T $17% H15 MEISTHELA

intermediate codes which are saved in system reserved secondary storage. If these
values do not fit the conditions of system design, all the compiled function cannot
be available for us at all. Because the word length of ACOS-6 is larger than that
of our machine, we must carefully re~choose these system constants, and we must
reprogram certain parts of the original version without harming other elements
of the system. Generally speaking, such modifications are rather difficult in the
present case - from ACOS-6 version to OSV /X8 version - than in the reverse
case, since the word length of host machine decreases in the former case. The
optimal value set of these system constants for 32 bit machine as well as the co-
rresponding set for 36 bit machine are determined and are tabulated in Table II.

System Constant MAXINT IZERO K1 K2 K3

32 bit version 281 — 1 230 226 021 o10

36 bit version 235 —1 234 230 224 212

Table 1: Several System Constants.

The optimal values of several important word length dependent system constants
are shown for both the 32 bit version and the 36 bit version. Since the value of

K1 was incorrect in the original 36 bit version, it has been corrected.

By following the steps of program flow in the Fortran source, we find that
several nontrivial relations exist between the system constants. These relations
play fundamental roles to decide the optimal values K7, K2, K3 and IKETA.

They are as follows:

IKETA > MNAME, MNAME-128> ZNIL-JKETA «[ZNIL/IKETA],
where MNAME denotes the capacity of pname area.

dim(IDX)=MRTOP.
Here dim(IDX) and MRTOP means the dimension of array IDX and the depth
of v-stack, respectively.

K1/K2-1:: =capacity of the system reserved secondary storage (direct access

file) in record unit.
K2/K8-1:: =capacity of one executable block of compiled object in record unit.
K8-1:: =maximum allowed length of one executable block of compiled object.
The numerous knowledge about the internal structure of SLISP is of course

utilized to improve the system program. The effort is concentrated mainly on the

— 148 —

TAKAHASI : Implementation of SLISP and SREDUCE on a 32 bit Machine

problem to raise up the portablity of the SLISP and the problem to decrease
processing times both of the interpreter and the compiler. Furthermore, by altering
twelve system constants and array sizes of the Fortran source, we try to increase
the user area of SLISP,

As for the implementation of SREDUCE, the actual work was easier compared
with the case of SLISP. But supplementation of few functions to the SREDUCE
source was required since they were used and yet have not been defined in the

source.

4. New built-in Functions

We implement a total of about 30 new SUBRs and FSUBRs in order to en-
hance the processing ability of new version of SLISP. They are sorted in two
classes, namely, the basic functions of Lisp and the functions for pattern matching.
These new built-in functions are also useful to increase the efficiency of the
SREDUCE. They are classified into various kinds by their operations and a good
deal of space is necessary in giving explanation to all of them, even to the brief
one. Thus we omit to do so here and are planning to give explanations of the
new built-in functions as well as the built-in functions of the original version in
a next publication.

Instead, we choose one part of the system program which describes new function
“SUBLA” as one of the typical examples which need the recursion processing.
“SUBLA” is a SUBR with 2 arguments and given in M-expression as follows;

subla{xsy] = [nalll 2]\ nmull [y]— vy
atom [y] ~ [ALu]; [u— cdr [u]; T — y] [assocx [y «]7;
T — cons [subla[x; car [v]] s subla[z; cdrl y]1]]].

------ When “SUBLA” is evaluated, the second argument y (list form) is translated
according to the substitution table = (list form of doted pairs).

As is well known, since Fortran does not allow recursive call, we must utilize
certain control stack in order to realize the recursion processing. In the following,
we show the system program of “SUBLA” in an Algol style language without
using recursive call in the place of the original Fortran source for brevity and

clarity.

integer procedure subla{z, v];
value x, y; integer a,b,u, v, Z,y, 2
begin
cpshdwn [66,0]; u: =z; vi=y;
if u=znil then z:=v

else label:

— 149 —

WOBAAATE (T2) 4117 515 WHGTE 1]

begin for w: = v while w < znil do
begin
cpshdwn[65,cdr [v]]; vi = car [v]5
end
if v =znil then 2: = znil
else
begin w: = gssock [v,u];
if w < znil then z: = cdr[w]
else 2! =u
end
cpopup [a,b7;
for w: = a while w = 66 do
if a =65 then
begin
cpshdwn [64,2]; v: = b; goto label
end
else
begin
z: = cons [b,z]; cpopup [a,b]; w: = a
end
subla: = 2z

end

Here “car”, “cdr” and “assoc¥” are other procedure identifiers which correspond
to built-in functions of the original SLISP version. The procedure “cpshdwn” and
“cpopup” has the operation of control stack manipulation, pushdown and popup,
respectively. Furthermore the constant “znil” points to the SLISP constant NIL.
The procedure “subla’ returns the pointer that points to the evaluated value of
“SUBLA”.

§5. Summary and Conclusion

We have discussed in this paper problems which arose during the implementa-
tion of SLISP on 32 bit machine and resolution methods of such problems. Other
material, namely the internal representation of the SLISP data, the implementa-
tion of SREDUCE and the new built-in functions have also been described too.
It is shown that both variable initialization in the Fortran source(zero clear) and
proper reformation of the internal representation of character atom (re-choice
of the system constants and reprogramming) are indispensable to accomplish the

purpose. Apparrently detailed knowledge of the storage allocation and the internal

— 150 —

TAKAHASI : Implementation of SLISP and SREDUCE on a 32 bit Machine

representation of SLISP data in the Fortran source are required for better under-
standing of SLISP itself and still more required for completion of implementation.
At present, the new 32 bit version of SLISP as well as SREDUCE works correctly
under OSWV /X 8. Since this operating system provides large virtual memory for
the user, we have been extended the cell size of SLISP in the new version (49k-
cell) about two times or more larger than that of ACOS-6 version (22k~-cell).

By virtue of the newly implemented built-in functions and many improvements
of the Fortran source (optimizaions in the source level), the processing speed of
the present version of SLISP becomes fairly fast. For example, all of the processing
times required to execute several SREDUCE programs which have been applied
to the research problem in solid state physics decrease alout 20% or more com-~
pared with the results of the previous version of SLISP.

We made efforts to modify the SLISP source program as portable as possible.
Consequently, the new version has acquired considerable portability compared
with the original 36 bit version. The only operating system dependent parts are
the part where time measuring system subroutines are called since these subrou-
tines depend on the hardware. Though we have not described here, a number
of debuggings, revisions and supplements have been done not only to SLISP but
also to SREDUCE. Yet many other convenient functions such as for example,
backtracking, multipleprecision arithmetic, pretty printer, syntax-checker and etc.
are not provided in the present version. More flexible operation of I/O file access
is also lacking. Perhaps the last one will be attained easily if we adopt Fortran
77 as the host language of SLISP.

Acknowledgements

1 would like to express my sincere thanks to Dr. M. Suzuki who not only
recognizes the SLISP implementation on our computer system but also gives me
thorough guidance. Without his zeal support present implementation would not
be completed. I also wish to thanks Professor S. Katsura, Miss K. Ichinoseki and
Dr. T. Aoki whose supports and valuable suggestions contribute remarkably to
accomplishment of implementation. In the course of this work, FACOM M-140
F (Information Engineering Dep., Technical College, Yamagata University) and
NEAC ACOS 900 (Computer Center, Tohoku University) was used. This work
is supported in part by the Japan Society of the Promotion of Science under
Grant No. 574100.

Appendix I. Definition of Atom in SLISP

SLISP has two types of atom namely character atom and integer atom. The

restrictions on the atom are relaxed further compared with those of LISP 1.5,

—151 —

WIPREAEE (I8 BITE #1115 WFSTELA

The length of character string of an atom is allowed up to 128. The atom so-
called “special atom” for convenience, is essentially the same to the ordinary atom
except for containing delimiter(s). In the present version, the value range of
integer atom is restricted in the interval which is determined by the word length
of host machine and certain system constants. We show the definition of the

SLISP atom in terms of BNF syntax as follows:

S1. <letter class>:: = one of the characters(alphabets or symbolic characters)
those can be dealt with the Fortran of host machine
exclusive of <(blank class>, <{digit>>, <{sign> and $
(or ¥ instead of & for certain machines).

In the following, the replacement of $§ with ¥ is assumed if it needs.
S2. Jdigit>::=0]112]3]4|5]/6]7]8]9.
S3. lsign>:ii=+|—.
S4. <blank class>:: = , | blank symbol.
S5. < > =<blank class> | < ><blank class>.
36, <delimiter >:: =< >| . |(|).
S7. <lcharacter atom>:: =<'name atom_> | <(special atom>.
S8. <(special atom_>:: = § $d<character string which contains delimiter(s)>d,

where d is an arbitraly character which can be dealt with the Fortran of host
machine and at the same time is not contained in <(character string which

contains delimiter(s)>.

S9. < name atom > :: = <{alphanumeric atom_> | </sign>> |<(sign_>< name atom >
: | <name atom_><sign_>.

S10. <{alphanumeric atom_>:: =<letter class>> | <{character string which may
contain $ but must not contain delimiter(s)> | <[letter
class> <{alphanumeric atom > | <{alphanumeric atom >

<digit>.
S11. <Jinteger atom > :: =<digit > | <[sign><digit> |<|integer atom ><digit>.

Here let us show several nontrivial examples of <character atom >.

$1980, A5+42, X=10—2, A=B/C. All of these examples are regarded to be
legitimate <{name atom > of SLISP.

$ 8 $SPECIAL ATOM 8, $ $/ERROR!/ are both <special atom >s and the
corresponding print name is “"SPECIAL ATOM?"” and “ERROR!”, respectively.

— 152 —

TAKAHASI : Implementation of SLISP and SREDUCE on a 32 bit Machine

References

(1

(25

(38)

(4>

(5>

(6>

(7>

(8>

J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart and M. I. Levin,
“LISP 1.5 Programmer’s Manual”, The M. I. T. Press(1962).

L. H. Quam and W. Diffie, “Stanford LISP 1.6 Manual,” Stanford Artificial
Intelligence Laboratory, Operating Note 28.7(1968).

D. Moon, “MACLISP Reference Manual,” Laboratory of Computer Science,
Massachusetts Institute of Technology (1974).

W. Teitelman, “INTERLISP Reference Manual (4 -th rev.),” Palo Alto
Reserch Center, Xerox Corporation(1978),

Y. Kanada, "HLISP and Supplementary HLISP-REDUCE Manual,” Dep.
of Information Science, University of Tokyo (1978).

M. Suzuki, “Implementation of a Lisp Processing System and its Applica-
tions,” Master’s Thesis, Dep. of Applied Physics, Tohoku University (1978).

A. C. Hearn, “REDUCE 2 User’s Manual(2-nd ed.),” Utah Computation
Physics, Report No. UCP-19, University of Utah(1973).

J.B. Marti, A, C. Hearn, M. L. Griss and C, Griss, “Standard LISP Report,”
ACM SIGPLAN Notice Vol. 14 No. 10, 48(1979).

— 153 —

Iy

WHEREECEE (%) 176 15 IRASTE 1 A

¥

32 w = v SLISP Ko SREDUCE o

A VTV AYF =gV

wmoOm R M

TEEAR A

BE

SEEMEEESE SLISP & =8 SREDUCE % A4 b= v~AVF V2 b5
SRR CA U S g5, SLISP kY — F = v eI hicoedL, 4
EDARA =Y VIS b=V THLPBLMEEAD WL ORRHEERETH S,

FORERMEEY BT AEEIIL, o0 RY VDLV —F4 VI e VAT ADM
WEEEBLCERS e /5 2B re s s 1 vy Ta5E, ILLEA Y VEHEES
% X 51 SLISP 7 — 2 IiREHE L L BT 5 HOT A H 5 H2B#H I D, SLISP
7~ ZPRRER L AR EL —F v BELCBERLEERT S, TOER, v AT A7
B AR L WE—Z YV T RREB L,

TNT, BRI L 7% MR — & LT, SLISP B0 bh 5 —o0Hiicicill
ABIBIC DWW TR S BRI BT, Bt fo ARSI Lisp AR E 25—V - <
v FVY RO ENDR S TS, Thdizdk e SLISP o UiE i k4% 0w
FELTWE,

— 154 —

